The role of omics in the pathophysiology, diagnosis and treatment of non-alcoholic fatty liver disease

Nikolaos Perakakis, Konstantinos Stefanakis, Christos S Mantzoros, Nikolaos Perakakis, Konstantinos Stefanakis, Christos S Mantzoros

Abstract

Non-alcoholic fatty liver disease (NAFLD) is a multifaceted metabolic disorder, whose spectrum covers clinical, histological and pathophysiological developments ranging from simple steatosis to non-alcoholic steatohepatitis (NASH) and liver fibrosis, potentially evolving into cirrhosis, hepatocellular carcinoma and liver failure. Liver biopsy remains the gold standard for diagnosing NAFLD, while there are no specific treatments. An ever-increasing number of high-throughput Omics investigations on the molecular pathobiology of NAFLD at the cellular, tissue and system levels produce comprehensive biochemical patient snapshots. In the clinical setting, these applications are considerably enhancing our efforts towards obtaining a holistic insight on NAFLD pathophysiology. Omics are also generating non-invasive diagnostic modalities for the distinct stages of NAFLD, that remain though to be validated in multiple, large, heterogenous and independent cohorts, both cross-sectionally as well as prospectively. Finally, they aid in developing novel therapies. By tracing the flow of information from genomics to epigenomics, transcriptomics, proteomics, metabolomics, lipidomics and glycomics, the chief contributions of these techniques in understanding, diagnosing and treating NAFLD are summarized herein.

Keywords: Epigenomics; Genomics; Glycomics; Lipidomics; Metabolomics; NASH; Steatosis; Transcriptomics.

Conflict of interest statement

Declaration of competing interest C.S.M. and N.P. have applied for patent through their institution BIDMC. CSM has been a shareholder of and reports grants through his institution and personal consulting fees from Coherus Inc. and Pangea Inc., he reports grants through his institution and personal consulting fees from Esai and Novo Nordisk, reports personal consulting fees and in kind support with research reagents from Ansh inc, reports personal consulting fees from Genfit, P.E.S., Intercept, Astra Zeneca, Aegerion and Regeneron, reports in kind support (educational activity meals at and through his institution) from Amarin, Jansen, Boehringer Ingelheim and travel support and fees from TMIOA, the California Walnut Commission, College Internationale Researche Servier and the Cardio Metabolic Health Conference.

Copyright © 2020 Elsevier Inc. All rights reserved.

Figures

Fig. 1
Fig. 1
Main omics procedures used currently in medicine and in NAFLD research.
Fig. 2
Fig. 2
Genomic, epigenomic and transcriptomic modifications in NAFLD pathophysiology. PNPLA3, TM6SF2 and GCKR are some of the most investigated genes in NAFLD. Adiponutrin (PNPLA3) variant I148M (rs738409) impairs PUFA transfer from DAGs to PCs, thus increasing PUFA in TG and DAG. TM6SF2 E167K (rs58542926) impairs PUFA synthesis, increases polyunsaturated FFAs and prevents PUFA incorporation into TGs and PCs. Both mechanisms lead to impaired VLDL synthesis and lipid droplet hydrolysis. GCKR P446L (rs780094) incites glycolysis, glycogen deposition and de novo lipogenesis by disinhibiting glucokinase. Epigenetic modifications characteristic of NAFLD progression include CpG site hypermethylation, thus reduced expression, of genes pertaining to lipid and aminoacid metabolism and stellate cell inhibition. Hypomethylation, thus increased expression, of genes pertaining to tissue repair, inflammation, carcinogenesis and fibrogenesis, increases insulin resistance and further propagates the disease. Methylation levels of cytoskeletal, transcriptional, proliferation-related and metabolic genes are affected by age, fasting glucose levels and body weight. At the histone level, depletion of sirtuins 1 and 3 and HDAC3 may propagate NASH and increase susceptibility to MetS, insulin resistance and hyperlipidemia. On the other hand, the glucose-activated HAT p300 activates ChREBP and thus precipitates stellate cell activation, elevates lipogenic gene expression and expedites steatosis, though these effects can be attenuated by tannic acid. Finally, the NAFLD transcriptome is characterized by overexpression of lipid metabolism, cellular stress, division and adhesion, extracellular matrix production and repair, cancer progression and immunomodulatory genes, whereas several pro-metabolic and insulin signaling genes are downregulated. miRNAs, especially miR-122, miR-192 and miR-34a, are linked to steatosis, cholesterol metabolism, liver cancer, atherogenesis and MetS, whereas other noncoding molecules, such as lncRNAs, are indicators of NASH grade and hepatocellular viability.
Fig. 3
Fig. 3
Perturbations in lipidomic profile related to the pathophysiology of NAFLD. The uncontrolled lipolysis from adipose tissue, the increased dietary intake of TG and the upregulated de novo lipogenesis observed in NAFLD leads to elevated SFA, LPC, Ceramides and ω6/ω3 PUFA ratio. SFA stimulate the secretion of inflammatory cytokines via TLR4 and apoptosis via TRAIL2, whereas they increase oxidative stress, ER stress and impair β-oxidation in the mitochondria of hepatocytes. In stellate cells, they stimulate macrophage recruitment, whereas in Kupffer cells and macrophages SFA induce their polarization to the M1 proinflammatory state. Increased activation of PLA2 enzyme leads to formation of LPC and depletion of PC. PC are important for lipid droplet stability and their deficiency leads to large droplet formation and inadequate VLDL secretion. High LPC are also triggering mechanisms of impaired β-oxidation, apoptosis, fibrosis and HCC. High hepatic ceramide concentrations increase cholesterol synthesis and TG accumulation, promote insulin resistance by blocking Akt-mediated insulin signaling, induce the secretion of proinflammatory cytokines and stimulate apoptosis by increasing ROS generation, ER stress and β-oxidation impairment. In hepatic stellate cells, they increase extracellular matrix deposition and pro-angiogenic factors secretion promoting fibrogenesis. Finally, the high ω6/ω3 ratio leads to increased synthesis of proinflammatory molecules, such as prostaglandins, leukotrienes, thromboxanes in expense of the synthesis of anti-inflammatory SPMs, thus resulting in a pro-inflammatory and profibrotic net outcome.

References

    1. Mantovani A., Scorletti E., Mosca A., Alisi A., Byrne C.D., Targher G. Complications, morbidity and mortality of nonalcoholic fatty liver disease. Metabolism. 2020;154170 doi: 10.1016/j.metabol.2020.154170.
    1. Buzzetti E., Pinzani M., Tsochatzis E.A. The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD) Metabolism. 2016;65:1038–1048. doi: 10.1016/j.metabol.2015.12.012.
    1. Kechagias S., Nasr P., Blomdahl J., Ekstedt M. Established and emerging factors affecting the progression of nonalcoholic fatty liver disease. Metabolism. 2020;154183 doi: 10.1016/j.metabol.2020.154183.
    1. Hernaez R., Lazo M., Bonekamp S., Kamel I., Brancati F.L., Guallar E. Diagnostic accuracy and reliability of ultrasonography for the detection of fatty liver: a meta-analysis. Hepatology. 2011;54:1082–1090. doi: 10.1002/hep.24452.
    1. Bril F., Ortiz-Lopez C., Lomonaco R., Orsak B., Freckleton M., Chintapalli K. Clinical value of liver ultrasound for the diagnosis of nonalcoholic fatty liver disease in overweight and obese patients. Liver Int. 2015;35:2139–2146. doi: 10.1111/liv.12840.
    1. Stern C., Castera L. Non-invasive diagnosis of hepatic steatosis. Hepatol Int. 2017;11:70–78. doi: 10.1007/s12072-016-9772-z.
    1. Karlas T., Petroff D., Sasso M., Fan J.G., Mi Y.Q., de Ledinghen V. Individual patient data meta-analysis of controlled attenuation parameter (CAP) technology for assessing steatosis. J Hepatol. 2017;66:1022–1030. doi: 10.1016/j.jhep.2016.12.022.
    1. de Ledinghen V., Hiriart J.B., Vergniol J., Merrouche W., Bedossa P., Paradis V. Controlled Attenuation Parameter (CAP) with the XL probe of the Fibroscan((R)): a comparative study with the M probe and liver biopsy. Dig Dis Sci. 2017;62:2569–2577. doi: 10.1007/s10620-017-4638-3.
    1. Gu J., Liu S., Du S., Zhang Q., Xiao J., Dong Q. Diagnostic value of MRI-PDFF for hepatic steatosis in patients with non-alcoholic fatty liver disease: a meta-analysis. Eur Radiol. 2019;29:3564–3573. doi: 10.1007/s00330-019-06072-4.
    1. Castera L., Friedrich-Rust M., Loomba R. Noninvasive assessment of liver disease in patients with nonalcoholic fatty liver disease. Gastroenterology. 2019;156:1264–1281. doi: 10.1053/j.gastro.2018.12.036. e4.
    1. Long M.T., Gandhi S., Loomba R. Advances in non-invasive biomarkers for the diagnosis and monitoring of non-alcoholic fatty liver disease. Metabolism. 2020;154259 doi: 10.1016/j.metabol.2020.154259.
    1. He L., Deng L., Zhang Q., Guo J., Zhou J., Song W. Diagnostic value of CK-18, FGF-21, and related biomarker panel in nonalcoholic fatty liver disease: a systematic review and Meta-analysis. Biomed Res Int. 2017;2017:9729107. doi: 10.1155/2017/9729107.
    1. Cusi K., Chang Z., Harrison S., Lomonaco R., Bril F., Orsak B. Limited value of plasma cytokeratin-18 as a biomarker for NASH and fibrosis in patients with non-alcoholic fatty liver disease. J Hepatol. 2014;60:167–174. doi: 10.1016/j.jhep.2013.07.042.
    1. Sookoian S., Pirola C.J. PNPLA3, the triacylglycerol synthesis/hydrolysis/storage dilemma, and nonalcoholic fatty liver disease. World J Gastroenterol. 2012;18:6018–6026. doi: 10.3748/wjg.v18.i42.6018.
    1. Luukkonen P.K., Nick A., Holtta-Vuori M., Thiele C., Isokuortti E., Lallukka-Bruck S. Human PNPLA3-I148M variant increases hepatic retention of polyunsaturated fatty acids. JCI Insight. 2019;4 doi: 10.1172/jci.insight.127902.
