Evidence of Motor Skill Learning in Acute Stroke Patients Without Lesions to the Thalamus and Internal Capsule

Audrey Riga, Estelle Gathy, Marisa Ghinet, Chloë De Laet, Benoît Bihin, Maxime Regnier, Maria Leeuwerck, Béatrice De Coene, Laurence Dricot, Benoît Herman, Martin G Edwards, Yves Vandermeeren, Audrey Riga, Estelle Gathy, Marisa Ghinet, Chloë De Laet, Benoît Bihin, Maxime Regnier, Maria Leeuwerck, Béatrice De Coene, Laurence Dricot, Benoît Herman, Martin G Edwards, Yves Vandermeeren

Abstract

Background: It is currently unknown whether motor skill learning (MSkL) with the paretic upper limb is possible during the acute phase after stroke and whether lesion localization impacts MSkL. Here, we investigated MSkL in acute (1-7 days post) stroke patients compared with healthy individuals (HIs) and in relation to voxel-based lesion symptom mapping.

Methods: Twenty patients with acute stroke and 35 HIs were trained over 3 consecutive days on a neurorehabilitation robot measuring speed, accuracy, and movement smoothness variables. Patients used their paretic upper limb and HI used their nondominant upper limb on an MSkL task involving a speed/accuracy trade-off. Generalization was evaluated on day 3. All patients underwent a 3-dimensional magnetic resonance imaging used for VSLM.

Results: Most patients achieved MSkL demonstrated by day-to-day retention and generalization of the newly learned skill on day 3. When comparing raw speed/accuracy trade-off values, HI achieved larger MSkL than patients. However, relative speed/accuracy trade-off values showed no significant differences in MSkL between patients and HI on day 3. In patients, MSkL progression correlated with acute motor and cognitive impairments. The voxel-based lesion symptom mapping showed that acute vascular damage to the thalamus or the posterior limb of the internal capsule reduced MSkL.

Conclusions: Despite worse motor performance for acute stroke patients compared with HI, most patients were able to achieve MSkL with their paretic upper limb. Damage to the thalamus and posterior limb of the internal capsule, however, reduced MSkL. These data show that MSkL could be implemented into neurorehabilitation during the acute phase of stroke, particularly for patients without lesions to the thalamus and posterior limb of the internal capsule.

Registration: URL: https://www.

Clinicaltrials: gov; Unique identifier: NCT01519843.

Keywords: humans; internal capsule; motor skills; robotics; upper extremity.

Figures

Figure 1.
Figure 1.
Task setup. A, Neurorehabilitation robot REAplan (Axinesis, Wavre, Belgium). B, For the CIRCUIT task,, the subjects were instructed to navigate the cursor as fast and accurately as possible inside CIRCUIT. C, For the REACHING task, subjects were asked to reach as fast and accurately as possible toward each of the 4 targets presented in a pseudorandomized order.
Figure 2.
Figure 2.
Motor learning in healthy individuals an acute stroke patients. Top, Progression of the speed/accuracy trade-off (SAT; in arbitrary units [a.u.]) for the healthy individuals and acute stroke patients over 3 consecutive days (D1-D2-D3). There were slight SAT overnight drops and a larger drop between D3T10 and D3G1. Thick black line: group mean; gray lines: individuals. Bottom, Progression of ratioSAT. G indicates generalization (new CIRCUIT).
Figure 3.
Figure 3.
Voxel-based lesion symptom mapping results for the progression from D1T1 to D3T10 of the speed/accuracy trade-off (arbitrary units, in blue) and that of the ratioSAT (in green) projected on the Montreal Neurological Institute template ch2better.nii implemented in MRIcron. During the acute stroke phase, more damage to the thalamus and the posterior limb of the internal capsule correlated with less efficient motor skill learning for the paretic upper limb.

