Monitoring of immunoglobulin N- and O-glycosylation in health and disease

Noortje de Haan, David Falck, Manfred Wuhrer, Noortje de Haan, David Falck, Manfred Wuhrer

Abstract

Protein N- and O-glycosylation are well known co- and post-translational modifications of immunoglobulins. Antibody glycosylation on the Fab and Fc portion is known to influence antigen binding and effector functions, respectively. To study associations between antibody glycosylation profiles and (patho) physiological states as well as antibody functionality, advanced technologies and methods are required. In-depth structural characterization of antibody glycosylation usually relies on the separation and tandem mass spectrometric (MS) analysis of released glycans. Protein- and site-specific information, on the other hand, may be obtained by the MS analysis of glycopeptides. With the development of high-resolution mass spectrometers, antibody glycosylation analysis at the intact or middle-up level has gained more interest, providing an integrated view of different post-translational modifications (including glycosylation). Alongside the in-depth methods, there is also great interest in robust, high-throughput techniques for routine glycosylation profiling in biopharma and clinical laboratories. With an emphasis on IgG Fc glycosylation, several highly robust separation-based techniques are employed for this purpose. In this review, we describe recent advances in MS methods, separation techniques and orthogonal approaches for the characterization of immunoglobulin glycosylation in different settings. We put emphasis on the current status and expected developments of antibody glycosylation analysis in biomedical, biopharmaceutical and clinical research.

Keywords: antibody; biopharmaceutical; glycan; glycoproteomics; mass spectrometry.

© The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

Figures

Fig. 1
Fig. 1
Schematic representation of the glycosylation sites of IgG, IgA, IgD, IgE and IgM. The IgG glycosylation sites are indicated by their amino acid number according to literature, e.g. Arnold et al. 2007 and Plomp et al. 2015, while the other isotypes follow UniProt numbering (for an overview of Ig glycosylation site nomenclature, see Plomp et al. 2016). Each Ig monomer is composed of two heavy chains (dark gray) and two light chains (light gray), connected by disulfide bonds. The chains are further subdivided as constant (C) and variable (V) domains. Polyclonal immunoglobulins may carry additional occupied glycosylation sites in their (hyper) variable regions in the Fab domain, which are not indicated in this figure. *IgA2 is shown in its dimeric form and in complex with the joining chain (JC; red) and the secretory component (SC; blue; present only for secretory IgA), both linked via disulfide bonds. Although not shown here, also IgA1 can form dimers, while IgM generally forms pentamers, both in combination with one joining chain. #N92 on IgA2 is only incorporated in an N-glycosylation consensus sequence in the IgAn and IgA2m(2) allotypes; N92 in IgA2m(1) is not glycosylated (Plomp et al. 2018; Chandler et al. 2019). $Although N264 of IgE is part of an N-glycosylation consensus sequence (NHS), this site was reported to be non-glycosylated when studied at the glycopeptide level (Plomp et al. 2014; Wu et al. 2016). ¥There are nine potential O-glycosylation sites present in the hinge region of IgD (S109, S10, T113, S121, T126, T127, T131, T131 and T135) for which different occupancies have been reported (Takayasu et al. 1982; Mellis and Baenziger 1983). §IgM N440 was reported to have a 30–40% site occupancy when derived from human plasma (Chandler et al. 2019). The green–blue–yellow structures at the glycosylation sites represent the presence of mainly complex type N-glycans, while the green–blue structures represent the presence of mainly high-mannose type N-glycans. The yellow–pink structures indicate the presence of O-glycosylation.
Fig. 2
Fig. 2
IgG Fc glycosylation is dependent on the expression system. Shown are the relative abundances of (A) high mannose-type glycans, (B) hybrid-type glycans, (C) galactosylation, (D) fucosylation, (E) the presence of a bisecting GlcNAc, (F) Neu5Ac sialylation, (G) Neu5Gc sialylation and (H) α1,3 galactosylation of human IgG1 (Plomp et al. 2017; Simurina et al. 2018), murine IgG1 (de Haan et al. 2017), Trastuzumab produced in CHO cells (Stadlmann et al. 2008), human IgG1 expressed in free style HEK cells (Dekkers et al. 2016), Cetuximab expressed in SP2/0 cells and Daclizumab expressed in NS0 cells (Stadlmann et al. 2008). Notably, while in most systems the sialylation is α2,6-linked, in CHO cells exclusively α2,3-linked sialylation is present. Next to the expression system, also biological effects (like age and disease for human IgG glycosylation and mouse strain for murine glycosylation) and the fermentation process (for cellular expression systems) have an effect on Fc glycosylation. For example, also Neu5Gc sialylated species have been reported on IgG expressed in NS0 cells (Montesino et al. 2012).

References

    1. Abrahams JL, Campbell MP, Packer NH. 2018. Building a PGC-LC-MS N-glycan retention library and elution mapping resource. Glycoconj J. 35:15–29.
    1. Ackerman ME, Crispin M, Yu X, Baruah K, Boesch AW, Harvey DJ, Dugast AS, Heizen EL, Ercan A, Choi I et al. . 2013. Natural variation in Fc glycosylation of HIV-specific antibodies impacts antiviral activity. J Clin Invest. 123:2183–2192.
    1. Arnaud J, Audfray A, Imberty A. 2013. Binding sugars: From natural lectins to synthetic receptors and engineered neolectins. Chem Soc Rev. 42:4798–4813.
    1. Arnold JN, Wormald MR, Sim RB, Rudd PM, Dwek RA. 2007. The impact of glycosylation on the biological function and structure of human immunoglobulins. Annu Rev Immunol. 25:21–50.
    1. Bobaly B, D'Atri V, Lauber M, Beck A, Guillarme D, Fekete S. 2018. Characterizing various monoclonal antibodies with milder reversed phase chromatography conditions. J Chromatogr B Analyt Technol Biomed Life Sci. 1096:1–10.
