N-acetylcysteine plus deferoxamine for patients with prolonged hypotension does not decrease acute kidney injury incidence: a double blind, randomized, placebo-controlled trial

Cassiana Mazon Fraga, Cristiane Damiani Tomasi, Danusa de Castro Damasio, Francieli Vuolo, Cristiane Ritter, Felipe Dal-Pizzol, Cassiana Mazon Fraga, Cristiane Damiani Tomasi, Danusa de Castro Damasio, Francieli Vuolo, Cristiane Ritter, Felipe Dal-Pizzol

Abstract

Background: The aim was to test the primary hypothesis that in patients suffering from shock, treatment with N-acetylcysteine (NAC) plus deferoxamine (DFX) decreases the incidence of acute kidney injury (AKI).

Methods: A double-blind, randomized, placebo-controlled trial was conducted in a general intensive care unit in an academic hospital. Patients were included if they had new-onset hypotension, defined as mean arterial blood pressure <60 mmHg or requirement for vasopressor medication. A loading dose of NAC or placebo of 50 mg/kg in 4 h was administered intravenously. After the loading dose, patients received 100 mg/kg/day for the next 48 h. DFX or placebo was administered once at 1000 mg at a rate of 15/mg/kg/h. The primary outcome was the incidence of AKI.

Results: A total of 80 patients were enrolled in the study. The incidence of AKI was 67 % in the placebo arm and 65 % in the treatment group (relative risk (RR) 0.89 (0.35-2.2)). Furthermore, NAC plus DFX was effective in decreasing the severity and duration of AKI, and patients in the treatment group had lower serum creatinine levels at discharge. No severe adverse event associated with treatment was reported. The effects of NAC plus DFX could be secondary to the attenuation of early inflammatory response and oxidative damage.

Conclusion: The administration of NAC plus DFX to critically ill patients who had a new episode of hypotension did not decrease the incidence of AKI.

Trial registration: Clinicaltrials.gov NCT00870883 (Registered 25 March 2009.).

Keywords: Acute kidney injury; Antioxidants; Inflammation; Oxidative stress; Shock.

Figures

Fig. 1
Fig. 1
Screening, randomization, and follow up
Fig. 2
Fig. 2
Oxidative and inflammatory parameters. Blood was collected on enrollment and on the morning of the subsequent 2 days for the measurement of thiobarbituric acid reactive species (TBARS) (a), interleukin (IL)-6 (b), IL-8 (c), IL-10 (d), and protein carbonyls (e). *Different from time 0, same group. #Difference between groups at the same time point NAC + DFX N-acetylcysteine plus deferoxamine, MDA malondialdehyde

