Circulating Interleukin-4 Is Associated with a Systemic T Cell Response against Tumor-Associated Antigens in Treatment-Naïve Patients with Resectable Non-Small-Cell Lung Cancer

Seyer Safi, Yoshikane Yamauchi, Hans Hoffmann, Wilko Weichert, Philipp J Jost, Hauke Winter, Thomas Muley, Philipp Beckhove, Seyer Safi, Yoshikane Yamauchi, Hans Hoffmann, Wilko Weichert, Philipp J Jost, Hauke Winter, Thomas Muley, Philipp Beckhove

Abstract

Spontaneous T cell responses to tumor-associated antigens (TAs) in the peripheral blood of patients with non-small-cell lung cancer (NSCLC) may be relevant for postoperative survival. However, the conditions underlying these T cell responses remain unclear. We quantified the levels of 27 cytokines in the peripheral blood and tumor tissues from treatment-naïve patients with NSCLC (n = 36) and analyzed associations between local and systemic cytokine profiles and both TA-specific T cell responses and clinical parameters. We defined T cell responders as patients with circulating T cells that were reactive to TAs and T cell nonresponders as patients without detectable TA-specific T cells. TA-specific T cell responses were correlated with serum cytokine levels, particularly the levels of interleukin(IL)-4 and granulocyte colony-stimulating factor (G-CSF), but poorly correlated with the cytokine levels in tumor tissues. Nonresponders showed significantly higher serum IL-4 levels than responders (p = 0.03); the predicted probability of being a responder was higher for individuals with low serum IL-4 levels. In multivariable Cox regression analyses, in addition to IL-4 (hazard ratio (HR) 2.8 (95% confidence interval (CI): 0.78-9.9); p = 0.116), the age-adjusted IL-8 level (HR 3.9 (95% CI: 1.05-14.5); p = 0.042) predicted tumor recurrence. However, this study included data for many cytokines without adjustment for multiple testing; thus, the observed differences in IL-4 or IL-8 levels might be incidental findings. Therefore, additional studies are necessary to confirm these results.

Keywords: T cells; cytokine; immunotherapy; lung cancer.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Box and whisker plots representing the preoperative serum cytokine levels in all patients (n = 36), responders only (n = 22) and nonresponders only (n = 14). FGF = fibroblast growth factor. G-CSF = granulocyte colony-stimulating factor. IFN = interferon. IL = interleukin. IP10 = interferon-inducible protein 10. MCP-1 = monocyte chemoattractant protein 1. MIP = macrophage-inflammatory protein. PDGF = platelet-derived growth factor. RANTES = regulated upon activation, normal T cell expressed and secreted. TNF = tumor necrosis factor.
Figure 2
Figure 2
Tree-structured dendrogram resulting from the hierarchical clustering analysis based on the correlation matrix of all cytokine and response data. The R-square value is the proportion of variance accounted for by the cluster. For example, the variables IL-4, eotaxin, G-CSF, IL-7 and IL-17A represent a cluster of variables with similar correlations with the response variable (“any_response_PB”; marked with an asterisk). In contrast, the dendrogram shows a marked distance between the variables IL-6 and IL-8 and the response variable, indicating a weak correlation.
Figure 3
Figure 3
Predicted probability of a response obtained from age-adjusted logistic models. As an example, the age-weighted probability of being a responder based on cytokine levels is shown for the serum cytokines IL-4 (a), G-CSF (b), IL-17A (c), IL-9 (d), IL-7 (e), and IL-8 (f). The blue curves illustrate the probability of having serum cytokine levels below the optimal cutoff, and the red lines represent the probability of having serum cytokine levels above the cutoff.
Figure 4
Figure 4
Predicted probability of a TA-specific response based on a multiple logistic model including the variables IL-4, IL-8, and MIP-1b (dichotomized at the optimal cutoff value) and age (continuous variable). The predicted probability of being a responder is visualized based on the three serum cytokines dichotomized at their optimal cutoff values and the variable age. The probabilities of having IL-4 levels above the optimal cutoff value are shown as blue lines, and the probabilities of having IL-4 levels below the cutoff value are shown as red lines. The categorization according to the optimal cutoff value of MIP-1b is shown in the upper and lower rows and the categorization for IL-8 is shown in the left and right columns. The variable age is used as a continuous variable on the x-axis. For example, the probability of being a responder is very high if the serum IL-4 level is below the threshold, the serum IL-8 level is also below the threshold, and the serum MIP-1b level is above the threshold (d). In contrast, the likelihood of being a responder in the older age group is very low if the serum IL-8 level is above the threshold and the serum MIP-1b level is also below the threshold (a). Likelihood of being a responder if the serum IL-8 level is below the threshold and the serum MIP-1b level is also below the threshold (b). Likelihood of being a responder if the serum IL-8 level is above the threshold and the serum MIP-1b level is also above the threshold (c).