    1. Bondt A, Nicolardi S, Jansen BC, Kuijper TM, Hazes JMW, van der Burgt YEM, Wuhrer M, Dolhain R. 2017. IgA N- and O-glycosylation profiling reveals no association with the pregnancy-related improvement in rheumatoid arthritis. Arthritis Res Ther. 19:160.
    1. Bondt A, Nicolardi S, Jansen BC, Stavenhagen K, Blank D, Kammeijer GS, Kozak RP, Fernandes DL, Hensbergen PJ, Hazes JM et al. . 2016. Longitudinal monitoring of immunoglobulin A glycosylation during pregnancy by simultaneous MALDI-FTICR-MS analysis of N- and O-glycopeptides. Sci Rep. 6:27955.
    1. Bondt A, Rombouts Y, Selman MH, Hensbergen PJ, Reiding KR, Hazes JM, Dolhain RJ, Wuhrer M. 2014. Immunoglobulin G (IgG) Fab glycosylation analysis using a new mass spectrometric high-throughput profiling method reveals pregnancy-associated changes. Mol Cell Proteomics. 13:3029–3039.
    1. Borza B, Szigeti M, Szekrenyes A, Hajba L, Guttman A. 2018. Glycosimilarity assessment of biotherapeutics 1: Quantitative comparison of the N-glycosylation of the innovator and a biosimilar version of etanercept. J Pharm Biomed Anal. 153:182–185.
    1. Chandler KB, Mehta N, Leon DR, Suscovich T, Alter G, Costello CE. 2019. Multi-isotype glycoproteomic characterization of serum antibody heavy chains reveals isotype- and subclass-specific N-glycosylation profiles. Mol Cell Proteomics. 18:686–703.
    1. Choi NY, Hwang H, Ji ES, Park GW, Lee JY, Lee HK, Kim JY, Yoo JS. 2017. Direct analysis of site-specific N-glycopeptides of serological proteins in dried blood spot samples. Anal Bioanal Chem. 409:4971–4981.
    1. Colhoun HO, Treacy EP, MacMahon M, Rudd PM, Fitzgibbon M, O'Flaherty R, Stepien KM. 2018. Validation of an automated ultraperformance liquid chromatography IgG N-glycan analytical method applicable to classical galactosaemia. Ann Clin Biochem. 55:593–603.
    1. Cook MC, Kaldas SJ, Muradia G, Rosu-Myles M, Kunkel JP. 2015. Comparison of orthogonal chromatographic and lectin-affinity microarray methods for glycan profiling of a therapeutic monoclonal antibody. J Chromatogr B Analyt Technol Biomed Life Sci. 997:162–178.
    1. D'Atri V, Fekete S, Stoll D, Lauber M, Beck A, Guillarme D. 2018. Characterization of an antibody-drug conjugate by hydrophilic interaction chromatography coupled to mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 1080:37–41.
    1. Dai J, Zhang Y. 2018. A middle-up approach with online capillary isoelectric focusing/mass spectrometry for in-depth characterization of Cetuximab charge heterogeneity. Anal Chem. 90:14527–14534.
    1. Dashivets T, Thomann M, Rueger P, Knaupp A, Buchner J, Schlothauer T. 2015. Multi-angle effector function analysis of human monoclonal IgG glycovariants. PLoS One. 10:e0143520.
    1. de Haan N, Reiding KR, Haberger M, Reusch D, Falck D, Wuhrer M. 2015. Linkage-specific sialic acid derivatization for MALDI-TOF-MS profiling of IgG glycopeptides. Anal Chem. 87:8284–8291.
    1. de Haan N, Reiding KR, Kristic J, Hipgrave Ederveen AL, Lauc G, Wuhrer M. 2017. The N-glycosylation of mouse immunoglobulin G (IgG)-fragment crystallizable differs between IgG subclasses and strains. Front Immunol. 8:608.
    1. Dekkers G, Plomp R, Koeleman CA, Visser R, von Horsten HH, Sandig V, Rispens T, Wuhrer M, Vidarsson G. 2016. Multi-level glyco-engineering techniques to generate IgG with defined Fc-glycans. Sci Rep. 6:36964.
    1. Dekkers G, Treffers L, Plomp R, Bentlage AEH, de Boer M, Koeleman CAM, Lissenberg-Thunnissen SN, Visser R, Brouwer M, Mok JY et al. . 2017. Decoding the human immunoglobulin G-glycan repertoire reveals a spectrum of fc-receptor- and complement-mediated-effector activities. Front Immunol. 8:877.
    1. Deshpande N, Jensen PH, Packer NH, Kolarich D. 2010. GlycoSpectrumScan: Fishing glycopeptides from MS spectra of protease digests of human colostrum sIgA. J Proteome Res. 9:1063–1075.
    1. Dicker M, Tschofen M, Maresch D, Konig J, Juarez P, Orzaez D, Altmann F, Steinkellner H, Strasser R. 2016. Transient glyco-engineering to produce recombinant IgA1 with defined N- and O-glycans in plants. Front Plant Sci. 7:18.
    1. Everest-Dass AV, Abrahams JL, Kolarich D, Packer NH, Campbell MP. 2013. Structural feature ions for distinguishing N- and O-linked glycan isomers by LC-ESI-IT MS/MS. J Am Soc Mass Spectrom. 24:895–906.
    1. Falck D, Jansen BC, de Haan N, Wuhrer M. 2017. High-throughput analysis of IgG Fc glycopeptides by LC-MS. Methods Mol Biol. 1503:31–47.
    1. Falconer DJ, Subedi GP, Marcella AM, Barb AW. 2018. Antibody fucosylation lowers the FcgammaRIIIa/CD16a affinity by limiting the conformations sampled by the N162-glycan. ACS Chem Biol. 13:2179–2189.
    1. Fekete S, Veuthey JL, Guillarme D. 2017. Achievable separation performance and analysis time in current liquid chromatographic practice for monoclonal antibody separations. J Pharm Biomed Anal. 141:59–69.