References

    1. Lemineur T, Deby-Dupont G, Preiser JC. Biomarkers of oxidative stress in critically ill patients: what should be measured, when and how? Curr Opin Clin Nutr Metab Care. 2006;9:704–710. doi: 10.1097/01.mco.0000247467.41661.f3.
    1. Simmons EM, Himmelfarb J, Sezer MT, Chertow GM, Mehta RL, Paganini EP, Soroko S, Freedman S, Becker K, Spratt D, Shyr Y, Ikizler TA. Plasma cytokine levels predict mortality in patients with acute renal failure. Kidney Int. 2004;65:1357–1365. doi: 10.1111/j.1523-1755.2004.00512.x.
    1. Gomez H, Ince C, De Backer D, Pickkers P, Payen D, Hotchkiss J, Kellum JA. A unified theory of sepsis-induced acute kidney injury: inflammation, microcirculatory dysfunction, bioenergetics, and the tubular cell adaptation to injury. Shock. 2014;41:3–11. doi: 10.1097/SHK.0000000000000052.
    1. Kasuno K, Shirakawa K, Yoshida H, Mori K, Kimura H, Takahashi N, Nobukawa Y, Shigemi K, Tanabe S, Yamada N, Koshiji T, Nogaki F, Kusano H, Ono T, Uno K, Nakamura H, Yodoi J, Muso E, Iwano M. Renal redox dysregulation in AKI: application for oxidative stress marker of AKI. Am J Physiol Renal Physiol. 2014;307:F1342–F1351. doi: 10.1152/ajprenal.00381.2013.
    1. Gao G, Wang W, Tadagavadi RK, Briley NE, Love MI, Miller BA, Reeves WB. TRPM2 mediates ischemic kidney injury and oxidant stress through RAC1. J Clin Invest. 2014;124:4989–5001. doi: 10.1172/JCI76042.
    1. Guerreiro MO, Petronilho F, Andrades M, Constantino L, Mina FG, Moreira JC, Dal-Pizzol F, Ritter C. Plasma superoxide dismutase activity and mortality in septic patients. J Trauma. 2010;69:E102–E106. doi: 10.1097/TA.0b013e3181dbb289.
    1. Bozza FA, Salluh JI, Japiassu AM, Soares M, Assis EF, Gomes RN, Bozza MT, Castro-Faria-Neto HC, Bozza PT. Cytokine profiles as markers of disease severity in sepsis: a multiplex analysis. Crit Care. 2007;11:R49. doi: 10.1186/cc5783.
    1. Huen SC, Parikh CR. Molecular phenotyping of clinical AKI with novel urinary biomarkers. Am J Physiol Renal Physiol. 2015;309:F406–F413. doi: 10.1152/ajprenal.00682.2014.
    1. Zarbock A, Gomez H, Kellum JA. Sepsis-induced acute kidney injury revisited: pathophysiology, prevention and future therapies. Curr Opin Crit Care. 2014;20:588–595. doi: 10.1097/MCC.0000000000000153.
    1. Dare AJ, Phillips AR, Hickey AJ, Mittal A, Loveday B, Thompson N, Windsor JA. A systematic review of experimental treatments for mitochondrial dysfunction in sepsis and multiple organ dysfunction syndrome. Free Radic Biol Med. 2009;47:1517–1525. doi: 10.1016/j.freeradbiomed.2009.08.019.
    1. Crimi E, Sica V, Williams-Ignarro S, Zhang H, Slutsky AS, Ignarro LJ, Napoli C. The role of oxidative stress in adult critical care. Free Radic Biol Med. 2006;40:398–406. doi: 10.1016/j.freeradbiomed.2005.10.054.
    1. Szakmany T, Hauser B, Radermacher P. N-acetylcysteine for sepsis and systemic inflammatory response in adults. Cochrane Database Syst Rev. 2012;9:CD006616.
    1. Sprong RC, Winkelhuyzen-Janssen AM, Aarsman CJ, van Oirschot JF, van der Bruggen T, van Asbeck BS. Low-dose N-acetylcysteine protects rats against endotoxin-mediated oxidative stress, but high-dose increases mortality. Am J Respir Crit Care Med. 1998;157:1283–1293. doi: 10.1164/ajrccm.157.4.9508063.
    1. Ritter C, Andrades ME, Reinke A, Menna-Barreto S, Moreira JC, Dal-Pizzol F. Treatment with N-acetylcysteine plus deferoxamine protects rats against oxidative stress and improves survival in sepsis. Crit Care Med. 2004;32:342–349. doi: 10.1097/.
    1. Ritter C, da Cunha AA, Echer IC, Andrades M, Reinke A, Lucchiari N, Rocha J, Streck EL, Menna-Barreto S, Moreira JC, Dal-Pizzol F. Effects of N-acetylcysteine plus deferoxamine in lipopolysaccharide-induced acute lung injury in the rat. Crit Care Med. 2006;34:471–477. doi: 10.1097/01.CCM.0000199069.19193.89.
    1. Ritter C, Reinke A, Andrades M, Martins MR, Rocha J, Menna-Barreto S, Quevedo J, Moreira JC, Dal-Pizzol F. Protective effect of N-acetylcysteine and deferoxamine on carbon tetrachloride-induced acute hepatic failure in rats. Crit Care Med. 2004;32:2079–2083. doi: 10.1097/01.CCM.0000142699.54266.D9.
    1. Petronilho F, Constantino L, de Souza B, Reinke A, Martins MR, Fraga CM, Ritter C, Dal-Pizzol F. Efficacy of the combination of N-acetylcysteine and desferrioxamine in the prevention and treatment of gentamicin-induced acute renal failure in male Wistar rats. Nephrol Dial Transplant. 2009;24:2077–2082. doi: 10.1093/ndt/gfn774.
    1. Bulucu F, Oktenli C, Kenar L, Ocal R, Koc B, Inal V, Yamanel L, Yaman H, Sanisoglu YS, Aydin A. Efficacy of deferoxamine, N-acetylcysteine and selenium treatments in rats with Adriamycin-induced nephrotic syndrome. J Nephrol. 2008;21:576–583.