    1. Romeo S., Kozlitina J., Xing C., Pertsemlidis A., Cox D., Pennacchio L.A. Genetic variation in PNPLA3 confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2008;40:1461–1465. doi: 10.1038/ng.257.
    1. Walker R.W., Belbin G.M., Sorokin E.P., Van Vleck T., Wojcik G.L., Moscati A. A common variant in PNPLA3 is associated with age at diagnosis of NAFLD in patients from a multi-ethnic biobank. J Hepatol. 2020 doi: 10.1016/j.jhep.2020.01.029.
    1. Xu R., Tao A., Zhang S., Deng Y., Chen G. Association between patatin-like phospholipase domain containing 3 gene (PNPLA3) polymorphisms and nonalcoholic fatty liver disease: a HuGE review and meta-analysis. Sci Rep. 2015;5:9284. doi: 10.1038/srep09284.
    1. Kitamoto T., Kitamoto A., Yoneda M., Hyogo H., Ochi H., Nakamura T. Genome-wide scan revealed that polymorphisms in the PNPLA3, SAMM50, and PARVB genes are associated with development and progression of nonalcoholic fatty liver disease in Japan. Hum Genet. 2013;132:783–792. doi: 10.1007/s00439-013-1294-3.
    1. Speliotes E.K., Yerges-Armstrong L.M., Wu J., Hernaez R., Kim L.J., Palmer C.D. Genome-wide association analysis identifies variants associated with nonalcoholic fatty liver disease that have distinct effects on metabolic traits. PLoS Genet. 2011;7 doi: 10.1371/journal.pgen.1001324.
    1. Di Costanzo A., Belardinilli F., Bailetti D., Sponziello M., D’Erasmo L., Polimeni L. Evaluation of polygenic determinants of Non-Alcoholic Fatty Liver Disease (NAFLD) by a candidate genes resequencing strategy. Sci Rep. 2018;8:3702. doi: 10.1038/s41598-018-21939-0.
    1. Namjou B., Lingren T., Huang Y., Parameswaran S., Cobb B.L., Stanaway I.B. GWAS and enrichment analyses of non-alcoholic fatty liver disease identify new trait-associated genes and pathways across eMERGE Network. BMC Med. 2019;17:135. doi: 10.1186/s12916-019-1364-z.
    1. Kotronen A., Johansson L.E., Johansson L.M., Roos C., Westerbacka J., Hamsten A. A common variant in PNPLA3, which encodes adiponutrin, is associated with liver fat content in humans. Diabetologia. 2009;52:1056–1060. doi: 10.1007/s00125-009-1285-z.
    1. Sookoian S., Castano G.O., Burgueno A.L., Gianotti T.F., Rosselli M.S., Pirola C.J. A nonsynonymous gene variant in the adiponutrin gene is associated with nonalcoholic fatty liver disease severity. J Lipid Res. 2009;50:2111–2116. doi: 10.1194/jlr.P900013-JLR200.
    1. Speliotes E.K., Butler J.L., Paler C.D., Voight B.F., Consortium G., Consortium M.I. PNPLA3 variants specifically confer increased risk for histologic nonalcoholic fatty liver disease but not metabolic disease. Hepatology. 2010;52:904–912. doi: 10.1002/hep.23768.
    1. Rotman Y., Koh C., Zmuda J.M., Kleiner D.E., Liang T.J., Nash C.R.N. The association of genetic variability in patatin-like phospholipase domain-containing protein 3 (PNPLA3) with histological severity of nonalcoholic fatty liver disease. Hepatology. 2010;52:894–903. doi: 10.1002/hep.23759.
    1. Kawaguchi T., Sumida Y., Umemura A., Matsuo K., Takahashi M., Takamura T. Genetic polymorphisms of the human PNPLA3 gene are strongly associated with severity of non-alcoholic fatty liver disease in Japanese. PLoS One. 2012;7 doi: 10.1371/journal.pone.0038322.
    1. Krawczyk M., Rau M., Schattenberg J.M., Bantel H., Pathil A., Demir M. Combined effects of the PNPLA3 rs738409, TM6SF2 rs58542926, and MBOAT7 rs641738 variants on NAFLD severity: a multicenter biopsy-based study. J Lipid Res. 2017;58:247–255. doi: 10.1194/jlr.P067454.
    1. Stender S., Kozlitina J., Nordestgaard B.G., Tybjaerg-Hansen A., Hobbs H.H., Cohen J.C. Adiposity amplifies the genetic risk of fatty liver disease conferred by multiple loci. Nat Genet. 2017;49:842–847. doi: 10.1038/ng.3855.
    1. Hudert C.A., Selinski S., Rudolph B., Blaker H., Loddenkemper C., Thielhorn R. Genetic determinants of steatosis and fibrosis progression in paediatric non-alcoholic fatty liver disease. Liver Int. 2019;39:540–556. doi: 10.1111/liv.14006.
    1. Liu Y.L., Patman G.L., Leathart J.B., Piguet A.C., Burt A.D., Dufour J.F. Carriage of the PNPLA3 rs738409 C >G polymorphism confers an increased risk of non-alcoholic fatty liver disease associated hepatocellular carcinoma. J Hepatol. 2014;61:75–81. doi: 10.1016/j.jhep.2014.02.030.
    1. Grimaudo S., Pipitone R.M., Pennisi G., Celsa C., Camma C., Di Marco V. Association between PNPLA3 rs738409 C>G variant and liver-related outcomes in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2020;18:935–944. doi: 10.1016/j.cgh.2019.08.011. e3.
    1. Kozlitina J., Smagris E., Stender S., Nordestgaard B.G., Zhou H.H., Tybjaerg-Hansen A. Exome-wide association study identifies a TM6SF2 variant that confers susceptibility to nonalcoholic fatty liver disease. Nat Genet. 2014;46:352–356. doi: 10.1038/ng.2901.
    1. Luukkonen P.K., Zhou Y., Nidhina Haridas P.A., Dwivedi O.P., Hyotylainen T., Ali A. Impaired hepatic lipid synthesis from polyunsaturated fatty acids in TM6SF2 E167K variant carriers with NAFLD. J Hepatol. 2017;67:128–136. doi: 10.1016/j.jhep.2017.02.014.
    1. Liu Y.L., Reeves H.L., Burt A.D., Tiniakos D., McPherson S., Leathart J.B. TM6SF2 rs58542926 influences hepatic fibrosis progression in patients with non-alcoholic fatty liver disease. Nat Commun. 2014;5:4309. doi: 10.1038/ncomms5309.
    1. Sookoian S., Castano G.O., Scian R., Mallardi P., Fernandez Gianotti T., Burgueno A.L. Genetic variation in transmembrane 6 superfamily member 2 and the risk of nonalcoholic fatty liver disease and histological disease severity. Hepatology. 2015;61:515–525. doi: 10.1002/hep.27556.
    1. Donati B., Dongiovanni P., Romeo S., Meroni M., McCain M., Miele L. MBOAT7 rs641738 variant and hepatocellular carcinoma in non-cirrhotic individuals. Sci Rep. 2017;7:4492. doi: 10.1038/s41598-017-04991-0.
    1. Fernandes Silva L., Vangipurapu J., Kuulasmaa T., Laakso M. An intronic variant in the GCKR gene is associated with multiple lipids. Sci Rep. 2019;9:10240. doi: 10.1038/s41598-019-46750-3.
    1. Zain S.M., Mohamed Z., Mohamed R. Common variant in the glucokinase regulatory gene rs780094 and risk of nonalcoholic fatty liver disease: a meta-analysis. J Gastroenterol Hepatol. 2015;30:21–27. doi: 10.1111/jgh.12714.
    1. Trepo E., Valenti L. Update on NAFLD genetics: from new variants to the clinic. J Hepatol. 2020 doi: 10.1016/j.jhep.2020.02.020.
    1. Danford C.J., Connelly M.A., Shalaurova I., Kim M., Herman M.A., Nasser I. A pathophysiologic approach combining genetics and insulin resistance to predict the severity of nonalcoholic fatty liver disease. Hepatol Commun. 2018;2:1467–1478. doi: 10.1002/hep4.1267.
    1. Abul-Husn N.S., Cheng X., Li A.H., Xin Y., Schurmann C., Stevis P. A protein-truncating HSD17B13 variant and protection from chronic liver disease. N Engl J Med. 2018;378:1096–1106. doi: 10.1056/NEJMoa1712191.
    1. Parisinos C.A., Wilman H.R., Thomas E.L., Kelly M., Nicholls R.C., McGonigle J. Genome-wide and Mendelian randomisation studies of liver MRI yield insights into the pathogenesis of steatohepatitis. J Hepatol. 2020 doi: 10.1016/j.jhep.2020.03.032.
    1. Anstee Q.M., Darlay R., Cockell S., Meroni M., Govaere O., Tiniakos D. Genome-wide association study of non-alcoholic fatty liver and steatohepatitis in a histologically-characterised cohort. J Hepatol. 2020 doi: 10.1016/j.jhep.2020.04.003.
    1. Kotronen A., Peltonen M., Hakkarainen A., Sevastianova K., Bergholm R., Johansson L.M. Prediction of non-alcoholic fatty liver disease and liver fat using metabolic and genetic factors. Gastroenterology. 2009;137:865–872. doi: 10.1053/j.gastro.2009.06.005.
    1. Zhou Y., Oresic M., Leivonen M., Gopalacharyulu P., Hyysalo J., Arola J. Noninvasive detection of nonalcoholic steatohepatitis using clinical markers and circulating levels of lipids and metabolites. Clin Gastroenterol Hepatol. 2016;14:1463–1472. doi: 10.1016/j.cgh.2016.05.046. e6.
    1. Koo B.K., Joo S.K., Kim D., Lee S., Bae J.M., Park J.H. Development and validation of a scoring system, based on genetic and clinical factors, to determine risk of steatohepatitis in Asian patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2020 doi: 10.1016/j.cgh.2020.02.011.
    1. Gellert-Kristensen H., Richardson T.G., Davey Smith G., Nordestgaard B.G., Tybjaerg-Hansen A., Stender S. Combined effect of PNPLA3, TM6SF2, and HSD17B13 variants on risk of cirrhosis and hepatocellular carcinoma in the general population. Hepatology. 2020 doi: 10.1002/hep.31238.
