Structure-Function Analyses of New SARS-CoV-2 Variants B.1.1.7, B.1.351 and B.1.1.28.1: Clinical, Diagnostic, Therapeutic and Public Health Implications

Jasdeep Singh, Jasmine Samal, Vipul Kumar, Jyoti Sharma, Usha Agrawal, Nasreen Z Ehtesham, Durai Sundar, Syed Asad Rahman, Subhash Hira, Seyed E Hasnain, Jasdeep Singh, Jasmine Samal, Vipul Kumar, Jyoti Sharma, Usha Agrawal, Nasreen Z Ehtesham, Durai Sundar, Syed Asad Rahman, Subhash Hira, Seyed E Hasnain

Abstract

SARS-CoV-2 (Severe Acute Respiratory Syndrome-Coronavirus 2) has accumulated multiple mutations during its global circulation. Recently, three SARS-CoV-2 lineages, B.1.1.7 (501Y.V1), B.1.351 (501Y.V2) and B.1.1.28.1 (P.1), have emerged in the United Kingdom, South Africa and Brazil, respectively. Here, we have presented global viewpoint on implications of emerging SARS-CoV-2 variants based on structural-function impact of crucial mutations occurring in its spike (S), ORF8 and nucleocapsid (N) proteins. While the N501Y mutation was observed in all three lineages, the 501Y.V1 and P.1 accumulated a different set of mutations in the S protein. The missense mutational effects were predicted through a COVID-19 dedicated resource followed by atomistic molecular dynamics simulations. Current findings indicate that some mutations in the S protein might lead to higher affinity with host receptors and resistance against antibodies, but not all are due to different antibody binding (epitope) regions. Mutations may, however, result in diagnostic tests failures and possible interference with binding of newly identified anti-viral candidates against SARS-CoV-2, likely necessitating roll out of recurring "flu-like shots" annually for tackling COVID-19. The functional relevance of these mutations has been described in terms of modulation of host tropism, antibody resistance, diagnostic sensitivity and therapeutic candidates. Besides global economic losses, post-vaccine reinfections with emerging variants can have significant clinical, therapeutic and public health impacts.

Keywords: 501Y.V1; 501Y.V2; B.1.1.28.1; B.1.1.7; B.1.351; COVID-19 vaccines; Clade G; D614G variant; ORF8; P.1; furin cleavage site; immune escape; public health strategies; spike protein; vaccine delivery.

Conflict of interest statement

Authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Emergence of new B.1.1.7, B.1.351 and P.1 variant lineages. (AC) Global distribution of sequences arising from various nations reporting 501Y.V1 (B.1.1.7), 501Y.V2 (B.1.351) and P.1 (B.1.1.28.1) variants, respectively. Pinned colored shapes on the map indicate major vaccine trials in various regions around the globe. Geographical pinning of vaccines in regions with rising frequency of variant population indicate the need to re-assess these candidates against new variants. Single (Light Blue), More than 1 (Blue) and Max (Dark Blue) indicate number of sequences of specific variants originating from different nations. (D) Structural mapping of mutations from 501Y.V1 (dark red dots) and 501Y.V2 (pink dots) variants on the spike (S) protein of Severe Acute Respiratory Syndrome-Coronavirus 2 (SARS-CoV-2). The amino acid deletions (Δ marked) in both variants are located in the N-terminal domain (NTD). The common N501Y mutation is located in receptor binding domain (RBD) region which makes contact with host angiotensin II converting enzyme (ACE2) receptors. Residue interactions of N501 (dashed lines) and Y501 (solid lines) with ACE2 (Blue dots) and other residues of the S protein (red dots) are shown in the right panel. Structural analysis of the mutations shows higher interaction network in Y501-ACE2 compared to wildtype N501-ACE2. Color codes—H-bonds (red), polar H-bonds (orange), VdW (light blue), aromatic (light green) and ring–ring interactions (brown).
Figure 2
Figure 2
Binding interactions and energy of Spike proteins with ACE-2. (A) The number of hydrogen bonds between the wildtype and mutant (N501Y and N440K) spike protein and ACE2 during the simulation. (B) Wildtype spike–ACE2 interactions in the average structure extracted from MD simulations, N501 (circled) making hydrophobic contact (hydrogen bonds are shown with green dots and non-polar interactions with magenta and brick semicircle). (C) N501Y–ACE2 interactions in the average structure. (D) Molecular mechanics energies combined with the generalized Born and surface area continuum solvation (MM/GBSA) binding free energy of spike proteins with ACE2.