    1. Ferrara C, Grau S, Jager C, Sondermann P, Brunker P, Waldhauer I, Hennig M, Ruf A, Rufer AC, Stihle M et al. . 2011. Unique carbohydrate–carbohydrate interactions are required for high affinity binding between FcgammaRIII and antibodies lacking core fucose. Proc Natl Acad Sci USA. 108:12669–12674.
    1. Fornelli L, Ayoub D, Aizikov K, Liu X, Damoc E, Pevzner PA, Makarov A, Beck A, Tsybin YO. 2017. Top-down analysis of immunoglobulin G isotypes 1 and 2 with electron transfer dissociation on a high-field Orbitrap mass spectrometer. J Proteomics. 159:67–76.
    1. Gahoual R, Heidenreich AK, Somsen GW, Bulau P, Reusch D, Wuhrer M, Haberger M. 2017. Detailed characterization of monoclonal antibody receptor interaction using affinity liquid chromatography hyphenated to native mass spectrometry. Anal Chem. 89:5404–5412.
    1. Gennaro LA, Delaney J, Vouros P, Harvey DJ, Domon B. 2002. Capillary electrophoresis/electrospray ion trap mass spectrometry for the analysis of negatively charged derivatized and underivatized glycans. Rapid Commun Mass Spectrom. 16:192–200.
    1. Giddens JP, Lomino JV, DiLillo DJ, Ravetch JV, Wang LX. 2018. Site-selective chemoenzymatic glycoengineering of Fab and Fc glycans of a therapeutic antibody. Proc Natl Acad Sci U S A. 115:12023–12027.
    1. Glaskin RS, Khatri K, Wang Q, Zaia J, Costello CE. 2017. Construction of a database of collision cross section values for glycopeptides, glycans, and peptides determined by IM-MS. Anal Chem. 89:4452–4460.
    1. Goh JB, Ng SK. 2018. Impact of host cell line choice on glycan profile. Crit Rev Biotechnol. 38:851–867.
    1. Goyon A, Francois YN, Colas O, Beck A, Veuthey JL, Guillarme D. 2018. High-resolution separation of monoclonal antibodies mixtures and their charge variants by an alternative and generic CZE method. Electrophoresis. 39:2083–2090.
    1. Goyon A, Sciascera L, Clarke A, Guillarme D, Pell R. 2018. Extending the limits of size exclusion chromatography: Simultaneous separation of free payloads and related species from antibody drug conjugates and their aggregates. J Chromatogr A. 1539:19–29.
    1. Gudelj I, Keser T, Vuckovic F, Skaro V, Goreta SS, Pavic T, Dumic J, Primorac D, Lauc G, Gornik O. 2015. Estimation of human age using N-glycan profiles from bloodstains. Int J Leg Med. 129:955–961.
    1. Gudelj I, Lauc G, Pezer M. 2018. Immunoglobulin G glycosylation in aging and diseases. Cell Immunol. 333:65–79.
    1. Gupta SK, Shukla P. 2018. Glycosylation control technologies for recombinant therapeutic proteins. Appl Microbiol Biotechnol. 102:10457–10468.
    1. Hafkenscheid L, Bondt A, Scherer HU, Huizinga TW, Wuhrer M, Toes RE, Rombouts Y. 2017. Structural analysis of variable domain glycosylation of anti-citrullinated protein antibodies in rheumatoid arthritis reveals the presence of highly sialylated glycans. Mol Cell Proteomics. 16:278–287.
    1. Harvey DJ, Scarff CA, Edgeworth M, Pagel K, Thalassinos K, Struwe WB, Crispin M, Scrivens JH. 2016. Travelling-wave ion mobility mass spectrometry and negative ion fragmentation of hybrid and complex N-glycans. J Mass Spectrom. 51:1064–1079.
    1. Haselberg R, De Vijlder T, Heukers R, Smit MJ, Romijn EP, Somsen GW, Dominguez-Vega E. 2018. Heterogeneity assessment of antibody-derived therapeutics at the intact and middle-up level by low-flow sheathless capillary electrophoresis-mass spectrometry. Anal Chim Acta. 1044:181–190.
    1. Hayes JM, Frostell A, Cosgrave EF, Struwe WB, Potter O, Davey GP, Karlsson R, Anneren C, Rudd PM. 2014. Fc gamma receptor glycosylation modulates the binding of IgG glycoforms: A requirement for stable antibody interactions. J Proteome Res. 13:5471–5485.
    1. Hayes JM, Frostell A, Karlsson R, Muller S, Martin SM, Pauers M, Reuss F, Cosgrave EF, Anneren C, Davey GP et al. . 2017. Identification of Fc gamma receptor glycoforms that produce differential binding kinetics for rituximab. Mol Cell Proteomics. 16:1770–1788.
    1. Heemskerk AA, Wuhrer M, Busnel JM, Koeleman CA, Selman MH, Vidarsson G, Kapur R, Schoenmaker B, Derks RJ, Deelder AM et al. . 2013. Coupling porous sheathless interface MS with transient-ITP in neutral capillaries for improved sensitivity in glycopeptide analysis. Electrophoresis. 34:383–387.
    1. Hendrickson OD, Zherdev AV. 2018. Analytical application of lectins. Crit Rev Anal Chem. 48:279–292.
    1. Hilliard M, Alley WR Jr, McManus CA, Yu YQ, Hallinan S, Gebler J, Rudd PM. 2017. Glycan characterization of the NIST RM monoclonal antibody using a total analytical solution: From sample preparation to data analysis. MAbs. 9:1349–1359.
    1. Hong Q, Ruhaak LR, Stroble C, Parker E, Huang J, Maverakis E, Lebrilla CB. 2015. A method for comprehensive glycosite-mapping and direct quantitation of serum glycoproteins. J Proteome Res. 14:5179–5192.
    1. Huffman JE, Pucic-Bakovic M, Klaric L, Hennig R, Selman MH, Vuckovic F, Novokmet M, Kristic J, Borowiak M, Muth T et al. . 2014. Comparative performance of four methods for high-throughput glycosylation analysis of immunoglobulin G in genetic and epidemiological research. Mol Cell Proteomics. 13:1598–1610.