    1. Fraga CM, Tomasi CD, Biff D, Topanotti MF, Felisberto F, Vuolo F, Petronilho F, Dal-Pizzol F, Ritter C. The effects of N-acetylcysteine and deferoxamine on plasma cytokine and oxidative damage parameters in critically ill patients with prolonged hypotension: a randomized controlled trial. J Clin Pharmacol. 2012;52:1365–1372. doi: 10.1177/0091270011418657.
    1. Tasaka S, Amaya F, Hashimoto S, Ishizaka A. Roles of oxidants and redox signaling in the pathogenesis of acute respiratory distress syndrome. Antioxid Redox Signal. 2008;10:739–753. doi: 10.1089/ars.2007.1940.
    1. Szabó C, Módis K. Pathophysiological roles of peroxynitrite in circulatory shock. Shock. 2010;34(Suppl 1):4–14. doi: 10.1097/SHK.0b013e3181e7e9ba.
    1. Komisarof JA, Gilkey GM, Peters DM, Koudelka CW, Meyer MM, Smith SM. N-acetylcysteine for patients with prolonged hypotension as prophylaxis for acute renal failure (NEPHRON) Crit Care Med. 2007;35:435–441. doi: 10.1097/01.CCM.0000253816.83011.DB.
    1. Levy MM, Fink MP, Marshall JC. 2001 SCCM/ESICM/ACCP/ATS/SIS International Sepsis Definitions Conference. Crit Care Med. 2003;31:1250–1256. doi: 10.1097/01.CCM.0000050454.01978.3B.
    1. KDIGO AKI Work Group KDIGO clinical practice guideline for acute kidney injury. Kidney Int Suppl. 2012;2:1–138. doi: 10.1038/kisup.2012.1.
    1. Thomson AW, Lotze MT. The Cytokine Handbook. Fourth edn. London: Elsevier; 2003.
    1. Lasocki S, Gaillard T, Rineau E. Iron is essential for living! Crit Care. 2014;18:678. doi: 10.1186/s13054-014-0678-7.
    1. Zeng C, Chen Q, Zhang K, Song S, Fang X. Hepatic hepcidin protects against polymicrobial sepsis in mice by regulating host iron status. Anesthesiology. 2015;122:374–386. doi: 10.1097/ALN.0000000000000466.
    1. Dutra FF, Alves LS, Rodrigues D, Fernandez PL, de Oliveira RB, Golenbock DT, Zamboni DS, Bozza MT. Hemolysis-induced lethality involves inflammasome activation by heme. Proc Natl Acad Sci U S A. 2014;111:E4110–E4118. doi: 10.1073/pnas.1405023111.
    1. Wu ZL, Paller MS. Iron loading enhances susceptibility to renal ischemia in rats. Ren Fail. 1994;16:471–480. doi: 10.3109/08860229409045078.
    1. Paller MS, Hedlund BE. Extracellular iron chelators protect kidney cells from hypoxia/reoxygenation. Free Radic Biol Med. 1994;17:597–603. doi: 10.1016/0891-5849(94)90099-X.
    1. Vries B, Walter SJ, von Bonsdorff L, Wolfs TG, van Heurn LW, Parkkinen J, Buurman WA. Reduction of circulating redox-active iron by apotransferrin protects against renal ischemia–reperfusion injury. Transplantation. 2004;77:669–675. doi: 10.1097/01.TP.0000115002.28575.E7.
    1. Paragas N, Qiu A, Hollmen M, Nickolas TL, Devarajan P, Barasch J. NGAL-Siderocalin in kidney disease. Biochim Biophys Acta. 2012;1823:1451–1458. doi: 10.1016/j.bbamcr.2012.06.014.
    1. Supavekin S, Zhang W, Kucherlapati R, Kaskel FJ, Moore LC, Devarajan P. Differential gene expression following early renal ischemia/reperfusion. Kidney Int. 2003;63:1714–1724. doi: 10.1046/j.1523-1755.2003.00928.x.
    1. Haase M, Devarajan P, Haase-Fielitz A, Bellomo R, Cruz DN, Wagener G, Krawczeski CD, Koyner JL, Murray P, Zappitelli M, Goldstein SL, Makris K, Ronco C, Martensson J, Martling CR, Venge P, Siew E, Ware LB, Ikizler TA, Mertens PR. The outcome of neutrophil gelatinase-associated lipocalin-positive subclinical acute kidney injury: a multicenter pooled analysis of prospective studies. J Am Coll Cardiol. 2011;57:1752–1761. doi: 10.1016/j.jacc.2010.11.051.
    1. Mishra J, Mori K, Ma Q, Kelly C, Yang J, Mitsnefes M, Barasch J, Devarajan P. Amelioration of ischemic acute renal injury by neutrophil gelatinase-associated lipocalin. J Am Soc Nephrol. 2004;15:3073–3082. doi: 10.1097/01.ASN.0000145013.44578.45.
    1. Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol Cell. 2002;10:1033–1043. doi: 10.1016/S1097-2765(02)00708-6.
    1. Mori K, Lee HT, Rapoport D, Drexler IR, Foster K, Yang J, Schmidt-Ott KM, Chen X, Li JY, Weiss S, Mishra J, Cheema FH, Markowitz G, Suganami T, Sawai K, Mukoyama M, Kunis C, D’Agati V, Devarajan P, Barasch J. Endocytic delivery of lipocalin–siderophore–iron complex rescues the kidney from ischemia–reperfusion injury. J Clin Invest. 2005;115:610–621. doi: 10.1172/JCI23056.
    1. Walsh M, Srinathan SK, McAuley DF, Mrkobrada M, Levine O, Ribic C, Molnar AO, Dattani ND, Burke A, Guyatt G, Thabane L, Walter SD, Pogue J, Devereaux PJ. The statistical significance of randomized controlled trial results is frequently fragile: a case for a Fragility Index. J Clin Epidemiol. 2014;67:622–628. doi: 10.1016/j.jclinepi.2013.10.019.
    1. Breuer W, Ronson A, Abramov A, Slotki I, Hershko H, Cabantchik ZI. The assessment of serum non-transferrin bound iron (NTBI) in chelation therapy and iron supplementation. Blood. 2000;95:2975–2982.

Source: PubMed

3
Sottoscrivi