    1. Chalasani N., Younossi Z., Lavine J.E., Charlton M., Cusi K., Rinella M. The diagnosis and management of nonalcoholic fatty liver disease: practice guidance from the American Association for the Study of Liver Diseases. Hepatology. 2018;67:328–357. doi: 10.1002/hep.29367.
    1. BasuRay S., Wang Y., Smagris E., Cohen J.C., Hobbs H.H. Accumulation of PNPLA3 on lipid droplets is the basis of associated hepatic steatosis. Proc Natl Acad Sci U S A. 2019;116:9521–9526. doi: 10.1073/pnas.1901974116.
    1. Linden D., Ahnmark A., Pingitore P., Ciociola E., Ahlstedt I., Andreasson A.C. Pnpla3 silencing with antisense oligonucleotides ameliorates nonalcoholic steatohepatitis and fibrosis in Pnpla3 I148M knock-in mice. Mol Metab. 2019;22:49–61. doi: 10.1016/j.molmet.2019.01.013.
    1. Diogo D., Tian C., Franklin C.S., Alanne-Kinnunen M., March M., Spencer C.C.A. Phenome-wide association studies across large population cohorts support drug target validation. Nat Commun. 2018;9:4285. doi: 10.1038/s41467-018-06540-3.
    1. Pirola C.J., Sookoian S. The dual and opposite role of the TM6SF2-rs58542926 variant in protecting against cardiovascular disease and conferring risk for nonalcoholic fatty liver: a meta-analysis. Hepatology. 2015;62:1742–1756. doi: 10.1002/hep.28142.
    1. Romeo S., Sanyal A., Valenti L. Leveraging human genetics to identify potential new treatments for fatty liver disease. Cell Metab. 2020;31:35–45. doi: 10.1016/j.cmet.2019.12.002.
    1. Seko Y., Yamaguchi K., Tochiki N., Yano K., Takahashi A., Okishio S. Attenuated effect of PNPLA3 on hepatic fibrosis by HSD17B13 in Japanese patients with non-alcoholic fatty liver disease. Liver Int. 2020 doi: 10.1111/liv.14495.
    1. Murphy S.K., Yang H., Moylan C.A., Pang H., Dellinger A., Abdelmalek M.F. Relationship between methylome and transcriptome in patients with nonalcoholic fatty liver disease. Gastroenterology. 2013;145:1076–1087. doi: 10.1053/j.gastro.2013.07.047.
    1. Ahrens M., Ammerpohl O., von Schonfels W., Kolarova J., Bens S., Itzel T. DNA methylation analysis in nonalcoholic fatty liver disease suggests distinct disease-specific and remodeling signatures after bariatric surgery. Cell Metab. 2013;18:296–302. doi: 10.1016/j.cmet.2013.07.004.
    1. de Mello V.D., Matte A., Perfilyev A., Mannisto V., Ronn T., Nilsson E. Human liver epigenetic alterations in non-alcoholic steatohepatitis are related to insulin action. Epigenetics. 2017;12:287–295. doi: 10.1080/15592294.2017.1294305.
    1. Pirola C.J., Gianotti T.F., Burgueno A.L., Rey-Funes M., Loidl C.F., Mallardi P. Epigenetic modification of liver mitochondrial DNA is associated with histological severity of nonalcoholic fatty liver disease. Gut. 2013;62:1356–1363. doi: 10.1136/gutjnl-2012-302962.
    1. Loomba R., Gindin Y., Jiang Z., Lawitz E., Caldwell S., Djedjos C.S. DNA methylation signatures reflect aging in patients with nonalcoholic steatohepatitis. JCI Insight. 2018;3 doi: 10.1172/jci.insight.96685.
    1. Kitamoto T., Kitamoto A., Ogawa Y., Honda Y., Imajo K., Saito S. Targeted-bisulfite sequence analysis of the methylation of CpG islands in genes encoding PNPLA3, SAMM50, and PARVB of patients with non-alcoholic fatty liver disease. J Hepatol. 2015;63:494–502. doi: 10.1016/j.jhep.2015.02.049.
    1. Hotta K., Kitamoto T., Kitamoto A., Ogawa Y., Honda Y., Kessoku T. Identification of the genomic region under epigenetic regulation during non-alcoholic fatty liver disease progression. Hepatol Res. 2018;48 doi: 10.1111/hepr.12992. [E320-E34]
    1. Page A., Paoli P., Moran Salvador E., White S., French J., Mann J. Hepatic stellate cell transdifferentiation involves genome-wide remodeling of the DNA methylation landscape. J Hepatol. 2016;64:661–673. doi: 10.1016/j.jhep.2015.11.024.
    1. Mann J., Chu D.C., Maxwell A., Oakley F., Zhu N.L., Tsukamoto H. MeCP2 controls an epigenetic pathway that promotes myofibroblast transdifferentiation and fibrosis. Gastroenterology. 2010;138:705–714. doi: 10.1053/j.gastro.2009.10.002. 14 e1-4.
    1. Zeybel M., Hardy T., Robinson S.M., Fox C., Anstee Q.M., Ness T. Differential DNA methylation of genes involved in fibrosis progression in non-alcoholic fatty liver disease and alcoholic liver disease. Clin Epigenetics. 2015;7:25. doi: 10.1186/s13148-015-0056-6.
    1. Zeybel M., Hardy T., Wong Y.K., Mathers J.C., Fox C.R., Gackowska A. Multigenerational epigenetic adaptation of the hepatic wound-healing response. Nat Med. 2012;18:1369–1377. doi: 10.1038/nm.2893.
    1. Sookoian S., Rosselli M.S., Gemma C., Burgueno A.L., Fernandez Gianotti T., Castano G.O. Epigenetic regulation of insulin resistance in nonalcoholic fatty liver disease: impact of liver methylation of the peroxisome proliferator-activated receptor gamma coactivator 1alpha promoter. Hepatology. 2010;52:1992–2000. doi: 10.1002/hep.23927.
    1. Hotta K., Kitamoto A., Kitamoto T., Ogawa Y., Honda Y., Kessoku T. Identification of differentially methylated region (DMR) networks associated with progression of nonalcoholic fatty liver disease. Sci Rep. 2018;8:13567. doi: 10.1038/s41598-018-31886-5d.
    1. Lee J., Kim Y., Friso S., Choi S.W. Epigenetics in non-alcoholic fatty liver disease. Mol Aspects Med. 2017;54:78–88. doi: 10.1016/j.mam.2016.11.008.
    1. Chung M.Y., Song J.H., Lee J., Shin E.J., Park J.H., Lee S.H. Tannic acid, a novel histone acetyltransferase inhibitor, prevents non-alcoholic fatty liver disease both in vivo and in vitro model. Mol Metab. 2019;19:34–48. doi: 10.1016/j.molmet.2018.11.001.
    1. Nguyen P., Valanejad L., Cast A., Wright M., Garcia J.M., El-Serag H.B. Elimination of age-associated hepatic steatosis and correction of aging phenotype by inhibition of cdk4-C/EBPalpha-p300 Axis. Cell Rep. 2018;24:1597–1609. doi: 10.1016/j.celrep.2018.07.014.
    1. Dou C., Liu Z., Tu K., Zhang H., Chen C., Yaqoob U. P300 acetyltransferase mediates stiffness-induced activation of hepatic stellate cells into tumor-promoting myofibroblasts. Gastroenterology. 2018;154:2209–2221. doi: 10.1053/j.gastro.2018.02.015. e14.
    1. Banks A.S., Kon N., Knight C., Matsumoto M., Gutierrez-Juarez R., Rossetti L. SirT1 gain of function increases energy efficiency and prevents diabetes in mice. Cell Metab. 2008;8:333–341. doi: 10.1016/j.cmet.2008.08.014.
    1. Pfluger P.T., Herranz D., Velasco-Miguel S., Serrano M., Tschop M.H. Sirt1 protects against high-fat diet-induced metabolic damage. Proc Natl Acad Sci U S A. 2008;105:9793–9798. doi: 10.1073/pnas.0802917105.
    1. Purushotham A., Schug T.T., Xu Q., Surapureddi S., Guo X., Li X. Hepatocyte-specific deletion of SIRT1 alters fatty acid metabolism and results in hepatic steatosis and inflammation. Cell Metab. 2009;9:327–338. doi: 10.1016/j.cmet.2009.02.006.
    1. Hirschey M.D., Shimazu T., Jing E., Grueter C.A., Collins A.M., Aouizerat B. SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome. Mol Cell. 2011;44:177–190. doi: 10.1016/j.molcel.2011.07.019.
    1. Lee J.H., Friso S., Choi S.W. Epigenetic mechanisms underlying the link between non-alcoholic fatty liver diseases and nutrition. Nutrients. 2014;6:3303–3325. doi: 10.3390/nu6083303.
    1. Feng D., Liu T., Sun Z., Bugge A., Mullican S.E., Alenghat T. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science. 2011;331:1315–1319. doi: 10.1126/science.1198125.
    1. Hardy T., Zeybel M., Day C.P., Dipper C., Masson S., McPherson S. Plasma DNA methylation: a potential biomarker for stratification of liver fibrosis in non-alcoholic fatty liver disease. Gut. 2017;66:1321–1328. doi: 10.1136/gutjnl-2016-311526.
    1. Wu J., Zhang R., Shen F., Yang R., Zhou D., Cao H. Altered DNA methylation sites in peripheral blood leukocytes from patients with simple steatosis and Nonalcoholic Steatohepatitis (NASH) Med Sci Monit. 2018;24:6946–6967. doi: 10.12659/MSM.909747.
    1. Ma J., Nano J., Ding J., Zheng Y., Hennein R., Liu C. A peripheral blood DNA methylation signature of hepatic fat reveals a potential causal pathway for nonalcoholic fatty liver disease. Diabetes. 2019;68:1073–1083. doi: 10.2337/DB18-1193.
    1. Ahn J., Cho I., Kim S., Kwon D., Ha T. Dietary resveratrol alters lipid metabolism-related gene expression of mice on an atherogenic diet. J Hepatol. 2008;49:1019–1028. doi: 10.1016/j.jhep.2008.08.012.