    1. Huhn C, Selman MH, Ruhaak LR, Deelder AM, Wuhrer M. 2009. IgG glycosylation analysis. Proteomics. 9:882–913.
    1. Jansen BC, Falck D, de Haan N, Hipgrave Ederveen AL, Razdorov G, Lauc G, Wuhrer M. 2016. LaCyTools: A targeted liquid chromatography-mass spectrometry data processing package for relative quantitation of glycopeptides. J Proteome Res. 15:2198–2210.
    1. Jooss K, Meckelmann SW, Klein J, Schmitz OJ, Neususs C. 2018. Capillary zone electrophoresis coupled to drift tube ion mobility-mass spectrometry for the analysis of native and APTS-labeled N-glycans. Anal Bioanal Chem.
    1. Kammeijer GS, Kohler I, Jansen BC, Hensbergen PJ, Mayboroda OA, Falck D, Wuhrer M. 2016. Dopant enriched nitrogen gas combined with sheathless capillary electrophoresis-electrospray ionization-mass spectrometry for improved sensitivity and repeatability in glycopeptide analysis. Anal Chem. 88:5849–5856.
    1. Kammeijer GSM, Jansen BC, Kohler I, Heemskerk AAM, Mayboroda OA, Hensbergen PJ, Schappler J, Wuhrer M. 2017. Sialic acid linkage differentiation of glycopeptides using capillary electrophoresis - electrospray ionization - mass spectrometry. Sci Rep. 7:3733.
    1. Kapur R, Della Valle L, Sonneveld M, Hipgrave Ederveen A, Visser R, Ligthart P, de Haas M, Wuhrer M, van der Schoot CE, Vidarsson G. 2014. Low anti-RhD IgG-Fc-fucosylation in pregnancy: A new variable predicting severity in haemolytic disease of the fetus and newborn. Br J Haematol. 166:936–945.
    1. Kemna MJ, Plomp R, van Paassen P, Koeleman CAM, Jansen BC, Damoiseaux J, Cohen Tervaert JW, Wuhrer M. 2017. Galactosylation and sialylation levels of IgG predict relapse in patients with PR3-ANCA associated vasculitis. EBioMedicine. 17:108–118.
    1. Keser T, Pavic T, Lauc G, Gornik O. 2018. Comparison of 2-aminobenzamide, procainamide and RapiFluor-MS as derivatizing agents for high-throughput HILIC-UPLC-FLR-MS N-glycan analysis. Front Chem. 6:324.
    1. Khatri K, Klein JA, Haserick JR, Leon DR, Costello CE, McComb ME, Zaia J. 2017. Microfluidic capillary electrophoresis-mass spectrometry for analysis of monosaccharides, oligosaccharides, and glycopeptides. Anal Chem. 89:6645–6655.
    1. Kimzey M, Szabo Z, Sharma V, Gyenes A, Tep S, Taylor A, Jones A, Hyche J, Haxo T, Vlasenko S. 2015. Development of an instant glycan labeling dye for high throughput analysis by mass spectrometry. Prozyme. 25:1295–1295.
    1. Kiyoshi M, Caaveiro JMM, Tada M, Tamura H, Tanaka T, Terao Y, Morante K, Harazono A, Hashii N, Shibata H et al. . 2018. Assessing the heterogeneity of the Fc-glycan of a therapeutic antibody using an engineered FcgammaReceptor IIIa-immobilized column. Sci Rep. 8:3955.
    1. Klapoetke SC, Zhang J, Becht S. 2011. Glycosylation characterization of human IgA1 with differential deglycosylation by UPLC-ESI TOF MS. J Pharm Biomed Anal. 56:513–520.
    1. Klasic M, Kristic J, Korac P, Horvat T, Markulin D, Vojta A, Reiding KR, Wuhrer M, Lauc G, Zoldos V. 2016. DNA hypomethylation upregulates expression of the MGAT3 gene in HepG2 cells and leads to changes in N-glycosylation of secreted glycoproteins. Sci Rep. 6:24363.
    1. Klasic M, Markulin D, Vojta A, Samarzija I, Birus I, Dobrinic P, Ventham NT, Trbojevic-Akmacic I, Simurina M, Stambuk J et al. . 2018. Promoter methylation of the MGAT3 and BACH2 genes correlates with the composition of the immunoglobulin G glycome in inflammatory bowel disease. Clin Epigenetics. 10:75.
    1. Kolarich D, Windwarder M, Alagesan K, Altmann F. 2015. Isomer-specific analysis of released N-glycans by LC-ESI MS/MS with porous graphitized carbon. Methods Mol Biol. 1321:427–435.
    1. Kozak RP, Tortosa CB, Fernandes DL, Spencer DI. 2015. Comparison of procainamide and 2-aminobenzamide labeling for profiling and identification of glycans by liquid chromatography with fluorescence detection coupled to electrospray ionization-mass spectrometry. Anal Biochem. 486:38–40.
    1. Krapp S, Mimura Y, Jefferis R, Huber R, Sondermann P. 2003. Structural analysis of human IgG-Fc glycoforms reveals a correlation between glycosylation and structural integrity. J Mol Biol. 325:979–989.
    1. Kurogochi M, Amano J. 2014. Relative quantitation of glycopeptides based on stable isotope labeling using MALDI-TOF MS. Molecules. 19:9944–9961.
    1. Lageveen-Kammeijer GSM, De Haan N, Mohaupt P, Wagt W, Filius M, Nouta J, Falck D, Wuhrer M. 2019. Highly sensitive CE-ESI-MS analysis of N-glycans from complex biological samples. Nat Commun. 10:2137.
    1. Largy E, Cantais F, Van Vyncht G, Beck A, Delobel A. 2017. Orthogonal liquid chromatography-mass spectrometry methods for the comprehensive characterization of therapeutic glycoproteins, from released glycans to intact protein level. J Chromatogr A. 1498:128–146.