Figure 3
Figure 3
Binding interactions and energy of spike proteins with C135 antibody. (A) The hydrogen bond peaks showing the interaction of mutants were better than wildtype spike protein. (B) The binding interaction of wildtype spike protein with heavy chain of C135 antibody, N501 (circled) making hydrophobic contact (hydrogen bonds are shown with green dots and non-polar interactions with magenta and brick semicircle). (C) The binding interaction of N501Y mutant spike protein with heavy chain of C135 antibody. (D) The binding interaction of N440K mutant spike protein with heavy chain of C135 antibody.
Figure 4
Figure 4
Binding interactions and energy of spike proteins with the CR3022 antibody. (A) The hydrogen interaction of wildtype was better than mutant spike proteins. (B) The binding interaction of wildtype spike protein with the heavy chain of CR3022 antibody, N501 (circled) making hydrophobic contact (hydrogen bonds are shown with green dots and non-polar interactions with magenta and brick semicircle). (C) The binding interaction of N501Y mutant spike protein with heavy chain of CR30222 antibody. (D) The binding interaction of N440K mutant spike protein with heavy chain of CR3022 antibody.
Figure 5
Figure 5
Binding affinity between ORF8 protomers. (A) The number of hydrogen bonds between the wildtype (WT) and mutant (MT) ORF8 protomers during the simulation. (B) Wildtype ORF8 interactions in the average structure extracted from MD simulations, R52 (circled) making hydrophobic contact (hydrogen bonds are shown with green dots and non-polar interactions with magenta and brick semicircle). (C) Mutant ORF8 interactions in the average structure. (D) MM/GBSA binding free energy in kcal/mol.

References

    1. Sironi M., Hasnain S.E., Rosenthal B., Phan T., Luciani F., Shaw M.A., Sallum M.A., Mirhashemi M.E., Morand S., Gonzalez-Candelas F., et al. SARS-CoV-2 and COVID-19: A genetic, epidemiological, and evolutionary perspective. Infect. Genet. Evol. 2020;84:104384. doi: 10.1016/j.meegid.2020.104384.
    1. Sheikh J.A., Singh J., Singh H., Jamal S., Khubaib M., Kohli S., Dobrindt U., Rahman S.A., Ehtesham N.Z., Hasnain S.E. Emerging genetic diversity among clinical isolates of SARS-CoV-2: Lessons for today. Infect. Genet. Evol. 2020;84:104330. doi: 10.1016/j.meegid.2020.104330.
    1. Guan Q., Sadykov M., Mfarrej S., Hala S., Naeem R., Nugmanova R., Al-Omari A., Salih S., Mutair A.A., Carr M.J., et al. A genetic barcode of SARS-CoV-2 for monitoring global distribution of different clades during the COVID-19 pandemic. Int. J. Infect. Dis. 2020;100:216–223. doi: 10.1016/j.ijid.2020.08.052.
    1. Singh H., Singh J., Khubaib M., Jamal S., Sheikh J.A., Kohli S., Hasnain S.E., Rahman S.A. Mapping the genomic landscape & diversity of COVID-19 based on >3950 clinical isolates of SARS-CoV-2: Likely origin & transmission dynamics of isolates sequenced in India. Indian J. Med. Res. 2020;151:474–478. doi: 10.4103/ijmr.IJMR_1253_20.
    1. Korber B., Fischer W.M., Gnanakaran S., Yoon H., Theiler J., Abfalterer W., Hengartner N., Giorgi E.E., Bhattacharya T., Foley B., et al. Tracking changes in SARS-CoV-2 spike: Evidence that D614G increases infectivity of the COVID-19 virus. Cell. 2020;182:812–827.e19. doi: 10.1016/j.cell.2020.06.043.
    1. Plante J.A., Liu Y., Liu J., Xia H., Johnson B.A., Lokugamage K.G., Zhang X., Muruato A.E., Zou J., Fontes-Garfias C.R., et al. Spike mutation D614G alters SARS-CoV-2 fitness. Nature. 2020 doi: 10.1038/s41586-020-2895-3.