    1. Kantartzis K., Fritsche L., Bombrich M., Machann J., Schick F., Staiger H. Effects of resveratrol supplementation on liver fat content in overweight and insulin-resistant subjects: a randomized, double-blind, placebo-controlled clinical trial. Diabetes Obes Metab. 2018;20:1793–1797. doi: 10.1111/dom.13268.
    1. Poulsen M.K., Nellemann B., Bibby B.M., Stodkilde-Jorgensen H., Pedersen S.B., Gronbaek H. No effect of resveratrol on VLDL-TG kinetics and insulin sensitivity in obese men with nonalcoholic fatty liver disease. Diabetes Obes Metab. 2018;20:2504–2509. doi: 10.1111/dom.13409.
    1. Asghari S., Asghari-Jafarabadi M., Somi M.H., Ghavami S.M., Rafraf M. Comparison of calorie-restricted diet and resveratrol supplementation on anthropometric indices, metabolic parameters, and serum Sirtuin-1 levels in patients with nonalcoholic fatty liver disease: a randomized controlled clinical trial. J Am Coll Nutr. 2018;37:223–233. doi: 10.1080/07315724.2017.1392264.
    1. Zeybel M., Luli S., Sabater L., Hardy T., Oakley F., Leslie J. A proof-of-concept for epigenetic therapy of tissue fibrosis: inhibition of liver fibrosis progression by 3-deazaneplanocin a. Mol Ther. 2017;25:218–231. doi: 10.1016/j.ymthe.2016.10.004.
    1. Cheng Z., Wen Y., Liang B., Chen S., Liu Y., Wang Z. Gene expression profile-based drug screen identifies SAHA as a novel treatment for NAFLD. Mol Omics. 2019;15:50–58. doi: 10.1039/c8mo00214b.
    1. Baselli G.A., Dongiovanni P., Rametta R., Meroni M., Pelusi S., Maggioni M. Liver transcriptomics highlights interleukin-32 as novel NAFLD-related cytokine and candidate biomarker. Gut. 2020 doi: 10.1136/gutjnl-2019-319226.
    1. Ryaboshapkina M., Hammar M. Human hepatic gene expression signature of non-alcoholic fatty liver disease progression, a meta-analysis. Sci Rep. 2017;7:12361. doi: 10.1038/s41598-017-10930-w.
    1. Teufel A., Itzel T., Erhart W., Brosch M., Wang X.Y., Kim Y.O. Comparison of gene expression patterns between mouse models of nonalcoholic fatty liver disease and liver tissues from patients. Gastroenterology. 2016;151:513–525. doi: 10.1053/j.gastro.2016.05.051. e0.
    1. Moylan C.A., Pang H., Dellinger A., Suzuki A., Garrett M.E., Guy C.D. Hepatic gene expression profiles differentiate presymptomatic patients with mild versus severe nonalcoholic fatty liver disease. Hepatology. 2014;59:471–482. doi: 10.1002/hep.26661.
    1. Huang S., Sun C., Hou Y., Tang Y., Zhu Z., Zhang Z. A comprehensive bioinformatics analysis on multiple Gene Expression Omnibus datasets of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. Sci Rep. 2018;8:7630. doi: 10.1038/s41598-018-25658-4.
    1. Sreekumar R., Rosado B., Rasmussen D., Charlton M. Hepatic gene expression in histologically progressive nonalcoholic steatohepatitis. Hepatology. 2003;38:244–251. doi: 10.1053/jhep.2003.50290.
    1. Younossi Z.M., Gorreta F., Ong J.P., Schlauch K., Del Giacco L., Elariny H. Hepatic gene expression in patients with obesity-related non-alcoholic steatohepatitis. Liver Int. 2005;25:760–771. doi: 10.1111/j.1478-3231.2005.01117.x.
    1. Suppli M.P., Rigbolt K.T.G., Veidal S.S., Heeboll S., Eriksen P.L., Demant M. Hepatic transcriptome signatures in patients with varying degrees of nonalcoholic fatty liver disease compared with healthy normal-weight individuals. Am J Physiol Gastrointest Liver Physiol. 2019;316:G462. doi: 10.1152/ajpgi.00358.2018. G72.
    1. Starmann J., Falth M., Spindelbock W., Lanz K.L., Lackner C., Zatloukal K. Gene expression profiling unravels cancer-related hepatic molecular signatures in steatohepatitis but not in steatosis. PLoS One. 2012;7 doi: 10.1371/journal.pone.0046584.
    1. Yoneda M., Endo H., Mawatari H., Nozaki Y., Fujita K., Akiyama T. Gene expression profiling of non-alcoholic steatohepatitis using gene set enrichment analysis. Hepatol Res. 2008;38:1204–1212. doi: 10.1111/j.1872-034X.2008.00399.x.
    1. Gerhard G.S., Legendre C., Still C.D., Chu X., Petrick A., DiStefano J.K. Transcriptomic profiling of obesity-related nonalcoholic steatohepatitis reveals a core set of fibrosis-specific genes. J Endocr Soc. 2018;2:710–726. doi: 10.1210/js.2018-00122.
    1. Di Mauro S., Scamporrino A., Petta S., Urbano F., Filippello A., Ragusa M. Serum coding and non-coding RNAs as biomarkers of NAFLD and fibrosis severity. Liver Int. 2019;39:1742–1754. doi: 10.1111/liv.14167.
    1. Lefebvre P., Lalloyer F., Bauge E., Pawlak M., Gheeraert C., Dehondt H. Interspecies NASH disease activity whole-genome profiling identifies a fibrogenic role of PPARalpha-regulated dermatopontin. JCI Insight. 2017;2 doi: 10.1172/jci.insight.92264.
    1. Huang R., Duan X., Fan J., Li G., Wang B. Role of noncoding RNA in development of nonalcoholic fatty liver disease. Biomed Res Int. 2019;2019:8690592. doi: 10.1155/2019/8690592.
    1. Guo Y., Xiong Y., Sheng Q., Zhao S., Wattacheril J., Flynn C.R. A micro-RNA expression signature for human NAFLD progression. J Gastroenterol. 2016;51:1022–1030. doi: 10.1007/s00535-016-1178-0.
    1. Pirola C.J., Fernandez Gianotti T., Castano G.O., Mallardi P., San Martino J., Mora Gonzalez Lopez Ledesma M. Circulating microRNA signature in non-alcoholic fatty liver disease: from serum non-coding RNAs to liver histology and disease pathogenesis. Gut. 2015;64:800–812. doi: 10.1136/gutjnl-2014-306996.
    1. Cheung O., Puri P., Eicken C., Contos M.J., Mirshahi F., Maher J.W. Nonalcoholic steatohepatitis is associated with altered hepatic MicroRNA expression. Hepatology. 2008;48:1810–1820. doi: 10.1002/hep.22569.
    1. Dongiovanni P., Meroni M., Longo M., Fargion S., Fracanzani A.L. miRNA signature in NAFLD: a turning point for a non-invasive diagnosis. Int J Mol Sci. 2018:19. doi: 10.3390/ijms19123966.
    1. Jopling C. Liver-specific microRNA-122: biogenesis and function. RNA Biol. 2012;9:137–142. doi: 10.4161/rna.18827.
    1. Yamada H., Suzuki K., Ichino N., Ando Y., Sawada A., Osakabe K. Associations between circulating microRNAs (miR-21, miR-34a, miR-122 and miR-451) and non-alcoholic fatty liver. Clin Chim Acta. 2013;424:99–103. doi: 10.1016/j.cca.2013.05.021.
    1. Cermelli S., Ruggieri A., Marrero J.A., Ioannou G.N., Beretta L. Circulating microRNAs in patients with chronic hepatitis C and non-alcoholic fatty liver disease. PLoS One. 2011;6 doi: 10.1371/journal.pone.0023937.
    1. Sun C., Liu X., Yi Z., Xiao X., Yang M., Hu G. Genome-wide analysis of long noncoding RNA expression profiles in patients with non-alcoholic fatty liver disease. IUBMB Life. 2015;67:847–852. doi: 10.1002/iub.1442.
    1. Atanasovska B., Rensen S.S., van der Sijde M.R., Marsman G., Kumar V., Jonkers I. A liver-specific long noncoding RNA with a role in cell viability is elevated in human nonalcoholic steatohepatitis. Hepatology. 2017;66:794–808. doi: 10.1002/hep.29034.
    1. Matias-Garcia P.R., Wilson R., Mussack V., Reischl E., Waldenberger M., Gieger C. Impact of long-term storage and freeze-thawing on eight circulating microRNAs in plasma samples. PLoS One. 2020;15 doi: 10.1371/journal.pone.0227648.
    1. Tan Y., Ge G., Pan T., Wen D., Gan J. A pilot study of serum microRNAs panel as potential biomarkers for diagnosis of nonalcoholic fatty liver disease. PLoS One. 2014;9 doi: 10.1371/journal.pone.0105192.
    1. Hendy O.M., Rabie H., El Fouly A., Abdel-Samiee M., Abdelmotelb N., Elshormilisy A.A. The circulating micro-RNAs (-122, -34a and -99a) as predictive biomarkers for non-alcoholic fatty liver diseases. Diabetes Metab Syndr Obes. 2019;12:2715–2723. doi: 10.2147/DMSO.S231321.
    1. Liu C.H., Ampuero J., Gil-Gomez A., Montero-Vallejo R., Rojas A., Munoz-Hernandez R. miRNAs in patients with non-alcoholic fatty liver disease: a systematic review and meta-analysis. J Hepatol. 2018;69:1335–1348. doi: 10.1016/j.jhep.2018.08.008.
    1. . November 10, 2019.
    1. Hanf R., Pierre C., Zouher M., Cordonnier G., Brozek J., Praca E. Validation of NIS4 algorithm for detection of NASH at risk of cirrhosis in 467 NAFLD patients prospectively screened for inclusion in the RESOLVE-IT trial. J Hepatol. 2018;68:S115. doi: 10.1016/s0168-8278(18)30447-1. S6.
    1. Becker P.P., Rau M., Schmitt J., Malsch C., Hammer C., Bantel H. Performance of serum microRNAs -122, -192 and -21 as biomarkers in patients with non-alcoholic steatohepatitis. PLoS One. 2015;10 doi: 10.1371/journal.pone.0142661.