References

    1. Kwakkel G, Kollen BJ, van der Grond J, Prevo AJ. Probability of regaining dexterity in the flaccid upper limb: impact of severity of paresis and time since onset in acute stroke. Stroke. 2003;34:2181–2186. doi: 10.1161/
    1. Cortes JC, Goldsmith J, Harran MD, Xu J, Kim N, Schambra HM, Luft AR, Celnik P, Krakauer JW, Kitago T. A short and distinct time window for recovery of arm motor control early after stroke revealed with a global measure of trajectory kinematics. Neurorehabil Neural Repair. 2017;31:552–560. doi: 10.1177/1545968317697034
    1. Carmichael ST. Emergent properties of neural repair: elemental biology to therapeutic concepts. Ann Neurol. 2016;79:895–906. doi: 10.1002/ana.24653
    1. Dobkin BH, Carmichael ST. The specific requirements of neural repair trials for stroke. Neurorehabil Neural Repair. 2016;30:470–478. doi: 10.1177/1545968315604400
    1. Jones TA. Motor compensation and its effects on neural reorganization after stroke. Nat Rev Neurosci. 2017;18:267–280. doi: 10.1038/nrn.2017.26
    1. Bernhardt J, Hayward KS, Kwakkel G, Ward NS, Wolf SL, Borschmann K, Krakauer JW, Boyd LA, Carmichael ST, Corbett D, et al. . Agreed definitions and a shared vision for new standards in stroke recovery research: the Stroke Recovery and Rehabilitation Roundtable taskforce. Int J Stroke. 2017;12:444–450. doi: 10.1177/1747493017711816
    1. Ballester BR, Maier M, Duff A, Cameirão M, Bermúdez S, Duarte E, Cuxart A, Rodríguez S, San Segundo Mozo RM, Verschure PFMJ. A critical time window for recovery extends beyond one-year post-stroke. J Neurophysiol. 2019;122:350–357. doi: 10.1152/jn.00762.2018
    1. Byblow WD, Stinear CM, Barber PA, Petoe MA, Ackerley SJ. Proportional recovery after stroke depends on corticomotor integrity. Ann Neurol. 2015;78:848–859. doi: 10.1002/ana.24472
    1. Winters C, van Wegen EE, Daffertshofer A, Kwakkel G. Generalizability of the Proportional Recovery Model for the Upper Extremity After an Ischemic Stroke. Neurorehabil Neural Repair. 2015;29:614–622. doi: 10.1177/1545968314562115
    1. Censor N. Generalization of perceptual and motor learning: a causal link with memory encoding and consolidation? Neuroscience. 2013;250:201–207. doi: 10.1016/j.neuroscience.2013.06.062
    1. Shmuelof L, Krakauer JW. Are we ready for a natural history of motor learning? Neuron. 2011;72:469–476. doi: 10.1016/j.neuron.2011.10.017
    1. Cano-de-la-Cuerda R, Molero-Sánchez A, Carratalá-Tejada M, Alguacil-Diego IM, Molina-Rueda F, Miangolarra-Page JC, Torricelli D. Theories and control models and motor learning: clinical applications in neurorehabilitation. Neurología (English Edition). 2015;30:32–41. doi: 10.1016/j.nrl.2011.12.010
    1. Maier M, Ballester BR, Verschure PFMJ. Principles of neurorehabilitation after stroke based on motor learning and brain plasticity mechanisms. Front Syst Neurosci. 2019;13:74. doi: 10.3389/fnsys.2019.00074
    1. Jablonska A, Lukomska B. Stroke induced brain changes: implications for stem cell transplantation. Acta Neurobiol Exp (Wars). 2011;71:74–85.
    1. Marzolini S, Robertson AD, Oh P, Goodman JM, Corbett D, Du X, MacIntosh BJ. Aerobic training and mobilization early post-stroke: cautions and considerations. Front Neurol. 2019;10:1187. doi: 10.3389/fneur.2019.01187
    1. Fugl-Meyer AR, Jaasko L, Leiman I, Olson S, Steglind S. The post-stroke hemiplegic: a method for evaluation of physical performance. Scand J Rehab Med. 1975;61:13–32.
    1. Vanbellingen T, Kersten B, Van de Winckel A, Bellion M, Baronti F, Müri R, Bohlhalter S. A new bedside test of gestures in stroke: the apraxia screen of TULIA (AST). J Neurol Neurosurg Psychiatry. 2011;82:389–392. doi: 10.1136/jnnp.2010.213371