    1. Hou Y.J., Chiba S., Halfmann P., Ehre C., Kuroda M., Dinnon K.H., 3rd, Leist S.R., Schafer A., Nakajima N., Takahashi K., et al. SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. Science. 2020;370:1464–1468. doi: 10.1126/science.abe8499.
    1. WHO . Disease Outbreak News; 31 December 2020. WHO; Geneva, Switzerland: 2020. WHO COVID-19 Information.
    1. Wise J. Covid-19: New coronavirus variant is identified in UK. BMJ. 2020;371:m4857. doi: 10.1136/bmj.m4857.
    1. European Centre for Disease Prevention and Control (ECDC) COVID-19 Surveillance Report. ECDC; Solna, Sweden: 2020.
    1. ECDC . Rapid Increase of a SARS-CoV-2 Variant with Multiple Spike Protein Mutations Observed in the United Kingdom. European Centre for Disease Prevention and Control; Solna, Sweden: 2020.
    1. Tegally H., Wilkinson E., Giovanetti M., Iranzadeh A., Fonseca V., Giandhari J., Doolabh D., Pillay S., San E.J., Msomi N., et al. Emergence and rapid spread of a new severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) lineage with multiple spike mutations in South Africa. medRxiv. 2020 doi: 10.1101/2020.12.21.20248640.
    1. Mahase E. Covid-19: What new variants are emerging and how are they being investigated? BMJ. 2021;372:n158. doi: 10.1136/bmj.n158.
    1. Faria N.R., Claro I.M., Candido D., Moyses Franco L.A., Andrade P.S., Coletti T.M., Silva C.A., Sales F.C., Manuli E.R., Aguiar R.S., et al. Genomic Characterisation of an Emergent SARS-CoV-2 Lineage in Manaus: Preliminary Findings. [(accessed on 20 January 2021)]; Available online: .
    1. Naveca F., Nascimento V., Souza V., Corado A., Nascimento F., Silva G., Costa A., Duarte D., Pessoa K., Gonçalves L., et al. Phylogenetic Relationship of SARS-CoV-2 Sequences from Amazonas with Emerging Brazilian Variants Harboring Mutations E484K and N501Y in the Spike Protein. [(accessed on 19 January 2021)]; Available online: .
    1. Portelli S., Olshansky M., Rodrigues C.H.M., D’Souza E.N., Myung Y., Silk M., Alavi A., Pires D.E.V., Ascher D.B. Exploring the structural distribution of genetic variation in SARS-CoV-2 with the COVID-3D online resource. Nat. Genet. 2020;52:999–1001. doi: 10.1038/s41588-020-0693-3.
    1. Public Health England . Investigation of Novel SARS-CoV-2 Variant. Scientific Advisory Group for Emergencies and Public Health England; London, UK: 2020.
    1. Pandurangan A.P., Blundell T.L. Prediction of impacts of mutations on protein structure and interactions: SDM, a statistical approach, and mCSM, using machine learning. Protein Sci. 2020;29:247–257. doi: 10.1002/pro.3774.
    1. Schrodinger L. The PyMOL Molecular Graphics System. Schrödinger; New York, NY, USA: 2010. Version 1.7.
    1. Schneidman-Duhovny D., Inbar Y., Nussinov R., Wolfson H.J. PatchDock and SymmDock: Servers for rigid and symmetric docking. Nucleic Acids Res. 2005;33:W363–W367. doi: 10.1093/nar/gki481.
    1. Mashiach E., Schneidman-Duhovny D., Andrusier N., Nussinov R., Wolfson H.J. FireDock: A web server for fast interaction refinement in molecular docking. Nucleic Acids Res. 2008;36:W229–W232. doi: 10.1093/nar/gkn186.
    1. Andrusier N., Nussinov R., Wolfson H.J. FireDock: Fast interaction refinement in molecular docking. Proteins. 2007;69:139–159. doi: 10.1002/prot.21495.
    1. Schrödinger . Protein Preparation Wizard, Epik, Impact, Prime, LigPrep, Glide. Schrödinger; New York, NY, USA: 2020. Desmond Molecular Dynamics System, D. E. Shaw Research, Maestro-Desmond Interoperability Tools.
    1. Roos K., Wu C., Damm W., Reboul M., Stevenson J.M., Lu C., Dahlgren M.K., Mondal S., Chen W., Wang L., et al. OPLS3e: Extending force field coverage for drug-like small molecules. J. Chem. Theory Comput. 2019;15:1863–1874. doi: 10.1021/acs.jctc.8b01026.