    1. Jin X., Feng C.Y., Xiang Z., Chen Y.P., Li Y.M. CircRNA expression pattern and circRNA-miRNA-mRNA network in the pathogenesis of nonalcoholic steatohepatitis. Oncotarget. 2016;7:66455–66467. doi: 10.18632/oncotarget.12186.
    1. Ou Q., Zhao Y., Zhou J., Wu X. Comprehensive circular RNA expression profiles in a mouse model of nonalcoholic steatohepatitis. Mol Med Rep. 2019;19:2636–2648. doi: 10.3892/mmr.2019.9935.
    1. Webster N.J.G. Alternative RNA splicing in the pathogenesis of liver disease. Front Endocrinol (Lausanne) 2017;8:133. doi: 10.3389/fendo.2017.00133.
    1. Friedman S.L., Neuschwander-Tetri B.A., Rinella M., Sanyal A.J. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018;24:908–922. doi: 10.1038/s41591-018-0104-9.
    1. Xiong X., Wang Q., Wang S., Zhang J., Liu T., Guo L. Mapping the molecular signatures of diet-induced NASH and its regulation by the hepatokine Tsukushi. Mol Metab. 2019;20:128–137. doi: 10.1016/j.molmet.2018.12.004.
    1. Protchenko O., Baratz E., Jadhav S., Li F., Shakoury-Elizeh M., Gavrilova O. Iron chaperone PCBP1 protects murine liver from lipid peroxidation and steatosis. Hepatology. 2020 doi: 10.1002/hep.31328.
    1. Biquard L., Valla D., Rautou P.E. No evidence for an increased liver uptake of SARS-CoV-2 in metabolic associated fatty liver disease. J Hepatol. 2020 doi: 10.1016/j.jhep.2020.04.035.
    1. Perakakis N., Yazdani A., Karniadakis G.E., Mantzoros C. Omics, big data and machine learning as tools to propel understanding of biological mechanisms and to discover novel diagnostics and therapeutics. Metabolism. 2018;87:A1–A9. doi: 10.1016/j.metabol.2018.08.002.
    1. Geyer P.E., Holdt L.M., Teupser D., Mann M. Revisiting biomarker discovery by plasma proteomics. Mol Syst Biol. 2017;13:942. doi: 10.15252/msb.20156297.
    1. Younossi Z.M., Karrar A., Pierobon M., Birerdinc A., Stepanova M., Abdelatif D. An exploratory study examining how nano-liquid chromatography-mass spectrometry and phosphoproteomics can differentiate patients with advanced fibrosis and higher percentage collagen in non-alcoholic fatty liver disease. BMC Med. 2018;16:170. doi: 10.1186/s12916-018-1136-1.
    1. Yuan X., Sun Y., Cheng Q., Hu K., Ye J., Zhao Y. Proteomic analysis to identify differentially expressed proteins between subjects with metabolic healthy obesity and non-alcoholic fatty liver disease. J Proteomics. 2020;221:103683. doi: 10.1016/j.jprot.2020.103683.
    1. Krahmer N., Najafi B., Schueder F., Quagliarini F., Steger M., Seitz S. Organellar proteomics and phospho-proteomics reveal subcellular reorganization in diet-induced hepatic steatosis. Dev Cell. 2018;47:205–221. doi: 10.1016/j.devcel.2018.09.017. e7.
    1. Valle A., Catalan V., Rodriguez A., Rotellar F., Valenti V., Silva C. Identification of liver proteins altered by type 2 diabetes mellitus in obese subjects. Liver Int. 2012;32:951–961. doi: 10.1111/j.1478-3231.2012.02765.x.
    1. Younossi Z.M., Baranova A., Ziegler K., Del Giacco L., Schlauch K., Born T.L. A genomic and proteomic study of the spectrum of nonalcoholic fatty liver disease. Hepatology. 2005;42:665–674. doi: 10.1002/hep.20838.
    1. Trak-Smayra V., Dargere D., Noun R., Albuquerque M., Yaghi C., Gannage-Yared M.H. Serum proteomic profiling of obese patients: correlation with liver pathology and evolution after bariatric surgery. Gut. 2009;58:825–832. doi: 10.1136/gut.2007.140087.
    1. Polyzos S.A., Perakakis N., Boutari C., Kountouras J., Ghaly W., Anastasilakis A.D. Targeted analysis of three hormonal systems identifies molecules associated with the presence and severity of NAFLD. J Clin Endocrinol Metab. 2020;105 doi: 10.1210/clinem/dgz172.
    1. Gray J., Chattopadhyay D., Beale G.S., Patman G.L., Miele L., King B.P. A proteomic strategy to identify novel serum biomarkers for liver cirrhosis and hepatocellular cancer in individuals with fatty liver disease. BMC Cancer. 2009;9:271. doi: 10.1186/1471-2407-9-271.
    1. Bell L.N., Theodorakis J.L., Vuppalanchi R., Saxena R., Bemis K.G., Wang M. Serum proteomics and biomarker discovery across the spectrum of nonalcoholic fatty liver disease. Hepatology. 2010;51:111–120. doi: 10.1002/hep.23271.
    1. Wood G.C., Chu X., Argyropoulos G., Benotti P., Rolston D., Mirshahi T. A multi-component classifier for nonalcoholic fatty liver disease (NAFLD) based on genomic, proteomic, and phenomic data domains. Sci Rep. 2017;7:43238. doi: 10.1038/srep43238.
    1. Nakamura N., Hatano E., Iguchi K., Sato M., Kawaguchi H., Ohtsu I. Elevated levels of circulating ITIH4 are associated with hepatocellular carcinoma with nonalcoholic fatty liver disease: from pig model to human study. BMC Cancer. 2019;19:621. doi: 10.1186/s12885-019-5825-8.
    1. Niu L., Geyer P.E., Wewer Albrechtsen N.J., Gluud L.L., Santos A., Doll S. Plasma proteome profiling discovers novel proteins associated with non-alcoholic fatty liver disease. Mol Syst Biol. 2019;15 doi: 10.15252/msb.20188793.
    1. Pilitsi E., Farr O.M., Polyzos S.A., Perakakis N., Nolen-Doerr E., Papathanasiou A.E. Pharmacotherapy of obesity: available medications and drugs under investigation. Metabolism. 2019;92:170–192. doi: 10.1016/j.metabol.2018.10.010.
    1. Upadhyay J., Farr O., Perakakis N., Ghaly W., Mantzoros C. Obesity as a disease. Med Clin North Am. 2018;102:13–33. doi: 10.1016/j.mcna.2017.08.004.
    1. Upadhyay J., Polyzos S.A., Perakakis N., Thakkar B., Paschou S.A., Katsiki N. Pharmacotherapy of type 2 diabetes: an update. Metabolism. 2018;78:13–42. doi: 10.1016/j.metabol.2017.08.010.
    1. Polyzos S.A., Kang E.S., Boutari C., Rhee E.J., Mantzoros C.S. Current and emerging pharmacological options for the treatment of nonalcoholic steatohepatitis. Metabolism. 2020;154203 doi: 10.1016/j.metabol.2020.154203.
    1. Perakakis N., Kokkinos A., Peradze N., Tentolouris N., Ghaly W., Tsilingiris D. Metabolic regulation of activins in healthy individuals and in obese patients undergoing bariatric surgery. Diabetes Metab Res Rev. 2020:e3297. doi: 10.1002/dmrr.3297.
    1. Perakakis N., Polyzos S.A., Yazdani A., Sala-Vila A., Kountouras J., Anastasilakis A.D. Non-invasive diagnosis of non-alcoholic steatohepatitis and fibrosis with the use of omics and supervised learning: a proof of concept study. Metabolism. 2019;101:154005. doi: 10.1016/j.metabol.2019.154005.
    1. Perakakis N., Kokkinos A., Peradze N., Tentolouris N., Ghaly W., Pilitsi E. Circulating levels of gastrointestinal hormones in response to the most common types of bariatric surgery and predictive value for weight loss over one year: evidence from two independent trials. Metabolism. 2019;101:153997. doi: 10.1016/j.metabol.2019.153997.
    1. Peradze N., Farr O.M., Perakakis N., Lazaro I., Sala-Vila A., Mantzoros C.S. Short-term treatment with high dose liraglutide improves lipid and lipoprotein profile and changes hormonal mediators of lipid metabolism in obese patients with no overt type 2 diabetes mellitus: a randomized, placebo-controlled, cross-over, double-blind clinical trial. Cardiovasc Diabetol. 2019;18:141. doi: 10.1186/s12933-019-0945-7.
    1. Pilitsi E., Peradze N., Perakakis N., Mantzoros C.S. Circulating levels of the components of the GH/IGF-1/IGFBPs axis total and intact IGF-binding proteins (IGFBP) 3 and IGFBP 4 and total IGFBP 5, as well as PAPPA, PAPPA2 and Stanniocalcin-2 levels are not altered in response to energy deprivation and/or metreleptin administration in humans. Metabolism. 2019;97:32–39. doi: 10.1016/j.metabol.2019.05.004.
    1. Anastasilakis A.D., Koulaxis D., Upadhyay J., Pagkalidou E., Kefala N., Perakakis N. Free IGF-1, intact IGFBP-4, and PicoPAPP-A are altered in acute myocardial infarction compared to stable coronary artery disease and healthy controls. Horm Metab Res. 2019;51:112–119. doi: 10.1055/a-0794-6163.
    1. Perakakis N., Kokkinos A., Peradze N., Tentolouris N., Ghaly W., Tsilingiris D. Follistatins in glucose regulation in healthy and obese individuals. Diabetes Obes Metab. 2019;21:683–690. doi: 10.1111/dom.13572.
    1. Perakakis N., Mougios V., Fatouros I., Siopi A., Draganidis D., Peradze N. Physiology of activins/follistatins: associations with metabolic and anthropometric variables and response to exercise. J Clin Endocrinol Metab. 2018;103:3890–3899. doi: 10.1210/jc.2018-01056.
    1. Perakakis N., Upadhyay J., Ghaly W., Chen J., Chrysafi P., Anastasilakis A.D. Regulation of the activins-follistatins-inhibins axis by energy status: impact on reproductive function. Metabolism. 2018;85:240–249. doi: 10.1016/j.metabol.2018.05.003.