Figure 5
Figure 5
Postoperative survival curves predicted using the Cox model. Postoperative RFS after curative-intent surgery for NSCLC was predicted based on the variables serum IL-4 levels and age. Prolonged survival was predicted for younger patients with low serum IL-4 levels than for older patients with high serum IL-4 levels. The favorable effect of younger age on survival was reversed by the combination with higher serum IL-4 levels.
Figure 6
Figure 6
Associations among lymphangiosis carcinomatosa, the TA-specific T cell response, recurrence-free survival (RFS) and crude (a) and age-adjusted (b) serum IL-8 levels.

References

    1. Ettinger D.S., Akerley W., Borghaei H., Chang A.C., Cheney R.T., Chirieac L.R., D’Amico T.A., Demmy T.L., Govindan R., Grannis F.W., et al. Non-small cell lung cancer, version 2.2013. J. Natl. Compr. Canc. Netw. 2013;11:645–653. doi: 10.6004/jnccn.2013.0084.
    1. Siegel R.L., Miller K.D., Jemal A. Cancer statistics, 2017. CA Cancer J. Clin. 2017;67:7–30. doi: 10.3322/caac.21387.
    1. Asamura H., Goya T., Koshiishi Y., Sohara Y., Eguchi K., Mori M., Nakanishi Y., Tsuchiya R., Shimokata K., Inoue H., et al. A Japanese lung cancer registry study: Prognosis of 13,010 resected lung cancers. J. Thorac. Oncol. 2008;3:46–52. doi: 10.1097/JTO.0b013e31815e8577.
    1. Yamauchi Y., Muley T., Safi S., Rieken S., Bischoff H., Kappes J., Warth A., Herth F.J., Dienemann H., Hoffmann H. The dynamic pattern of recurrence in curatively resected non-small cell lung cancer patients: Experiences at a single institution. Lung Cancer. 2015;90:224–229. doi: 10.1016/j.lungcan.2015.09.010.
    1. Remark R., Becker C., Gomez J.E., Damotte D., Dieu-Nosjean M.C., Sautes-Fridman C., Fridman W.H., Powell C.A., Altorki N.K., Merad M., et al. The non-small cell lung cancer immune contexture. A major determinant of tumor characteristics and patient outcome. Am. J. Respir. Crit. Care Med. 2015;191:377–390. doi: 10.1164/rccm.201409-1671PP.
    1. Safi S., Yamauchi Y., Rathinasamy A., Stamova S., Eichhorn M., Warth A., Rauch G., Dienemann H., Hoffmann H., Beckhove P. Functional T cells targeting tumor-associated antigens are predictive for recurrence-free survival of patients with radically operated non-small cell lung cancer. Oncoimmunology. 2017;6:e1360458. doi: 10.1080/2162402X.2017.1360458.
    1. Grivennikov S.I., Greten F.R., Karin M. Immunity, inflammation, and cancer. Cell. 2010;140:883–899. doi: 10.1016/j.cell.2010.01.025.
    1. Lee S., Margolin K. Cytokines in cancer immunotherapy. Cancers. 2011;3:3856–3893. doi: 10.3390/cancers3043856.
    1. Lippitz B.E. Cytokine patterns in patients with cancer: A systematic review. Lancet Oncol. 2013;14:e218–e228. doi: 10.1016/S1470-2045(12)70582-X.
    1. Pine S.R., Mechanic L.E., Enewold L., Chaturvedi A.K., Katki H.A., Zheng Y.L., Bowman E.D., Engels E.A., Caporaso N.E., Harris C.C. Increased levels of circulating interleukin 6, interleukin 8, C-reactive protein, and risk of lung cancer. J. Natl. Cancer Inst. 2011;103:1112–1122. doi: 10.1093/jnci/djr216.
    1. Sanmamed M.F., Perez-Gracia J.L., Schalper K.A., Fusco J.P., Gonzalez A., Rodriguez-Ruiz M.E., Onate C., Perez G., Alfaro C., Martin-Algarra S., et al. Changes in serum interleukin-8 (IL-8) levels reflect and predict response to anti-PD-1 treatment in melanoma and non-small-cell lung cancer patients. Ann. Oncol. 2017;28:1988–1995. doi: 10.1093/annonc/mdx190.