    1. Madhavi Sastry G., Adzhigirey M., Day T., Annabhimoju R., Sherman W. Protein and ligand preparation: Parameters, protocols, and influence on virtual screening enrichments. J. Comput.-Aided Mol. Des. 2013;27:221–234. doi: 10.1007/s10822-013-9644-8.
    1. Humphrey W., Dalke A., Schulten K. VMD—Visual molecular dynamics. J. Molec. Graph. 1996;14:33–38. doi: 10.1016/0263-7855(96)00018-5.
    1. Wallace A.C., Laskowski R.A., Thornton J.M. LIGPLOT: A program to generate schematic diagrams of protein-ligand interactions. Protein Eng. Des. Sel. 1995;8:127–134. doi: 10.1093/protein/8.2.127.
    1. Chi X., Yan R., Zhang J., Zhang G., Zhang Y., Hao M., Zhang Z., Fan P., Dong Y., Yang Y., et al. A neutralizing human antibody binds to the N-terminal domain of the Spike protein of SARS-CoV-2. Science. 2020;369:650–655. doi: 10.1126/science.abc6952.
    1. Weisblum Y., Schmidt F., Zhang F., DaSilva J., Poston D., Lorenzi J.C., Muecksch F., Rutkowska M., Hoffmann H.H., Michailidis E., et al. Escape from neutralizing antibodies by SARS-CoV-2 spike protein variants. eLife. 2020;9 doi: 10.7554/eLife.61312.
    1. Moreira R.A., Chwastyk M., Baker J.L., Guzman H.V., Poma A.B. Quantitative determination of mechanical stability in the novel coronavirus spike protein. Nanoscale. 2020;12:16409–16413. doi: 10.1039/D0NR03969A.
    1. Moreira R.A., Guzman H.V., Boopathi S., Baker J.L., Poma A.B. Characterization of structural and energetic differences between conformations of the SARS-CoV-2 spike protein. Materials. 2020;13:5362. doi: 10.3390/ma13235362.
    1. Casalino L., Gaieb Z., Goldsmith J.A., Hjorth C.K., Dommer A.C., Harbison A.M., Fogarty C.A., Barros E.P., Taylor B.C., McLellan J.S., et al. Beyond shielding: The roles of glycans in the SARS-CoV-2 spike protein. ACS Cent. Sci. 2020;6:1722–1734. doi: 10.1021/acscentsci.0c01056.
    1. Barnes C.O., Jette C.A., Abernathy M.E., Dam K.A., Esswein S.R., Gristick H.B., Malyutin A.G., Sharaf N.G., Huey-Tubman K.E., Lee Y.E., et al. SARS-CoV-2 neutralizing antibody structures inform therapeutic strategies. Nature. 2020;588:682–687. doi: 10.1038/s41586-020-2852-1.
    1. Nichols C., Ng J., Keshu A., Fraternali F., De Nicola G.F. A new crystal form of the SARS-CoV-2 receptor binding domain: CR3022 complex-an ideal target for in-crystal fragment screening of the ACE2 binding site surface. Front. Pharmacol. 2020;11:615211. doi: 10.3389/fphar.2020.615211.
    1. Hanke L., Vidakovics Perez L., Sheward D.J., Das H., Schulte T., Moliner-Morro A., Corcoran M., Achour A., Karlsson Hedestam G.B., Hallberg B.M., et al. An alpaca nanobody neutralizes SARS-CoV-2 by blocking receptor interaction. Nat. Commun. 2020;11:4420. doi: 10.1038/s41467-020-18174-5.
    1. Huo J., Zhao Y., Ren J., Zhou D., Duyvesteyn H.M.E., Ginn H.M., Carrique L., Malinauskas T., Ruza R.R., Shah P.N.M., et al. Neutralization of SARS-CoV-2 by destruction of the prefusion spike. Cell Host Microbe. 2020;28:497. doi: 10.1016/j.chom.2020.07.002.
    1. Coppee F., Lechien J.R., Decleves A.E., Tafforeau L., Saussez S. Severe acute respiratory syndrome coronavirus 2: Virus mutations in specific European populations. New Microbes New Infect. 2020;36:100696. doi: 10.1016/j.nmni.2020.100696.