    1. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, Chertkow H. The montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53:695–699. doi: 10.1111/j.1532-5415.2005.53221.x
    1. Corsi PM. Human memory and the medial temporal region of the brain. Diss Abstr Int. 1972;34:891.
    1. Lefebvre S, Dricot L, Laloux P, Gradkowski W, Desfontaines P, Evrard F, Peeters A, Jamart J, Vandermeeren Y. Neural substrates underlying stimulation-enhanced motor skill learning after stroke. Brain. 2015;138(pt 1):149–163. doi: 10.1093/brain/awu336
    1. Lefebvre S, Dricot L, Gradkowski W, Laloux P, Vandermeeren Y. Brain activations underlying different patterns of performance improvement during early motor skill learning. Neuroimage. 2012;62:290–299. doi: 10.1016/j.neuroimage.2012.04.052
    1. Dehem S, Gilliaux M, Lejeune T, Detrembleur C, Galinski D, Sapin J, Vanderwegen M, Stoquart G. Assessment of upper limb spasticity in stroke patients using the robotic device REAplan. J Rehabil Med. 2017;49:565–571. doi: 10.2340/16501977-2248
    1. Gilliaux M, Lejeune TM, Sapin J, Dehez B, Stoquart G, Detrembleur C. Age effects on upper limb kinematics assessed by the reaplan robot in healthy subjects aged 3 to 93 years. Ann Biomed Eng. 2016;44:1224–1233. doi: 10.1007/s10439-015-1396-2
    1. Mathiowetz V, Volland G, Kashman N, Weber K. Adult norms for the Box and Block Test of manual dexterity. Am J Occup Ther. 1985;39:386–391. doi: 10.5014/ajot.39.6.386
    1. Doost MY, Orban de Xivry JJ, Herman B, Vanthournhout L, Riga A, Bihin B, Jamart J, Laloux P, Raymackers JM, Vandermeeren Y. Learning a Bimanual cooperative skill in chronic stroke under noninvasive brain stimulation: a randomized controlled trial. Neurorehabil Neural Repair. 2019;33:486–498. doi: 10.1177/1545968319847963
    1. Lefebvre S, Dricot L, Laloux P, Gradkowski W, Desfontaines P, Evrard F, Peeters A, Jamart J, Vandermeeren Y. Neural substrates underlying motor skill learning in chronic hemiparetic stroke patients. Front Hum Neurosci. 2015;9:320. doi: 10.3389/fnhum.2015.00320
    1. Baguma M, Yeganeh Doost M, Riga A, Laloux P, Bihin B, Vandermeeren Y. Preserved motor skill learning in acute stroke patients. Acta Neurol Belg. 2020;120:365–374. doi: 10.1007/s13760-020-01304-7
    1. Balasubramanian S, Melendez-Calderon A, Burdet E. A robust and sensitive metric for quantifying movement smoothness. IEEE Trans Biomed Eng. 2012;59:2126–2136. doi: 10.1109/TBME.2011.2179545
    1. Balasubramanian S, Melendez-Calderon A, Roby-Brami A, Burdet E. On the analysis of movement smoothness. J Neuroeng Rehabil. 2015;12:112. doi: 10.1186/s12984-015-0090-9
    1. Gulde P, Hermsdörfer J. Smoothness metrics in complex movement tasks. Front Neurol. 2018;9:615. doi: 10.3389/fneur.2018.00615
    1. Rorden C, Karnath HO, Bonilha L. Improving lesion-symptom mapping. J Cogn Neurosci. 2007;19:1081–1088. doi: 10.1162/jocn.2007.19.7.1081
    1. Juergen M, Milan M, George P. Atlas of the Human Brain 4th Edition. Academic Press; 2016.
    1. Rech KD, Salazar AP, Marchese RR, Schifino G, Cimolin V, Pagnussat AS. Fugl-meyer assessment scores are related with kinematic measures in people with chronic hemiparesis after stroke. J Stroke Cerebrovasc Dis. 2020;29:104463. doi: 10.1016/j.jstrokecerebrovasdis.2019.104463
    1. Wagner JM, Lang CE, Sahrmann SA, Hu Q, Bastian AJ, Edwards DF, Dromerick AW. Relationships between sensorimotor impairments and reaching deficits in acute hemiparesis. Neurorehabil Neural Repair. 2006;20:406–416. doi: 10.1177/1545968306286957
    1. Lin SI. Motor function and joint position sense in relation to gait performance in chronic stroke patients. Arch Phys Med Rehabil. 2005;86:197–203. doi: 10.1016/j.apmr.2004.05.009
    1. Seidler RD, Bo J, Anguera JA. Neurocognitive contributions to motor skill learning: the role of working memory. J Mot Behav. 2012;44:445–453. doi: 10.1080/00222895.2012.672348