    1. Lauber MA, Yu YQ, Brousmiche DW, Hua Z, Koza SM, Magnelli P, Guthrie E, Taron CH, Fountain KJ. 2015. Rapid preparation of released N-glycans for HILIC analysis using a Labeling reagent that facilitates sensitive fluorescence and ESI-MS detection. Anal Chem. 87:5401–5409.
    1. Lauc G, Essafi A, Huffman JE, Hayward C, Knezevic A, Kattla JJ, Polasek O, Gornik O, Vitart V, Abrahams JL et al. . 2010. Genomics meets glycomics-the first GWAS study of human N-Glycome identifies HNF1alpha as a master regulator of plasma protein fucosylation. PLoS Genet. 6:e1001256.
    1. Lauc G, Huffman JE, Pucic M, Zgaga L, Adamczyk B, Muzinic A, Novokmet M, Polasek O, Gornik O, Kristic J et al. . 2013. Loci associated with N-glycosylation of human immunoglobulin G show pleiotropy with autoimmune diseases and haematological cancers. PLoS Genet. 9:e1003225.
    1. Lauc G, Vojta A, Zoldos V. 2014. Epigenetic regulation of glycosylation is the quantum mechanics of biology. Biochim Biophys Acta. 1840:65–70.
    1. Lauc G, Vuckovic F, Bondt A, Pezer M, Wuhrer M. 2018. Trace N-glycans including sulphated species may originate from various plasma glycoproteins and not necessarily IgG. Nat Commun. 9:2916.
    1. Leblanc Y, Romanin M, Bihoreau N, Chevreux G. 2014. LC-MS analysis of polyclonal IgGs using IdeS enzymatic proteolysis for oxidation monitoring. J Chromatogr B Analyt Technol Biomed Life Sci. 961:1–4.
    1. Lectenz®Bio 2019. Lectenz® Bio. from .
    1. Lemmers RFH, Vilaj M, Urda D, Agakov F, Simurina M, Klaric L, Rudan I, Campbell H, Hayward C, Wilson JF et al. . 2017. IgG glycan patterns are associated with type 2 diabetes in independent European populations. Biochim Biophys Acta Gen Subj. 1861:2240–2249.
    1. Liu M, Zhang Y, Chen Y, Yan G, Shen C, Cao J, Zhou X, Liu X, Zhang L, Shen H et al. . 2014. Efficient and accurate glycopeptide identification pipeline for high-throughput site-specific N-glycosylation analysis. J Proteome Res. 13:3121–3129.
    1. Ludger 2019. Ludger V-Tag Glycopeptide Labeling and Enrichment Kit. from .
    1. Magorivska I, Donczo B, Dumych T, Karmash A, Boichuk M, Hychka K, Mihalj M, Szabo M, Csanky E, Rech J et al. . 2018. Glycosylation of random IgG distinguishes seropositive and seronegative rheumatoid arthritis. Autoimmunity. 51:111–117.
    1. Mauko L, Lacher NA, Pelzing M, Nordborg A, Haddad PR, Hilder EF. 2012. Comparison of ZIC-HILIC and graphitized carbon-based analytical approaches combined with exoglycosidase digestions for analysis of glycans from monoclonal antibodies. J Chromatogr B Analyt Technol Biomed Life Sci. 911:93–104.
    1. Maxwell EJ, Ratnayake C, Jayo R, Zhong X, Chen DD. 2011. A promising capillary electrophoresis-electrospray ionization-mass spectrometry method for carbohydrate analysis. Electrophoresis. 32:2161–2166.
    1. Mellis SJ, Baenziger JU. 1983. Structures of the O-glycosidically linked oligosaccharides of human IgD. J Biol Chem. 258:11557–11563.
    1. Montesino R, Calvo L, Vallin A, Rudd PM, Harvey DJ, Cremata JA. 2012. Structural characterization of N-linked oligosaccharides on monoclonal antibody Nimotuzumab through process development. Biologicals. 40:288–298.
    1. Nicolardi S, Deelder AM, Palmblad M, van der Burgt YE. 2014. Structural analysis of an intact monoclonal antibody by online electrochemical reduction of disulfide bonds and Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem. 86:5376–5382.
    1. Pabst M, Benesova I, Fagerer SR, Jacobsen M, Eyer K, Schmidt G, Steinhoff R, Krismer J, Wahl F, Preisler J et al. . 2016. Differential isotope labeling of glycopeptides for accurate determination of differences in site-specific glycosylation. J Proteome Res. 15:326–331.
    1. Pabst M, Kolarich D, Poltl G, Dalik T, Lubec G, Hofinger A, Altmann F. 2009. Comparison of fluorescent labels for oligosaccharides and introduction of a new postlabeling purification method. Anal Biochem. 384:263–273.
    1. Parekh RB, Dwek RA, Sutton BJ, Fernandes DL, Leung A, Stanworth D, Rademacher TW, Mizuochi T, Taniguchi T, Matsuta K et al. . 1985. Association of rheumatoid arthritis and primary osteoarthritis with changes in the glycosylation pattern of total serum IgG. Nature. 316:452–457.
    1. Patel KR, Roberts JT, Subedi GP, Barb AW. 2018. Restricted processing of CD16a/fc gamma receptor IIIa N-glycans from primary human NK cells impacts structure and function. J Biol Chem. 293:3477–3489.
    1. Periat A, Fekete S, Cusumano A, Veuthey JL, Beck A, Lauber M, Guillarme D. 2016. Potential of hydrophilic interaction chromatography for the analytical characterization of protein biopharmaceuticals. J Chromatogr A. 1448:81–92.
    1. Plomp R, Bondt A, de Haan N, Rombouts Y, Wuhrer M. 2016. Recent advances in clinical glycoproteomics of immunoglobulins (Igs). Mol Cell Proteomics. 15:2217–2228.
    1. Plomp R, de Haan N, Bondt A, Murli J, Dotz V, Wuhrer M. 2018. Comparative Glycomics of immunoglobulin A and G from saliva and plasma reveals biomarker potential. Front Immunol. 9:2436.