    1. Margolin K., Morishima C., Velcheti V., Miller J.S., Lee S.M., Silk A.W., Holtan S.G., Lacroix A.M., Fling S.P., Kaiser J.C., et al. Phase I trial of ALT-803, a novel recombinant IL15 complex, in patients with advanced solid tumors. Clin. Cancer Res. 2018;24:5552–5561. doi: 10.1158/1078-0432.CCR-18-0945.
    1. Miller J.S., Morishima C., McNeel D.G., Patel M.R., Kohrt H.E.K., Thompson J.A., Sondel P.M., Wakelee H.A., Disis M.L., Kaiser J.C., et al. A first-in-human phase I study of subcutaneous outpatient recombinant human IL15 (rhIL15) in adults with advanced solid tumors. Clin. Cancer Res. 2018;24:1525–1535. doi: 10.1158/1078-0432.CCR-17-2451.
    1. Silva E.M., Mariano V.S., Pastrez P.R.A., Pinto M.C., Castro A.G., Syrjanen K.J., Longatto-Filho A. High systemic IL-6 is associated with worse prognosis in patients with non-small cell lung cancer. PLoS ONE. 2017;12:e0181125. doi: 10.1371/journal.pone.0181125.
    1. Barrera L., Montes-Servin E., Barrera A., Ramirez-Tirado L.A., Salinas-Parra F., Banales-Mendez J.L., Sandoval-Rios M., Arrieta O. Cytokine profile determined by data-mining analysis set into clusters of non-small-cell lung cancer patients according to prognosis. Ann. Oncol. 2015;26:428–435. doi: 10.1093/annonc/mdu549.
    1. Hayashi S., Imanishi R., Adachi M., Ikejima S., Nakata J., Morimoto S., Fujiki F., Nishida S., Tsuboi A., Hosen N., et al. Reader-free ELISPOT assay for immuno-monitoring in peptide-based cancer vaccine immunotherapy. Biomed. Rep. 2020;12:244–250. doi: 10.3892/br.2020.1289.
    1. Fane M., Weeraratna A.T. How the ageing microenvironment influences tumour progression. Nat. Rev. Cancer. 2020;20:89–106. doi: 10.1038/s41568-019-0222-9.
    1. Verschoor C.P., Johnstone J., Millar J., Dorrington M.G., Habibagahi M., Lelic A., Loeb M., Bramson J.L., Bowdish D.M. Blood CD33(+)HLA-DR(-) myeloid-derived suppressor cells are increased with age and a history of cancer. J. Leukoc. Biol. 2013;93:633–637. doi: 10.1189/jlb.0912461.
    1. Rosenkranz D., Weyer S., Tolosa E., Gaenslen A., Berg D., Leyhe T., Gasser T., Stoltze L. Higher frequency of regulatory T cells in the elderly and increased suppressive activity in neurodegeneration. J. Neuroimmunol. 2007;188:117–127. doi: 10.1016/j.jneuroim.2007.05.011.
    1. Groth C., Hu X., Weber R., Fleming V., Altevogt P., Utikal J., Umansky V. Immunosuppression mediated by myeloid-derived suppressor cells (MDSCs) during tumour progression. Br. J. Cancer. 2019;120:16–25. doi: 10.1038/s41416-018-0333-1.
    1. Tanaka A., Sakaguchi S. Targeting Treg cells in cancer immunotherapy. Eur. J. Immunol. 2019;49:1140–1146. doi: 10.1002/eji.201847659.
    1. Wijesundara D.K., Tscharke D.C., Jackson R.J., Ranasinghe C. Reduced interleukin-4 receptor alpha expression on CD8+ T cells correlates with higher quality anti-viral immunity. PLoS ONE. 2013;8:e55788. doi: 10.1371/journal.pone.0055788.
    1. Kienzle N., Olver S., Buttigieg K., Groves P., Janas M.L., Baz A., Kelso A. Progressive differentiation and commitment of CD8+ T cells to a poorly cytolytic CD8low phenotype in the presence of IL-4. J. Immunol. 2005;174:2021–2029. doi: 10.4049/jimmunol.174.4.2021.