    1. Anguera JA, Reuter-Lorenz PA, Willingham DT, Seidler RD. Contributions of spatial working memory to visuomotor learning. J Cogn Neurosci. 2010;22:1917–1930. doi: 10.1162/jocn.2009.21351
    1. Rinne P, Hassan M, Fernandes C, Han E, Hennessy E, Waldman A, Sharma P, Soto D, Leech R, Malhotra PA, et al. . Motor dexterity and strength depend upon integrity of the attention-control system. Proc Natl Acad Sci USA. 2018;115:E536–E545. doi: 10.1073/pnas.1715617115
    1. McDonald MW, Black SE, Copland DA, Corbett D, Dijkhuizen RM, Farr TD, Jeffers MS, Kalaria RN, Karayanidis F, Leff AP, et al. . Cognition in stroke rehabilitation and recovery research: consensus-based core recommendations from the second Stroke Recovery and Rehabilitation Roundtable. Int J Stroke. 2019;14:774–782. doi: 10.1177/1747493019873600
    1. Everard GJ, Ajana K, Dehem SB, Stoquart GG, Edwards MG, Lejeune TM. Is cognition considered in post-stroke upper limb robot-assisted therapy trials? A brief systematic review. Int J Rehabil Res. 2020;43:195–198. doi: 10.1097/MRR.0000000000000420
    1. Shahid H, Sebastian R, Schnur TT, Hanayik T, Wright A, Tippett DC, Fridriksson J, Rorden C, Hillis AE. Important considerations in lesion-symptom mapping: illustrations from studies of word comprehension. Hum Brain Mapp. 2017;38:2990–3000. doi: 10.1002/hbm.23567
    1. Martin M, Nitschke K, Beume L, Dressing A, Bühler LE, Ludwig VM, Mader I, Rijntjes M, Kaller CP, Weiller C. Brain activity underlying tool-related and imitative skills after major left hemisphere stroke. Brain. 2016;139(pt 5):1497–1516. doi: 10.1093/brain/aww035
    1. Martin M, Dressing A, Bormann T, Schmidt CSM, Kümmerer D, Beume L, Saur D, Mader I, Rijntjes M, Kaller CP, et al. . Componential network for the recognition of tool-associated actions: evidence from voxel-based lesion-symptom mapping in acute stroke patients. Cereb Cortex. 2017;27:4139–4152. doi: 10.1093/cercor/bhw226
    1. Vaidya AR, Pujara MS, Petrides M, Murray EA, Fellows LK. Lesion studies in contemporary neuroscience. Trends Cogn Sci. 2019;23:653–671. doi: 10.1016/j.tics.2019.05.009
    1. Bonzano L, Palmaro E, Teodorescu R, Fleysher L, Inglese M, Bove M. Functional connectivity in the resting-state motor networks influences the kinematic processes during motor sequence learning. Eur J Neurosci. 2015;41:243–253. doi: 10.1111/ejn.12755
    1. O’Muircheartaigh J, Keller SS, Barker GJ, Richardson MP. White matter connectivity of the thalamus delineates the functional architecture of competing thalamocortical systems. Cereb Cortex. 2015;25:4477–4489. doi: 10.1093/cercor/bhv063
    1. Kumar V, Mang S, Grodd W. Direct diffusion-based parcellation of the human thalamus. Brain Struct Funct. 2015;220:1619–1635. doi: 10.1007/s00429-014-0748-2
    1. Boraud T, Leblois A, Rougier NP. A natural history of skills. Prog Neurobiol. 2018;171:114–124. doi: 10.1016/j.pneurobio.2018.08.003
    1. Lemon R. Recent advances in our understanding of the primate corticospinal system. F1000Res. 2019;8:F1000 Faculty Rev–F1000 Faculty 274. doi: 10.12688/f1000research.17445.1
    1. Lemon RN. Descending pathways in motor control. Annu Rev Neurosci. 2008;31:195–218. doi: 10.1146/annurev.neuro.31.060407.125547
    1. Lefebvre S, Laloux P, Peeters A, Desfontaines P, Jamart J, Vandermeeren Y. Dual-tDCS enhances online motor skill learning and long-term retention in chronic stroke patients. Front Hum Neurosci. 2013;6:343. doi: 10.3389/fnhum.2012.00343
    1. Lefebvre S, Dricot L, Laloux P, Desfontaines P, Evrard F, Peeters A, Jamart J, Vandermeeren Y. Increased functional connectivity one week after motor learning and tDCS in stroke patients. Neuroscience. 2017;340:424–435. doi: 10.1016/j.neuroscience.2016.10.066