    1. Plomp R, Dekkers G, Rombouts Y, Visser R, Koeleman CA, Kammeijer GS, Jansen BC, Rispens T, Hensbergen PJ, Vidarsson G et al. . 2015. Hinge-region O-glycosylation of human immunoglobulin G3 (IgG3). Mol Cell Proteomics. 14:1373–1384.
    1. Plomp R, Hensbergen PJ, Rombouts Y, Zauner G, Dragan I, Koeleman CA, Deelder AM, Wuhrer M. 2014. Site-specific N-glycosylation analysis of human immunoglobulin e. J Proteome Res. 13:536–546.
    1. Plomp R, Ruhaak LR, Uh HW, Reiding KR, Selman M, Houwing-Duistermaat JJ, Slagboom PE, Beekman M, Wuhrer M. 2017. Subclass-specific IgG glycosylation is associated with markers of inflammation and metabolic health. Sci Rep. 7:12325.
    1. Rathore AS. 2009. Follow-on protein products: Scientific issues, developments and challenges. Trends Biotechnol. 27:698–705.
    1. Reiding KR, Bondt A, Franc V, Heck AJR. 2018. The benefits of hybrid fragmentation methods for glycoproteomics. Trends Analyt Chem. 108:260–268.
    1. Resemann A, Jabs W, Wiechmann A, Wagner E, Colas O, Evers W, Belau E, Vorwerg L, Evans C, Beck A et al. . 2016. Full validation of therapeutic antibody sequences by middle-up mass measurements and middle-down protein sequencing. MAbs. 8:318–330.
    1. Reusch D, Haberger M, Falck D, Peter B, Maier B, Gassner J, Hook M, Wagner K, Bonnington L, Bulau P et al. . 2015. Comparison of methods for the analysis of therapeutic immunoglobulin G Fc-glycosylation profiles-part 2: Mass spectrometric methods. MAbs. 7:732–742.
    1. Reusch D, Haberger M, Kailich T, Heidenreich AK, Kampe M, Bulau P, Wuhrer M. 2014. High-throughput glycosylation analysis of therapeutic immunoglobulin G by capillary gel electrophoresis using a DNA analyzer. MAbs. 6:185–196.
    1. Reusch D, Haberger M, Maier B, Maier M, Kloseck R, Zimmermann B, Hook M, Szabo Z, Tep S, Wegstein J et al. . 2015. Comparison of methods for the analysis of therapeutic immunoglobulin G Fc-glycosylation profiles--part 1: Separation-based methods. MAbs. 7:167–179.
    1. Rosati S, Rose RJ, Thompson NJ, van Duijn E, Damoc E, Denisov E, Makarov A, Heck AJ. 2012. Exploring an orbitrap analyzer for the characterization of intact antibodies by native mass spectrometry. Angew Chem Int Ed Engl. 51:12992–12996.
    1. Rouwendal GJ, van der Lee MM, Meyer S, Reiding KR, Schouten J, de Roo G, Egging DF, Leusen JH, Boross P, Wuhrer M et al. . 2016. A comparison of anti-HER2 IgA and IgG1 in vivo efficacy is facilitated by high N-glycan sialylation of the IgA. MAbs. 8:74–86.
    1. Roy R, Ang E, Komatsu E, Domalaon R, Bosseboeuf A, Harb J, Hermouet S, Krokhin O, Schweizer F, Perreault H. 2018. Absolute quantitation of glycoforms of two human IgG subclasses using synthetic fc peptides and glycopeptides. J Am Soc Mass Spectrom. 29:1086–1098.
    1. Ruhaak LR, Kim K, Stroble C, Taylor SL, Hong Q, Miyamoto S, Lebrilla CB, Leiserowitz G. 2016. Protein-specific differential glycosylation of immunoglobulins in serum of ovarian cancer patients. J Proteome Res. 15:1002–1010.
    1. Ruhaak LR, Xu G, Li Q, Goonatilleke E, Lebrilla CB. 2018. Mass spectrometry approaches to glycomic and glycoproteomic analyses. Chem Rev. 118:7886–7930.
    1. Russell AC, Kepka A, Trbojevic-Akmacic I, Ugrina I, Song M, Hui J, Hunter M, Laws SM, Lauc G, Wang W. 2019. Increased central adiposity is associated with pro-inflammatory immunoglobulin G N-glycans. Immunobiology. 224:110–115.
    1. Schwedler C, Blanchard V. 2019. Measurement of neutral and sialylated IgG N-glycome at Asn-297 by CE-LIF to assess hypogalactosylation in rheumatoid arthritis. Methods Mol Biol. 1972:77–93.
    1. Sciex. 2018. More Samples. Better Decisions – Faster. High Throughput Glycan Screening and Identification. .
    1. Selman MH, Derks RJ, Bondt A, Palmblad M, Schoenmaker B, Koeleman CA, van de Geijn FE, Dolhain RJ, Deelder AM, Wuhrer M. 2012. Fc specific IgG glycosylation profiling by robust nano-reverse phase HPLC-MS using a sheath-flow ESI sprayer interface. J Proteomics. 75:1318–1329.
    1. Shade KT, Conroy ME, Anthony RM. 2019. IgE glycosylation in health and disease In: Current Topics in Microbiology and Immunology. Springer: Berlin, Heidelberg.
    1. Shubhakar A, Kozak RP, Reiding KR, Royle L, Spencer DI, Fernandes DL, Wuhrer M. 2016. Automated high-throughput permethylation for glycosylation analysis of biologics using MALDI-TOF-MS. Anal Chem. 88:8562–8569.
    1. Simurina M, de Haan N, Vuckovic F, Kennedy NA, Stambuk J, Falck D, Trbojevic-Akmacic I, Clerc F, Razdorov G, Khon A et al. . 2018. Glycosylation of immunoglobulin G associates with clinical features of inflammatory bowel diseases. Gastroenterology. 154:1320, e1310–1333.
    1. Srikanth J, Agalyadevi R, Babu P. 2017. Targeted, site-specific quantitation of N- and O-glycopeptides using (18)O-labeling and product ion based mass spectrometry. Glycoconj J. 34:95–105.