    1. Singh J., Singh H., Hasnain S.E., Rahman S.A. Mutational signatures in countries affected by SARS-CoV-2: Implications in host-pathogen interactome. Biorxiv Prepr. Serv. Biol. 2020 doi: 10.1101/2020.09.17.301614.
    1. Jolly B., Rophina M., Shamnath A., Imran M., Bhoyar R.C., Divakar M.K., Rani P.R., Ranjan G., Sehgal P., Chandrasekhar P., et al. Genetic epidemiology of variants associated with immune escape from global SARS-CoV-2 genomes. Biorxiv Prepr. Serv. Biol. 2020 doi: 10.1101/2020.12.24.424332.
    1. Gupta V., Bhoyar R.C., Jain A., Srivastava S., Upadhayay R., Imran M., Jolly B., Divakar M.K., Sharma D., Sehgal P., et al. Asymptomatic reinfection in two healthcare workers from India with genetically distinct SARS-CoV-2. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2020 doi: 10.1093/cid/ciaa1451.
    1. Hoffmann M., Kleine-Weber H., Schroeder S., Kruger N., Herrler T., Erichsen S., Schiergens T.S., Herrler G., Wu N.H., Nitsche A., et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271–280.e8. doi: 10.1016/j.cell.2020.02.052.
    1. Alam I., Radovanovic A., Incitti R., Kamau A.A., Alarawi M., Azhar E.I., Gojobori T. CovMT: An interactive SARS-CoV-2 mutation tracker, with a focus on critical variants. Lancet. Infect. Dis. 2021 doi: 10.1016/S1473-3099(21)00078-5.
    1. Singh M., Kishore A., Maity D., Sunanda P., Krishnarjuna B., Vappala S., Raghothama S., Kenyon L.C., Pal D., Das Sarma J. A proline insertion-deletion in the spike glycoprotein fusion peptide of mouse hepatitis virus strongly alters neuropathology. J. Biol. Chem. 2019;294:8064–8087. doi: 10.1074/jbc.RA118.004418.
    1. Flower T.G., Buffalo C.Z., Hooy R.M., Allaire M., Ren X., Hurley J.H. Structure of SARS-CoV-2 ORF8, a rapidly evolving immune evasion protein. Proc. Natl. Acad. Sci. USA. 2021;118 doi: 10.1073/pnas.2021785118.
    1. Park M.D. Immune evasion via SARS-CoV-2 ORF8 protein? Nat. Rev. Immunol. 2020;20:408. doi: 10.1038/s41577-020-0360-z.
    1. Jiang H.W., Zhang H.N., Meng Q.F., Xie J., Li Y., Chen H., Zheng Y.X., Wang X.N., Qi H., Zhang J., et al. SARS-CoV-2 Orf9b suppresses type I interferon responses by targeting TOM70. Cell. Mol. Immunol. 2020;17:998–1000. doi: 10.1038/s41423-020-0514-8.
    1. Roltgen K., Powell A.E., Wirz O.F., Stevens B.A., Hogan C.A., Najeeb J., Hunter M., Wang H., Sahoo M.K., Huang C., et al. Defining the features and duration of antibody responses to SARS-CoV-2 infection associated with disease severity and outcome. Sci. Immunol. 2020;5 doi: 10.1126/sciimmunol.abe0240.
    1. Dugdale C.M., Anahtar M.N., Chiosi J.J., Lazarus J.E., McCluskey S.M., Ciaranello A.L., Gogakos T., Little B.P., Branda J.A., Shenoy E.S., et al. Clinical, laboratory, and radiologic characteristics of patients with initial false-negative SARS-CoV-2 nucleic acid amplification test results. Open Forum Infect. Dis. 2020 doi: 10.1093/ofid/ofaa559.
    1. Vanaerschot M., Mann S.A., Webber J.T., Kamm J., Bell S.M., Bell J., Hong S.N., Nguyen M.P., Chan L.Y., Bhatt K.D., et al. Identification of a polymorphism in the N Gene of SARS-CoV-2 that adversely impacts detection by reverse transcription-PCR. J. Clin. Microbiol. 2020;59 doi: 10.1128/JCM.02369-20.
    1. Starr T.N., Greaney A.J., Addetia A., Hannon W.W., Choudhary M.C., Dingens A.S., Li J.Z., Bloom J.D. Prospective mapping of viral mutations that escape antibodies used to treat COVID-19. Biorxiv Prepr. Serv. Biol. 2020 doi: 10.1101/2020.11.30.405472.