    1. Boutari C., Perakakis N., Mantzoros C.S. Association of adipokines with development and progression of nonalcoholic fatty liver disease. Endocrinol Metab (Seoul) 2018;33:33–43. doi: 10.3803/EnM.2018.33.1.33.
    1. Liu X., Perakakis N., Gong H., Chamberland J.P., Brinkoetter M.T., Hamnvik O.R. Adiponectin administration prevents weight gain and glycemic profile changes in diet-induced obese immune deficient Rag1-/- mice lacking mature lymphocytes. Metabolism. 2016;65:1720–1730. doi: 10.1016/j.metabol.2016.09.003.
    1. Perakakis N., Mantzoros C.S. The role of glicentin and oxyntomodulin in human metabolism: new evidence and new directions. J Clin Endocrinol Metab. 2020;105 doi: 10.1210/clinem/dgaa329.
    1. Vildhede A., Kimoto E., Pelis R.M., Rodrigues A.D., Varma M.V.S. Quantitative proteomics and mechanistic modeling of transporter-mediated disposition in nonalcoholic fatty liver disease. Clin Pharmacol Ther. 2020;107:1128–1137. doi: 10.1002/cpt.1699.
    1. Canfora E.E., Meex R.C.R., Venema K., Blaak E.E. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat Rev Endocrinol. 2019;15:261–273. doi: 10.1038/s41574-019-0156-z.
    1. Arab J.P., Karpen S.J., Dawson P.A., Arrese M., Trauner M. Bile acids and nonalcoholic fatty liver disease: molecular insights and therapeutic perspectives. Hepatology. 2017;65:350–362. doi: 10.1002/hep.28709.
    1. Donnelly K.L., Smith C.I., Schwarzenberg S.J., Jessurun J., Boldt M.D., Parks E.J. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest. 2005;115:1343–1351. doi: 10.1172/JCI23621.
    1. Puri P., Baillie R.A., Wiest M.M., Mirshahi F., Choudhury J., Cheung O. A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology. 2007;46:1081–1090. doi: 10.1002/hep.21763.
    1. Puri P., Wiest M.M., Cheung O., Mirshahi F., Sargeant C., Min H.K. The plasma lipidomic signature of nonalcoholic steatohepatitis. Hepatology. 2009;50:1827–1838. doi: 10.1002/hep.23229.
    1. Gorden D.L., Myers D.S., Ivanova P.T., Fahy E., Maurya M.R., Gupta S. Biomarkers of NAFLD progression: a lipidomics approach to an epidemic. J Lipid Res. 2015;56:722–736. doi: 10.1194/jlr.P056002.
    1. Chiappini F., Desterke C., Bertrand-Michel J., Guettier C., Le Naour F. Hepatic and serum lipid signatures specific to nonalcoholic steatohepatitis in murine models. Sci Rep. 2016;6:31587. doi: 10.1038/srep31587.
    1. Chiappini F., Coilly A., Kadar H., Gual P., Tran A., Desterke C. Metabolism dysregulation induces a specific lipid signature of nonalcoholic steatohepatitis in patients. Sci Rep. 2017;7:46658. doi: 10.1038/srep46658.
    1. Musso G., Cassader M., Paschetta E., Gambino R. Bioactive lipid species and metabolic pathways in progression and resolution of nonalcoholic steatohepatitis. Gastroenterology. 2018;155:282–302. doi: 10.1053/j.gastro.2018.06.031. e8.
    1. Musso G., Cassader M., Gambino R. Non-alcoholic steatohepatitis: emerging molecular targets and therapeutic strategies. Nat Rev Drug Discov. 2016;15:249–274. doi: 10.1038/nrd.2015.3.
    1. Win S., Than T.A., Zhang J., Oo C., Min R.W.M., Kaplowitz N. New insights into the role and mechanism of c-Jun-N-terminal kinase signaling in the pathobiology of liver diseases. Hepatology. 2018;67:2013–2024. doi: 10.1002/hep.29689.
    1. Luo W., Xu Q., Wang Q., Wu H., Hua J. Effect of modulation of PPAR-gamma activity on Kupffer cells M1/M2 polarization in the development of non-alcoholic fatty liver disease. Sci Rep. 2017;7:44612. doi: 10.1038/srep44612.
    1. Hollie N.I., Cash J.G., Matlib M.A., Wortman M., Basford J.E., Abplanalp W. Micromolar changes in lysophosphatidylcholine concentration cause minor effects on mitochondrial permeability but major alterations in function. Biochim Biophys Acta. 1841;2014:888–895. doi: 10.1016/j.bbalip.2013.11.013.
    1. Hirsova P., Ibrahim S.H., Krishnan A., Verma V.K., Bronk S.F., Werneburg N.W. Lipid-induced signaling causes release of inflammatory extracellular vesicles from hepatocytes. Gastroenterology. 2016;150:956–967. doi: 10.1053/j.gastro.2015.12.037.
    1. Li Z., Agellon L.B., Allen T.M., Umeda M., Jewell L., Mason A. The ratio of phosphatidylcholine to phosphatidylethanolamine influences membrane integrity and steatohepatitis. Cell Metab. 2006;3:321–331. doi: 10.1016/j.cmet.2006.03.007.
    1. Kaffe E., Katsifa A., Xylourgidis N., Ninou I., Zannikou M., Harokopos V. Hepatocyte autotaxin expression promotes liver fibrosis and cancer. Hepatology. 2017;65:1369–1383. doi: 10.1002/hep.28973.
    1. Holland W.L., Bikman B.T., Wang L.P., Yuguang G., Sargent K.M., Bulchand S. Lipid-induced insulin resistance mediated by the proinflammatory receptor TLR4 requires saturated fatty acid-induced ceramide biosynthesis in mice. J Clin Invest. 2011;121:1858–1870. doi: 10.1172/JCI43378.
    1. Raichur S., Wang S.T., Chan P.W., Li Y., Ching J., Chaurasia B. CerS2 haploinsufficiency inhibits beta-oxidation and confers susceptibility to diet-induced steatohepatitis and insulin resistance. Cell Metab. 2014;20:687–695. doi: 10.1016/j.cmet.2014.09.015.
    1. Turpin S.M., Nicholls H.T., Willmes D.M., Mourier A., Brodesser S., Wunderlich C.M. Obesity-induced CerS6-dependent C16:0 ceramide production promotes weight gain and glucose intolerance. Cell Metab. 2014;20:678–686. doi: 10.1016/j.cmet.2014.08.002.
    1. Cinar R., Godlewski G., Liu J., Tam J., Jourdan T., Mukhopadhyay B. Hepatic cannabinoid-1 receptors mediate diet-induced insulin resistance by increasing de novo synthesis of long-chain ceramides. Hepatology. 2014;59:143–153. doi: 10.1002/hep.26606.
    1. Moles A., Tarrats N., Morales A., Dominguez M., Bataller R., Caballeria J. Acidic sphingomyelinase controls hepatic stellate cell activation and in vivo liver fibrogenesis. Am J Pathol. 2010;177:1214–1224. doi: 10.2353/ajpath.2010.091257.
    1. Gormaz J.G., Rodrigo R., Videla L.A., Beems M. Biosynthesis and bioavailability of long-chain polyunsaturated fatty acids in non-alcoholic fatty liver disease. Prog Lipid Res. 2010;49:407–419. doi: 10.1016/j.plipres.2010.05.003.
    1. Horrillo R., Gonzalez-Periz A., Martinez-Clemente M., Lopez-Parra M., Ferre N., Titos E. 5-lipoxygenase activating protein signals adipose tissue inflammation and lipid dysfunction in experimental obesity. J Immunol. 2010;184:3978–3987. doi: 10.4049/jimmunol.0901355.
    1. Rius B., Duran-Guell M., Flores-Costa R., Lopez-Vicario C., Lopategi A., Alcaraz-Quiles J. The specialized proresolving lipid mediator maresin 1 protects hepatocytes from lipotoxic and hypoxia-induced endoplasmic reticulum stress. FASEB J. 2017;31:5384–5398. doi: 10.1096/fj.201700394R.
    1. Mayo R., Crespo J., Martinez-Arranz I., Banales J.M., Arias M., Minchole I. Metabolomic-based noninvasive serum test to diagnose nonalcoholic steatohepatitis: results from discovery and validation cohorts. Hepatol Commun. 2018;2:807–820. doi: 10.1002/hep4.1188.
    1. Bril F., Millan L., Kalavalapalli S., McPhaul M.J., Caulfield M.P., Martinez-Arranz I. Use of a metabolomic approach to non-invasively diagnose non-alcoholic fatty liver disease in patients with type 2 diabetes mellitus. Diabetes Obes Metab. 2018;20:1702–1709. doi: 10.1111/dom.13285.
    1. Polyzos S.A., Perakakis N., Mantzoros C.S. Fatty liver in lipodystrophy: a review with a focus on therapeutic perspectives of adiponectin and/or leptin replacement. Metabolism. 2019;96:66–82. doi: 10.1016/j.metabol.2019.05.001.
    1. Caussy C., Ajmera V.H., Puri P., Hsu C.L., Bassirian S., Mgdsyan M. Serum metabolites detect the presence of advanced fibrosis in derivation and validation cohorts of patients with non-alcoholic fatty liver disease. Gut. 2019;68:1884–1892. doi: 10.1136/gutjnl-2018-317584.
    1. Khusial R.D., Cioffi C.E., Caltharp S.A., Krasinskas A.M., Alazraki A., Knight-Scott J. Development of a plasma screening panel for pediatric nonalcoholic fatty liver disease using metabolomics. Hepatol Commun. 2019;3:1311–1321. doi: 10.1002/hep4.1417.
    1. Neuschwander-Tetri B.A., Loomba R., Sanyal A.J., Lavine J.E., Van Natta M.L., Abdelmalek M.F. Farnesoid X nuclear receptor ligand obeticholic acid for non-cirrhotic, non-alcoholic steatohepatitis (FLINT): a multicentre, randomised, placebo-controlled trial. Lancet. 2015;385:956–965. doi: 10.1016/S0140-6736(14)61933-4.