    1. Kaminska J., Kowalska M., Kotowicz B., Fuksiewicz M., Glogowski M., Wojcik E., Chechlinska M., Steffen J. Pretreatment serum levels of cytokines and cytokine receptors in patients with non-small cell lung cancer, and correlations with clinicopathological features and prognosis. M-CSF—An independent prognostic factor. Oncology. 2006;70:115–125. doi: 10.1159/000093002.
    1. Kim H.O., Kim H.S., Youn J.C., Shin E.C., Park S. Serum cytokine profiles in healthy young and elderly population assessed using multiplexed bead-based immunoassays. J. Transl. Med. 2011;9:113. doi: 10.1186/1479-5876-9-113.
    1. Kleiner G., Marcuzzi A., Zanin V., Monasta L., Zauli G. Cytokine levels in the serum of healthy subjects. Mediat. Inflamm. 2013;2013:434010. doi: 10.1155/2013/434010.
    1. Huang M., Wang J., Lee P., Sharma S., Mao J.T., Meissner H., Uyemura K., Modlin R., Wollman J., Dubinett S.M. Human non-small cell lung cancer cells express a type 2 cytokine pattern. Cancer Res. 1995;55:3847–3853.
    1. Yamauchi Y., Safi S., Blattner C., Rathinasamy A., Umansky L., Juenger S., Warth A., Eichhorn M., Muley T., Herth F.J.F., et al. Circulating and tumor myeloid-derived suppressor cells in resectable non-small cell lung cancer. Am. J. Respir. Crit. Care Med. 2018;198:777–787. doi: 10.1164/rccm.201708-1707OC.
    1. Aziz N. Measurement of circulating cytokines and immune-activation markers by multiplex technology in the clinical setting: What are we really measuring? For. Immunopathol. Dis. Therap. 2015;6:19–22. doi: 10.1615/ForumImmunDisTher.2015014162.
    1. Li Z., Jiang J., Wang Z., Zhang J., Xiao M., Wang C., Lu Y., Qin Z. Endogenous interleukin-4 promotes tumor development by increasing tumor cell resistance to apoptosis. Cancer Res. 2008;68:8687–8694. doi: 10.1158/0008-5472.CAN-08-0449.
    1. Guo N., Shen G., Zhang Y., Moustafa A.A., Ge D., You Z. Interleukin-17 promotes migration and invasion of human cancer cells through upregulation of MTA1 expression. Front. Oncol. 2019;9:546. doi: 10.3389/fonc.2019.00546.
    1. Aliper A.M., Frieden-Korovkina V.P., Buzdin A., Roumiantsev S.A., Zhavoronkov A. A role for G-CSF and GM-CSF in nonmyeloid cancers. Cancer Med. 2014;3:737–746. doi: 10.1002/cam4.239.
    1. Levina V., Nolen B.M., Marrangoni A.M., Cheng P., Marks J.R., Szczepanski M.J., Szajnik M.E., Gorelik E., Lokshin A.E. Role of eotaxin-1 signaling in ovarian cancer. Clin. Cancer Res. 2009;15:2647–2656. doi: 10.1158/1078-0432.CCR-08-2024.
    1. Yaseen M.M., Abuharfeil N.M., Darmani H., Daoud A. Mechanisms of immune suppression by myeloid-derived suppressor cells: The role of interleukin-10 as a key immunoregulatory cytokine. Open Biol. 2020;10:200111. doi: 10.1098/rsob.200111.
    1. Nelms K., Keegan A.D., Zamorano J., Ryan J.J., Paul W.E. The IL-4 receptor: Signaling mechanisms and biologic functions. Annu. Rev. Immunol. 1999;17:701–738. doi: 10.1146/annurev.immunol.17.1.701.
    1. Asselin-Paturel C., Echchakir H., Carayol G., Gay F., Opolon P., Grunenwald D., Chouaib S., Mami-Chouaib F. Quantitative analysis of Th1, Th2 and TGF-beta1 cytokine expression in tumor, TIL and PBL of non-small cell lung cancer patients. Int. J. Cancer. 1998;77:7–12. doi: 10.1002/(SICI)1097-0215(19980703)77:1<7::AID-IJC2>;2-Y.
    1. Ito S.E., Shirota H., Kasahara Y., Saijo K., Ishioka C. IL-4 blockade alters the tumor microenvironment and augments the response to cancer immunotherapy in a mouse model. Cancer Immunol. Immunother. 2017;66:1485–1496. doi: 10.1007/s00262-017-2043-6.