    1. Thomson E.C., Rosen L.E., Shepherd J.G., Spreafico R., da Silva Filipe A., Wojcechowskyj J.A., Davis C., Piccoli L., Pascall D.J., Dillen J., et al. The circulating SARS-CoV-2 spike variant N439K maintains fitness while evading antibody-mediated immunity. Biorxiv Prepr. Serv. Biol. 2020 doi: 10.1101/2020.11.04.355842.
    1. Sabino E.C., Buss L.F., Carvalho M.P.S., Prete C.A., Jr., Crispim M.A.E., Fraiji N.A., Pereira R.H.M., Parag K.V., da Silva Peixoto P., Kraemer M.U.G., et al. Resurgence of COVID-19 in Manaus, Brazil, despite high seroprevalence. Lancet. 2021;397:452–455. doi: 10.1016/S0140-6736(21)00183-5.
    1. Madhi S.A., Baillie V., Cutland C.L., Voysey M., Koen A.L., Fairlie L., Padayachee S.D., Dheda K., Barnabas S.L., Bhorat Q.E., et al. Safety and efficacy of the ChAdOx1 nCoV-19 (AZD1222) Covid-19 vaccine against the B.1.351 variant in South Africa. medRxiv. 2021 doi: 10.1101/2021.02.10.21251247.
    1. Xie X., Liu Y., Liu J., Zhang X., Zou J., Fontes-Garfias C.R., Xia H., Swanson K.A., Cutler M., Cooper D., et al. Neutralization of SARS-CoV-2 spike 69/70 deletion, E484K and N501Y variants by BNT162b2 vaccine-elicited sera. Nat. Med. 2021 doi: 10.1038/s41591-021-01270-4.
    1. Wang P., Liu L., Iketani S., Luo Y., Guo Y., Wang M., Yu J., Zhang B., Kwong P.D., Graham B.S., et al. Increased resistance of SARS-CoV-2 variants B.1.351 and B.1.1.7 to antibody neutralization. Biorxiv Prepr. Serv. Biol. 2021 doi: 10.1101/2021.01.25.428137.
    1. Starr T.N., Greaney A.J., Hilton S.K., Ellis D., Crawford K.H.D., Dingens A.S., Navarro M.J., Bowen J.E., Tortorici M.A., Walls A.C., et al. Deep mutational scanning of SARS-CoV-2 receptor binding domain reveals constraints on folding and ACE2 binding. Cell. 2020;182:1295–1310.e20. doi: 10.1016/j.cell.2020.08.012.
    1. Wibmer C.K., Ayres F., Hermanus T., Madzivhandila M., Kgagudi P., Lambson B.E., Vermeulen M., van den Berg K., Rossouw T., Boswell M., et al. SARS-CoV-2 501Y.V2 escapes neutralization by South African COVID-19 donor plasma. Biorxiv Prepr. Serv. Biol. 2021 doi: 10.1101/2021.01.18.427166.
    1. Gamage A.M., Tan K.S., Chan W.O.Y., Liu J., Tan C.W., Ong Y.K., Thong M., Andiappan A.K., Anderson D.E., Wang Y., et al. Infection of human Nasal Epithelial Cells with SARS-CoV-2 and a 382-nt deletion isolate lacking ORF8 reveals similar viral kinetics and host transcriptional profiles. PLoS Pathog. 2020;16:e1009130. doi: 10.1371/journal.ppat.1009130.
    1. Priesemann V., Brinkmann M.M., Ciesek S., Cuschieri S., Czypionka T., Giordano G., Gurdasani D., Hanson C., Hens N., Iftekhar E., et al. Calling for pan-European commitment for rapid and sustained reduction in SARS-CoV-2 infections. Lancet. 2020 doi: 10.1016/S0140-6736(20)32625-8.
    1. Hogan A.B., Jewell B.L., Sherrard-Smith E., Vesga J.F., Watson O.J., Whittaker C., Hamlet A., Smith J.A., Winskill P., Verity R., et al. Potential impact of the COVID-19 pandemic on HIV, tuberculosis, and malaria in low-income and middle-income countries: A modelling study. Lancet. Glob. Health. 2020;8:e1132–e1141. doi: 10.1016/S2214-109X(20)30288-6.

Source: PubMed

3
Sottoscrivi