    1. Yeganeh Doost M, Orban de Xivry JJ, Bihin B, Vandermeeren Y. Two processes in early bimanual motor skill learning. Front Hum Neurosci. 2017;11:618. doi: 10.3389/fnhum.2017.00618
    1. Krakauer JW. Motor learning: its relevance to stroke recovery and neurorehabilitation. Curr Opin Neurol. 2006;19:84–90. doi: 10.1097/
    1. Laffont I, Bakhti K, Coroian F, van Dokkum L, Mottet D, Schweighofer N, Froger J. Innovative technologies applied to sensorimotor rehabilitation after stroke. Ann Phys Rehabil Med. 2014;57:543–551. doi: 10.1016/j.rehab.2014.08.007
    1. Kwakkel G, Wagenaar RC, Koelman TW, Lankhorst GJ, Koetsier JC. Effects of intensity of rehabilitation after stroke. A research synthesis. Stroke. 1997;28:1550–1556. doi: 10.1161/01.str.28.8.1550
    1. Schneider EJ, Lannin NA, Ada L, Schmidt J. Increasing the amount of usual rehabilitation improves activity after stroke: a systematic review. J Physiother. 2016;62:182–187. doi: 10.1016/j.jphys.2016.08.006
    1. Kwakkel G, van Peppen R, Wagenaar RC, Wood Dauphinee S, Richards C, Ashburn A, Miller K, Lincoln N, Partridge C, Wellwood I, et al. . Effects of augmented exercise therapy time after stroke: a meta-analysis. Stroke. 2004;35:2529–2539. doi: 10.1161/01.STR.0000143153.76460.7d
    1. Dehem S, Montedoro V, Brouwers I, Edwards MG, Detrembleur C, Stoquart G, Renders A, Heins S, Dehez B, Lejeune T. Validation of a robot serious game assessment protocol for upper limb motor impairment in children with cerebral palsy. NeuroRehabilitation. 2019;45:137–149. doi: 10.3233/NRE-192745
    1. Woytowicz EJ, Rietschel JC, Goodman RN, Conroy SS, Sorkin JD, Whitall J, McCombe Waller S. Determining levels of upper extremity movement impairment by applying a cluster analysis to the fugl-meyer assessment of the upper extremity in chronic stroke. Arch Phys Med Rehabil. 2017;98:456–462. doi: 10.1016/j.apmr.2016.06.023
    1. Leiguarda R, Clarens F, Amengual A, Drucaroff L, Hallett M. Short apraxia screening test. J Clin Exp Neuropsychol. 2014;36:867–874. doi: 10.1080/13803395.2014.951315
    1. Nasreddine ZS, Phillips NA, Bédirian V, Charbonneau S, Whitehead V, Collin I, Cummings JL, Chertkow H. The montreal cognitive assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc. 2005;53:695–699. doi: 10.1111/j.1532-5415.2005.53221.x
    1. Tsai J, Chen C, Chu H, Yang H, Chung M, Liao Y, Chou K. Archives of psychiatric nursing comparing the sensitivity, speci fi city, and predictive values of the montreal cognitive assessment and mini-mental state examination when screening people for mild cognitive impairment and dementia in Chinese population. Arch Psychiatr Nurs. 2016;30:486–491. doi: 10.1016/j.apnu.2016.01.015
    1. García E, Jal D, Gil-berrozpe GJ, Ana MS, Peralta V, Cuesta MJ, Moreno-izco L. Utility of the MoCA for cognitive impairment screening in long-term psychosis patients. Schizophr Res. 2019;216:429–434. doi: 10.1016/j.schres.2019.10.054
    1. Dewosiers J, Ot C, Bravo G, Hibert R. Validation of the box and block test as a measure of dexterity of elderly people: reliability, validity, and norms studies. Arch Phys Med Rehabil. 1974;75:751–755.
    1. Ead JHTR, Rticle CRA, Seo NJ, Enders LR. FOR hand grip function assessed by the box and block test is affected by object surfaces. J Hand Ther. 2012;25:397–405.
    1. Bellace JV, Healy D, Besser MP, Byron T, Hohman L. Validity of the Dexter Evaluation System’s Jamar dynamometer attachment for assessment of hand grip strength in a normal population. J Hand Ther. 1954;13:45–51. doi: 10.1016/s0894-1130(00)80052-6
    1. Des Jarlais DC, Lyles C, Crepaz N; TREND Group. Improving the reporting quality of nonrandomized evaluations of behavioral and public health interventions: the TREND statement. Am J Public Health. 2004;94:361–366. doi: 10.2105/ajph.94.3.361

Source: PubMed

3
Sottoscrivi