    1. Younossi Z.M., Ratziu V., Loomba R., Rinella M., Anstee Q.M., Goodman Z. Obeticholic acid for the treatment of non-alcoholic steatohepatitis: interim analysis from a multicentre, randomised, placebo-controlled phase 3 trial. Lancet. 2019;394:2184–2196. doi: 10.1016/S0140-6736(19)33041-7.
    1. Polyzos S.A., Kountouras J., Mantzoros C.S. Obeticholic acid for the treatment of nonalcoholic steatohepatitis: expectations and concerns. Metabolism. 2020;104:154144. doi: 10.1016/j.metabol.2020.154144.
    1. Staels B., Rubenstrunk A., Noel B., Rigou G., Delataille P., Millatt L.J. Hepatoprotective effects of the dual peroxisome proliferator-activated receptor alpha/delta agonist, GFT505, in rodent models of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Hepatology. 2013;58:1941–1952. doi: 10.1002/hep.26461.
    1. Haczeyni F., Wang H., Barn V., Mridha A.R., Yeh M.M., Haigh W.G. The selective peroxisome proliferator-activated receptor-delta agonist seladelpar reverses nonalcoholic steatohepatitis pathology by abrogating lipotoxicity in diabetic obese mice. Hepatol Commun. 2017;1:663–674. doi: 10.1002/hep4.1072.
    1. . 2020.
    1. Ratziu V., Harrison S.A., Francque S., Bedossa P., Lehert P., Serfaty L. Elafibranor, an agonist of the peroxisome proliferator-activated receptor-alpha and -delta, induces resolution of nonalcoholic steatohepatitis without fibrosis worsening. Gastroenterology. 2016;150:1147–1159. doi: 10.1053/j.gastro.2016.01.038. e5.
    1. Xie X., Chen W., Zhang N., Yuan M., Xu C., Zheng Z. Selective tissue distribution mediates tissue-dependent PPARgamma activation and insulin sensitization by INT131, a selective PPARgamma modulator. Front Pharmacol. 2017;8:317. doi: 10.3389/fphar.2017.00317.
    1. Jain M.R., Giri S.R., Bhoi B., Trivedi C., Rath A., Rathod R. Dual PPARalpha/gamma agonist saroglitazar improves liver histopathology and biochemistry in experimental NASH models. Liver Int. 2018;38:1084–1094. doi: 10.1111/liv.13634.
    1. Krishnappa M., Patil K., Parmar K., Trivedi P., Mody N., Shah C. Effect of saroglitazar 2 mg and 4 mg on glycemic control, lipid profile and cardiovascular disease risk in patients with type 2 diabetes mellitus: a 56-week, randomized, double blind, phase 3 study (PRESS XII study) Cardiovasc Diabetol. 2020;19:93. doi: 10.1186/s12933-020-01073-w.
    1. . 2020.
    1. Lawitz E.J., Coste A., Poordad F., Alkhouri N., Loo N., McColgan B.J. Acetyl-CoA carboxylase inhibitor GS-0976 for 12 weeks reduces hepatic De Novo lipogenesis and steatosis in patients with nonalcoholic steatohepatitis. Clin Gastroenterol Hepatol. 2018;16:1983–1991. doi: 10.1016/j.cgh.2018.04.042. e3.
    1. Kanai S., Ishihara K., Kawashita E., Tomoo T., Nagahira K., Hayashi Y. ASB14780, an orally active inhibitor of group IVA phospholipase A2, is a pharmacotherapeutic candidate for nonalcoholic fatty liver disease. J Pharmacol Exp Ther. 2016;356:604–614. doi: 10.1124/jpet.115.229906.
    1. Zhao L., Spassieva S., Gable K., Gupta S.D., Shi L.Y., Wang J. Elevation of 20-carbon long chain bases due to a mutation in serine palmitoyltransferase small subunit b results in neurodegeneration. Proc Natl Acad Sci U S A. 2015;112:12962–12967. doi: 10.1073/pnas.1516733112.
    1. Jiang C., Xie C., Lv Y., Li J., Krausz K.W., Shi J. Intestine-selective farnesoid X receptor inhibition improves obesity-related metabolic dysfunction. Nat Commun. 2015;6:10166. doi: 10.1038/ncomms10166.
    1. Parker H.M., Johnson N.A., Burdon C.A., Cohn J.S., O’Connor H.T., George J. Omega-3 supplementation and non-alcoholic fatty liver disease: a systematic review and meta-analysis. J Hepatol. 2012;56:944–951. doi: 10.1016/j.jhep.2011.08.018.
    1. Sanyal A.J., Abdelmalek M.F., Suzuki A., Cummings O.W., Chojkier M., Group E-AS No significant effects of ethyl-eicosapentanoic acid on histologic features of nonalcoholic steatohepatitis in a phase 2 trial. Gastroenterology. 2014;147:377–384. doi: 10.1053/j.gastro.2014.04.046. e1.
    1. Scorletti E., Bhatia L., McCormick K.G., Clough G.F., Nash K., Hodson L. Effects of purified eicosapentaenoic and docosahexaenoic acids in nonalcoholic fatty liver disease: results from the Welcome* study. Hepatology. 2014;60:1211–1221. doi: 10.1002/hep.27289.
    1. Lopez-Vicario C., Gonzalez-Periz A., Rius B., Moran-Salvador E., Garcia-Alonso V., Lozano J.J. Molecular interplay between Delta5/Delta6 desaturases and long-chain fatty acids in the pathogenesis of non-alcoholic steatohepatitis. Gut. 2014;63:344–355. doi: 10.1136/gutjnl-2012-303179.
    1. Ishihara K., Kanai S., Tanaka K., Kawashita E., Akiba S. Group IVA phospholipase A(2) deficiency prevents CCl4-induced hepatic cell death through the enhancement of autophagy. Biochem Biophys Res Commun. 2016;471:15–20. doi: 10.1016/j.bbrc.2016.01.186.
    1. Martinez-Clemente M., Ferre N., Gonzalez-Periz A., Lopez-Parra M., Horrillo R., Titos E. 5-lipoxygenase deficiency reduces hepatic inflammation and tumor necrosis factor alpha-induced hepatocyte damage in hyperlipidemia-prone ApoE-null mice. Hepatology. 2010;51:817–827. doi: 10.1002/hep.23463.
    1. Titos E., Ferre N., Lozano J.J., Horrillo R., Lopez-Parra M., Arroyo V. Protection from hepatic lipid accumulation and inflammation by genetic ablation of 5-lipoxygenase. Prostaglandins Other Lipid Mediat. 2010;92:54–61. doi: 10.1016/j.prostaglandins.2010.03.001.
    1. Li P., Oh D.Y., Bandyopadhyay G., Lagakos W.S., Talukdar S., Osborn O. LTB4 promotes insulin resistance in obese mice by acting on macrophages, hepatocytes and myocytes. Nat Med. 2015;21:239–247. doi: 10.1038/nm.3800.
    1. Li H., Hao Y., Zhang H., Ying W., Li D., Ge Y. Posttreatment with Protectin DX ameliorates bleomycin-induced pulmonary fibrosis and lung dysfunction in mice. Sci Rep. 2017;7:46754. doi: 10.1038/srep46754.
    1. Yatomi M., Hisada T., Ishizuka T., Koga Y., Ono A., Kamide Y. 17(R)-resolvin D1 ameliorates bleomycin-induced pulmonary fibrosis in mice. Physiol Rep. 2015;3 doi: 10.14814/phy2.12628.
    1. Orr S.K., Colas R.A., Dalli J., Chiang N., Serhan C.N. Proresolving actions of a new resolvin D1 analog mimetic qualifies as an immunoresolvent. Am J Physiol Lung Cell Mol Physiol. 2015;308:L904–L911. doi: 10.1152/ajplung.00370.2014.
    1. Rudd P, Karlsson NG, Khoo KH, Packer NH. Glycomics and Glycoproteomics. In: rd, Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, et al., editors. Essentials of Glycobiology. Cold Spring Harbor (NY)2015. p. 653–66.
    1. Stanley P, Taniguchi N, Aebi M. N-Glycans. In: rd, Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, et al., editors. Essentials of Glycobiology. Cold Spring Harbor (NY)2015. p. 99–111.
    1. Reily C., Stewart T.J., Renfrow M.B., Novak J. Glycosylation in health and disease. Nat Rev Nephrol. 2019;15:346–366. doi: 10.1038/s41581-019-0129-4.
    1. Freeze HH, Kinoshita T, Varki A. Glycans in acquired human diseases. In: rd, Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, et al., editors. Essentials of Glycobiology. Cold Spring Harbor (NY)2015. p. 583–95.
    1. Varki A, Kannagi R, Toole B, Stanley P. Glycosylation Changes in Cancer. In: rd, Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, et al., editors. Essentials of Glycobiology. Cold Spring Harbor (NY)2015. p. 597–609.
    1. Varki A, Schnaar RL, Schauer R. Sialic Acids and Other Nonulosonic Acids. In: rd, Varki A, Cummings RD, Esko JD, Stanley P, Hart GW, et al., editors. Essentials of Glycobiology. Cold Spring Harbor (NY)2015. p. 179–95.
    1. Lu Z., Ma H., Xu C., Shao Z., Cen C., Li Y. Serum sialic acid level is significantly associated with nonalcoholic fatty liver disease in a nonobese Chinese population: a cross-sectional study. Biomed Res Int. 2016;2016:5921589. doi: 10.1155/2016/5921589.
    1. He J., Mao W., Zhang J., Jin X. Association between serum sialic acid levels and nonalcoholic fatty liver disease: a cross-sectional study. Ann Nutr Metab. 2015;67:69–75. doi: 10.1159/000435839.
    1. Li J., Hsu H.C., Mountz J.D., Allen J.G. Unmasking Fucosylation: from cell adhesion to immune system regulation and diseases. Cell Chem Biol. 2018;25:499–512. doi: 10.1016/j.chembiol.2018.02.005.
    1. Kamada Y., Ono M., Hyogo H., Fujii H., Sumida Y., Mori K. A novel noninvasive diagnostic method for nonalcoholic steatohepatitis using two glycobiomarkers. Hepatology. 2015;62:1433–1443. doi: 10.1002/hep.28002.