    1. Stadlmann J, Pabst M, Kolarich D, Kunert R, Altmann F. 2008. Analysis of immunoglobulin glycosylation by LC-ESI-MS of glycopeptides and oligosaccharides. Proteomics. 8:2858–2871.
    1. Stadlmann J, Taubenschmid J, Wenzel D, Gattinger A, Durnberger G, Dusberger F, Elling U, Mach L, Mechtler K, Penninger JM. 2017. Comparative glycoproteomics of stem cells identifies new players in ricin toxicity. Nature. 549:538–542.
    1. Stavenhagen K, Kolarich D, Wuhrer M. 2015. Clinical glycomics employing graphitized carbon liquid chromatography-mass spectrometry. Chromatographia. 78:307–320.
    1. Stavenhagen K, Plomp R, Wuhrer M. 2015. Site-specific protein N- and O-glycosylation analysis by a C18-porous graphitized carbon-liquid chromatography-electrospray ionization mass spectrometry approach using pronase treated glycopeptides. Anal Chem. 87:11691–11699.
    1. Stoll DR, Harmes DC, Staples GO, Potter OG, Dammann CT, Guillarme D, Beck A. 2018. Development of comprehensive online two-dimensional liquid chromatography/mass spectrometry using hydrophilic interaction and reversed-phase separations for rapid and deep profiling of therapeutic antibodies. Anal Chem. 90:5923–5929.
    1. Struwe WB, Benesch JL, Harvey DJ, Pagel K. 2015. Collision cross sections of high-mannose N-glycans in commonly observed adduct states--identification of gas-phase conformers unique to [M-H](−) ions. Analyst. 140:6799–6803.
    1. Struwe WB, Pagel K, Benesch JL, Harvey DJ, Campbell MP. 2016. GlycoMob: An ion mobility-mass spectrometry collision cross section database for glycomics. Glycoconj J. 33:399–404.
    1. Subedi GP, Barb AW. 2015. The structural role of antibody N-glycosylation in receptor interactions. Structure. 23:1573–1583.
    1. Subedi GP, Barb AW. 2016. The immunoglobulin G1 N-glycan composition affects binding to each low affinity Fc gamma receptor. MAbs. 8:1512–1524.
    1. Szekrenyes A, Roth U, Kerekgyarto M, Szekely A, Kurucz I, Kowalewski K, Guttman A. 2012. High-throughput analysis of therapeutic and diagnostic monoclonal antibodies by multicapillary SDS gel electrophoresis in conjunction with covalent fluorescent labeling. Anal Bioanal Chem. 404:1485–1494.
    1. Szigeti M, Guttman A. 2017. High-throughput N-glycan analysis with rapid magnetic bead-based sample preparation. Methods Mol Biol. 1503:265–272.
    1. Takayasu T, Suzuki S, Kametani F, Takahashi N, Shinoda T, Okuyama T, Munekata E. 1982. Amino acid sequence of galactosamine-containing glycopeptides in the hinge region of a human immunoglobulin D. Biochem Biophys Res Commun. 105:1066–1071.
    1. Takegawa Y, Deguchi K, Ito H, Keira T, Nakagawa H, Nishimura S. 2006. Simple separation of isomeric sialylated N-glycopeptides by a zwitterionic type of hydrophilic interaction chromatography. J Sep Sci. 29:2533–2540.
    1. Thomann M, Schlothauer T, Dashivets T, Malik S, Avenal C, Bulau P, Ruger P, Reusch D. 2015. In vitro glycoengineering of IgG1 and its effect on Fc receptor binding and ADCC activity. PLoS One. 10:e0134949.
    1. Toby TK, Fornelli L, Kelleher NL. 2016. Progress in top-down proteomics and the analysis of proteoforms. Annu Rev Anal Chem (Palo Alto Calif). 9:499–519.
    1. Torano A, Putnam FW. 1978. Complete amino acid sequence of the alpha 2 heavy chain of a human IgA2 immunoglobulin of the A2m (2) allotype. Proc Natl Acad Sci U S A. 75:966–969.
    1. Tsuzukida Y, Wang CC, Putnam FW. 1979. Structure of the A2m(1) allotype of human IgA--a recombinant molecule. Proc Natl Acad Sci USA. 76:1104–1108.
    1. van de Bovenkamp FS, Derksen NIL, Ooijevaar-de Heer P, van Schie KA, Kruithof S, Berkowska MA, van der Schoot CE, IJspeert H, van der Burg M, Gils A et al. . 2018. Adaptive antibody diversification through N-linked glycosylation of the immunoglobulin variable region. Proc Natl Acad Sci U S A. 115:1901–1906.
    1. van de Bovenkamp FS, Hafkenscheid L, Rispens T, Rombouts Y. 2016. The emerging importance of IgG fab glycosylation in immunity. J Immunol. 196:1435–1441.
    1. van der Burgt YEM, Kilgour DPA, Tsybin YO, Srzentic K, Fornelli L, Beck A, Wuhrer M, Nicolardi S. 2019. Structural analysis of monoclonal antibodies by ultrahigh resolution MALDI in-source decay FT-ICR mass spectrometry. Anal Chem. 91:2079–2085.
    1. Vanderschaeghe D, Meuris L, Raes T, Grootaert H, Van Hecke A, Verhelst X, Van de Velde F, Lapauw B, Van Vlierberghe H, Callewaert N. 2018. Endoglycosidase S enables a highly simplified clinical chemistry procedure for direct assessment of serum IgG undergalactosylation in chronic inflammatory disease. Mol Cell Proteomics. 17:2508–2517.
    1. Vidarsson G, Dekkers G, Rispens T. 2014. IgG subclasses and allotypes: From structure to effector functions. Front Immunol. 5:520.
    1. Vuckovic F, Kristic J, Gudelj I, Teruel M, Keser T, Pezer M, Pucic-Bakovic M, Stambuk J, Trbojevic-Akmacic I, Barrios C et al. . 2015. Association of systemic lupus erythematosus with decreased immunosuppressive potential of the IgG glycome. Arthritis Rheumatol. 67:2978–2989.