    1. Volonte A., Di Tomaso T., Spinelli M., Todaro M., Sanvito F., Albarello L., Bissolati M., Ghirardelli L., Orsenigo E., Ferrone S., et al. Cancer-initiating cells from colorectal cancer patients escape from T cell-mediated immunosurveillance in vitro through membrane-bound IL-4. J. Immunol. 2014;192:523–532. doi: 10.4049/jimmunol.1301342.
    1. Waldmann T.A. Cytokines in cancer immunotherapy. Cold Spring Harb. Perspect. Biol. 2018;10:a028472. doi: 10.1101/cshperspect.a028472.
    1. Wrangle J.M., Velcheti V., Patel M.R., Garrett-Mayer E., Hill E.G., Ravenel J.G., Miller J.S., Farhad M., Anderton K., Lindsey K., et al. ALT-803, an IL-15 superagonist, in combination with nivolumab in patients with metastatic non-small cell lung cancer: A non-randomised, open-label, phase 1b trial. Lancet Oncol. 2018;19:694–704. doi: 10.1016/S1470-2045(18)30148-7.
    1. Baeriswyl V., Christofori G. The angiogenic switch in carcinogenesis. Semin. Cancer Biol. 2009;19:329–337. doi: 10.1016/j.semcancer.2009.05.003.
    1. Vatcheva K.P., Lee M., McCormick J.B., Rahbar M.H. Multicollinearity in regression analyses conducted in epidemiologic studies. Epidemiology. 2016;6:227. doi: 10.4172/2161-1165.1000227.
    1. Faruki H., Mayhew G.M., Serody J.S., Hayes D.N., Perou C.M., Lai-Goldman M. Lung adenocarcinoma and squamous cell carcinoma gene expression subtypes demonstrate significant differences in tumor immune landscape. J. Thorac. Oncol. 2017;12:943–953. doi: 10.1016/j.jtho.2017.03.010.
    1. Althouse A.D. Adjust for Multiple Comparisons? It’s Not That Simple. Ann. Thorac. Surg. 2016;101:1644–1645. doi: 10.1016/j.athoracsur.2015.11.024.
    1. Herbst R.S., Soria J.C., Kowanetz M., Fine G.D., Hamid O., Gordon M.S., Sosman J.A., McDermott D.F., Powderly J.D., Gettinger S.N., et al. Predictive correlates of response to the anti-PD-L1 antibody MPDL3280A in cancer patients. Nature. 2014;515:563–567. doi: 10.1038/nature14011.
    1. Palucka A.K., Coussens L.M. The basis of oncoimmunology. Cell. 2016;164:1233–1247. doi: 10.1016/j.cell.2016.01.049.
    1. Feuerer M., Beckhove P., Bai L., Solomayer E.F., Bastert G., Diel I.J., Pedain C., Oberniedermayr M., Schirrmacher V., Umansky V. Therapy of human tumors in NOD/SCID mice with patient-derived reactivated memory T cells from bone marrow. Nat. Med. 2001;7:452–458. doi: 10.1038/86523.
    1. Dienemann H., Hoffmann H., Koebe H.G. Technique and rationale of lymph node dissection in bronchial carcinoma. Chirurg. 1998;69:412–417. doi: 10.1007/s001040050431.
    1. Lardinois D., De Leyn P., Van Schil P., Porta R.R., Waller D., Passlick B., Zielinski M., Lerut T., Weder W. ESTS guidelines for intraoperative lymph node staging in non-small cell lung cancer. Eur. J. Cardiothorac. Surg. 2006;30:787–792. doi: 10.1016/j.ejcts.2006.08.008.
    1. Brierley J., Gospodarowicz M.K., Wittekind C. TNM Classification of Malignant Tumours. 8th ed. Wiley; Oxford, UK: 2017. pp. 22–29.
    1. Reissfelder C., Timke C., Schmitz-Winnenthal H., Rahbari N.N., Koch M., Klug F., Roeder F., Edler L., Debus J., Buchler M.W., et al. A randomized controlled trial to investigate the influence of low dose radiotherapy on immune stimulatory effects in liver metastases of colorectal cancer. BMC Cancer. 2011;11:419. doi: 10.1186/1471-2407-11-419.
    1. Kraemer H.C. Encyclopaedia of statistical sciences. In: Kotz S., Johnson N.L., editors. Biserial Correlation. Volume 1. Wiley; New York, NY, USA: 1982. pp. 276–279.

Source: PubMed

3
Sottoscrivi