    1. Li J., Hsu H.C., Ding Y., Li H., Wu Q., Yang P. Inhibition of fucosylation reshapes inflammatory macrophages and suppresses type II collagen-induced arthritis. Arthritis Rheumatol. 2014;66:2368–2379. doi: 10.1002/art.38711.
    1. Zhou Y., Fukuda T., Hang Q., Hou S., Isaji T., Kameyama A. Inhibition of fucosylation by 2-fluorofucose suppresses human liver cancer HepG2 cell proliferation and migration as well as tumor formation. Sci Rep. 2017;7:11563. doi: 10.1038/s41598-017-11911-9.
    1. Bril F., McPhaul M.J., Caulfield M.P., Clark V.C., Soldevilla-Pico C., Firpi-Morell R.J. Performance of plasma biomarkers and diagnostic panels for nonalcoholic steatohepatitis and advanced fibrosis in patients with type 2 diabetes. Diabetes Care. 2020;43:290–297. doi: 10.2337/dc19-1071.
    1. Bril F., McPhaul M.J., Caulfield M.P., Castille J.M., Poynard T., Soldevila-Pico C. Performance of the SteatoTest, ActiTest, NashTest and FibroTest in a multiethnic cohort of patients with type 2 diabetes mellitus. J Invest Med. 2019;67:303–311. doi: 10.1136/jim-2018-000864.
    1. Bril F., Barb D., Lomonaco R., Lai J., Cusi K. Change in hepatic fat content measured by MRI does not predict treatment-induced histological improvement of steatohepatitis. J Hepatol. 2020;72:401–410. doi: 10.1016/j.jhep.2019.09.018.
    1. Poynard T., Lassailly G., Diaz E., Clement K., Caiazzo R., Tordjman J. Performance of biomarkers FibroTest, ActiTest, SteatoTest, and NashTest in patients with severe obesity: meta analysis of individual patient data. PLoS One. 2012;7 doi: 10.1371/journal.pone.0030325.
    1. Daniels S.J., Leeming D.J., Eslam M., Hashem A.M., Nielsen M.J., Krag A. ADAPT: an algorithm incorporating PRO-C3 accurately identifies patients with NAFLD and advanced fibrosis. Hepatology. 2019;69:1075–1086. doi: 10.1002/hep.30163.
    1. Xiao G., Zhu S., Xiao X., Yan L., Yang J., Wu G. Comparison of laboratory tests, ultrasound, or magnetic resonance elastography to detect fibrosis in patients with nonalcoholic fatty liver disease: a meta-analysis. Hepatology. 2017;66:1486–1501. doi: 10.1002/hep.29302.
    1. Vali Y., Lee J., Boursier J., Spijker R., Loffler J., Verheij J. Enhanced liver fibrosis test for the non-invasive diagnosis of fibrosis in patients with NAFLD: a systematic review and meta-analysis. J Hepatol. 2020 doi: 10.1016/j.jhep.2020.03.036.
    1. Eddowes P.J., Sasso M., Allison M., Tsochatzis E., Anstee Q.M., Sheridan D. Accuracy of FibroScan controlled attenuation parameter and liver stiffness measurement in assessing steatosis and fibrosis in patients with nonalcoholic fatty liver disease. Gastroenterology. 2019;156:1717–1730. doi: 10.1053/j.gastro.2019.01.042.
    1. Siddiqui M.S., Yamada G., Vuppalanchi R., Van Natta M., Loomba R., Guy C. Diagnostic accuracy of noninvasive fibrosis models to detect change in fibrosis stage. Clin Gastroenterol Hepatol. 2019;17:1877–1885. doi: 10.1016/j.cgh.2018.12.031. e5.
    1. Anstee Q.M., Lawitz E.J., Alkhouri N., Wong V.W., Romero-Gomez M., Okanoue T. Noninvasive tests accurately identify advanced fibrosis due to NASH: baseline data from the STELLAR trials. Hepatology. 2019;70:1521–1530. doi: 10.1002/hep.30842.
    1. Corbin K.D., Abdelmalek M.F., Spencer M.D., da Costa K.A., Galanko J.A., Sha W. Genetic signatures in choline and 1-carbon metabolism are associated with the severity of hepatic steatosis. FASEB J. 2013;27:1674–1689. doi: 10.1096/fj.12-219097.
    1. Xin S., Zhan Q., Chen X., Xu J., Yu Y. Efficacy of serum miRNA test as a non-invasive method to diagnose nonalcoholic steatohepatitis: a systematic review and meta-analysis. BMC Gastroenterol. 2020;20:186. doi: 10.1186/s12876-020-01334-8.
    1. Yu C., Xu C., Xu L., Yu J., Miao M., Li Y. Serum proteomic analysis revealed diagnostic value of hemoglobin for nonalcoholic fatty liver disease. J Hepatol. 2012;56:241–247. doi: 10.1016/j.jhep.2011.05.027.
    1. Ulukaya E., Yilmaz Y., Moshkovskii S., Karpova M., Pyatnitskiy M., Atug O. Proteomic analysis of serum in patients with non-alcoholic steatohepatitis using matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Scand J Gastroenterol. 2009;44:1471–1476. doi: 10.3109/00365520903353379.
    1. Miller M.H., Walsh S.V., Atrih A., Huang J.T., Ferguson M.A., Dillon J.F. Serum proteome of nonalcoholic fatty liver disease: a multimodal approach to discovery of biomarkers of nonalcoholic steatohepatitis. J Gastroenterol Hepatol. 2014;29:1839–1847. doi: 10.1111/jgh.12614.
    1. Younossi Z.M., Baranova A., Stepanova M., Page S., Calvert V.S., Afendy A. Phosphoproteomic biomarkers predicting histologic nonalcoholic steatohepatitis and fibrosis. J Proteome Res. 2010;9:3218–3224. doi: 10.1021/pr100069e.
    1. Rodriguez-Gallego E., Guirro M., Riera-Borrull M., Hernandez-Aguilera A., Marine-Casado R., Fernandez-Arroyo S. Mapping of the circulating metabolome reveals alpha-ketoglutarate as a predictor of morbid obesity-associated non-alcoholic fatty liver disease. Int J Obes (Lond) 2015;39:279–287. doi: 10.1038/ijo.2014.53.
    1. Oresic M., Hyotylainen T., Kotronen A., Gopalacharyulu P., Nygren H., Arola J. Prediction of non-alcoholic fatty-liver disease and liver fat content by serum molecular lipids. Diabetologia. 2013;56:2266–2274. doi: 10.1007/s00125-013-2981-2.
    1. Barr J., Caballeria J., Martinez-Arranz I., Dominguez-Diez A., Alonso C., Muntane J. Obesity-dependent metabolic signatures associated with nonalcoholic fatty liver disease progression. J Proteome Res. 2012;11:2521–2532. doi: 10.1021/pr201223p.
    1. Feldstein A.E., Lopez R., Tamimi T.A., Yerian L., Chung Y.M., Berk M. Mass spectrometric profiling of oxidized lipid products in human nonalcoholic fatty liver disease and nonalcoholic steatohepatitis. J Lipid Res. 2010;51:3046–3054. doi: 10.1194/jlr.M007096.
    1. Dong S., Zhan Z.Y., Cao H.Y., Wu C., Bian Y.Q., Li J.Y. Urinary metabolomics analysis identifies key biomarkers of different stages of nonalcoholic fatty liver disease. World J Gastroenterol. 2017;23:2771–2784. doi: 10.3748/wjg.v23.i15.2771.
    1. Yamada K., Mizukoshi E., Seike T., Horii R., Terashima T., Iida N. Serum C16:1n7/C16:0 ratio as a diagnostic marker for non-alcoholic steatohepatitis. J Gastroenterol Hepatol. 2019;34:1829–1835. doi: 10.1111/jgh.14654.
    1. Yoo W., Gjuka D., Stevenson H.L., Song X., Shen H., Yoo S.Y. Fatty acids in non-alcoholic steatohepatitis: focus on pentadecanoic acid. PLoS One. 2017;12 doi: 10.1371/journal.pone.0189965.
    1. Moolla A., de Boer J., Pavlov D., Amin A., Taylor A., Gilligan L. Accurate non-invasive diagnosis and staging of non-alcoholic fatty liver disease using the urinary steroid metabolome. Aliment Pharmacol Ther. 2020 doi: 10.1111/apt.15710.
    1. Tokushige K., Hashimoto E., Kodama K., Tobari M., Matsushita N., Kogiso T. Serum metabolomic profile and potential biomarkers for severity of fibrosis in nonalcoholic fatty liver disease. J Gastroenterol. 2013;48:1392–1400. doi: 10.1007/s00535-013-0766-5.
    1. Ogawa Y., Kobayashi T., Honda Y., Kessoku T., Tomeno W., Imajo K. Metabolomic-/Lipidomic-based analysis of plasma to diagnose hepatocellular ballooning in patients with nonalcoholic fatty liver disease: a multicenter study. Hepatol Res. 2020 doi: 10.1111/hepr.13528.
    1. Yamasaki Y., Nouso K., Miyahara K., Wada N., Dohi C., Morimoto Y. Use of non-invasive serum glycan markers to distinguish non-alcoholic steatohepatitis from simple steatosis. J Gastroenterol Hepatol. 2015;30:528–534. doi: 10.1111/jgh.12726.
    1. Blomme B., Francque S., Trepo E., Libbrecht L., Vanderschaeghe D., Verrijken A. N-glycan based biomarker distinguishing non-alcoholic steatohepatitis from steatosis independently of fibrosis. Dig Liver Dis. 2012;44:315–322. doi: 10.1016/j.dld.2011.10.015.
    1. Chen C., Schmilovitz-Weiss H., Liu X.E., Pappo O., Halpern M., Sulkes J. Serum protein N-glycans profiling for the discovery of potential biomarkers for nonalcoholic steatohepatitis. J Proteome Res. 2009;8:463–470. doi: 10.1021/pr800656e.
    1. Kamada Y., Ono M., Hyogo H., Fujii H., Sumida Y., Yamada M. Use of mac-2 binding protein as a biomarker for nonalcoholic fatty liver disease diagnosis. Hepatol Commun. 2017;1:780–791. doi: 10.1002/hep4.1080.

Source: PubMed

3
Sottoscrivi