    1. Wada R, Matsui M, Kawasaki N. 2019. Influence of N-glycosylation on effector functions and thermal stability of glycoengineered IgG1 monoclonal antibody with homogeneous glycoforms. MAbs. 11:350–372.
    1. Wada Y, Dell A, Haslam SM, Tissot B, Canis K, Azadi P, Backstrom M, Costello CE, Hansson GC, Hiki Y et al. . 2010. Comparison of methods for profiling O-glycosylation: Human proteome organisation human disease glycomics/proteome initiative multi-institutional study of IgA1. Mol Cell Proteomics. 9:719–727.
    1. Walker SH, Lilley LM, Enamorado MF, Comins DL, Muddiman DC. 2011. Hydrophobic derivatization of N-linked glycans for increased ion abundance in electrospray ionization mass spectrometry. J Am Soc Mass Spectrom. 22:1309–1317.
    1. Walt D, Aoki-Kinoshita KF, Bertozzi CR, Boons G-J, et al. . 2012. Transforming glycoscience: A roadmap for the future. Washington (DC).
    1. Wang JR, Gao WN, Grimm R, Jiang S, Liang Y, Ye H, Li ZG, Yau LF, Huang H, Liu J et al. . 2017. A method to identify trace sulfated IgG N-glycans as biomarkers for rheumatoid arthritis. Nat Commun. 8:631.
    1. Wang JR, Gao WN, Grimm R, Jiang S, Liang Y, Ye H, Li ZG, Yau LF, Huang H, Liu J et al. . 2018. Reply to 'Trace N-glycans including sulphated species may originate from various plasma glycoproteins and not necessarily IgG'. Nat Commun. 9:2915.
    1. Washburn N, Meccariello R, Duffner J, Getchell K, Holte K, Prod'homme T, Srinivasan K, Prenovitz R, Lansing J, Capila I et al. . 2019. Characterization of endogenous human FcgammaRIII by mass spectrometry reveals site, allele and sequence specific glycosylation. Mol Cell Proteomics. 18:534–545.
    1. Wohlschlager T, Scheffler K, Forstenlehner IC, Skala W, Senn S, Damoc E, Holzmann J, Huber CG. 2018. Native mass spectrometry combined with enzymatic dissection unravels glycoform heterogeneity of biopharmaceuticals. Nat Commun. 9:1713.
    1. Wu G, Hitchen PG, Panico M, North SJ, Barbouche MR, Binet D, Morris HR, Dell A, Haslam SM. 2016. Glycoproteomic studies of IgE from a novel hyper IgE syndrome linked to PGM3 mutation. Glycoconj J. 33:447–456.
    1. Wuhrer M, Porcelijn L, Kapur R, Koeleman CA, Deelder A, de Haas M, Vidarsson G. 2009. Regulated glycosylation patterns of IgG during alloimmune responses against human platelet antigens. J Proteome Res. 8:450–456.
    1. Yagi H, Takakura D, Roumenina LT, Fridman WH, Sautes-Fridman C, Kawasaki N, Kato K. 2018. Site-specific N-glycosylation analysis of soluble Fcgamma receptor IIIb in human serum. Sci Rep. 8:2719.
    1. Yang S, Onigman P, Wu WW, Sjogren J, Nyhlen H, Shen RF, Cipollo J. 2018. Deciphering protein O-glycosylation: Solid-phase chemoenzymatic cleavage and enrichment. Anal Chem. 90:8261–8269.
    1. Yang W, Ao M, Hu Y, Li QK, Zhang H. 2018. Mapping the O-glycoproteome using site-specific extraction of O-linked glycopeptides (EXoO). Mol Syst Biol. 14:e8486.
    1. Yang Y, Wang G, Song T, Lebrilla CB, Heck AJR. 2017. Resolving the micro-heterogeneity and structural integrity of monoclonal antibodies by hybrid mass spectrometric approaches. MAbs. 9:638–645.
    1. Ye H, Boyne MT 2nd, Buhse LF, Hill J. 2013. Direct approach for qualitative and quantitative characterization of glycoproteins using tandem mass tags and an LTQ Orbitrap XL electron transfer dissociation hybrid mass spectrometer. Anal Chem. 85:1531–1539.
    1. Yuan W, Sanda M, Wu J, Koomen J, Goldman R. 2015. Quantitative analysis of immunoglobulin subclasses and subclass specific glycosylation by LC-MS-MRM in liver disease. J Proteomics. 116:24–33.
    1. Zauner G, Koeleman CA, Deelder AM, Wuhrer M. 2010. Protein glycosylation analysis by HILIC-LC-MS of proteinase K-generated N- and O-glycopeptides. J Sep Sci. 33:903–910.
    1. Zauner G, Selman MH, Bondt A, Rombouts Y, Blank D, Deelder AM, Wuhrer M. 2013. Glycoproteomic analysis of antibodies. Mol Cell Proteomics. 12:856–865.
    1. Zhang L, Luo S, Zhang B. 2016. The use of lectin microarray for assessing glycosylation of therapeutic proteins. MAbs. 8:524–535.
    1. Zhao J, Li S, Li C, Wu SL, Xu W, Chen Y, Shameem M, Richardson D, Li H. 2016. Identification of low abundant isomeric N-glycan structures in biological therapeutics by LC/MS. Anal Chem. 88:7049–7059.
    1. Zhong X, Chen Z, Snovida S, Liu Y, Rogers JC, Li L. 2015. Capillary electrophoresis-electrospray ionization-mass spectrometry for quantitative analysis of glycans Labeled with multiplex carbonyl-reactive tandem mass tags. Anal Chem. 87:6527–6534.
    1. Zhou S, Veillon L, Dong X, Huang Y, Mechref Y. 2017. Direct comparison of derivatization strategies for LC-MS/MS analysis of N-glycans. Analyst. 142:4446–4455.

Source: PubMed

3
Sottoscrivi