Adenosine-Induced Coronary Steal Is Observed in Patients Presenting With ST-Segment-Elevation Myocardial Infarction

Muhammad Aetesam-Ur-Rahman, Adam J Brown, Catherine Jaworski, Joel P Giblett, Tian X Zhao, Denise M Braganza, Sarah C Clarke, Bobby S K Agrawal, Martin R Bennett, Nick E J West, Stephen P Hoole, Muhammad Aetesam-Ur-Rahman, Adam J Brown, Catherine Jaworski, Joel P Giblett, Tian X Zhao, Denise M Braganza, Sarah C Clarke, Bobby S K Agrawal, Martin R Bennett, Nick E J West, Stephen P Hoole

Abstract

Background Adenosine is used to treat no-reflow in the infarct-related artery (IRA) during ST-segment-elevation myocardial infarction intervention. However, the physiological effect of adenosine in the IRA is variable. Coronary steal-a reduction of blood flow to the distal coronary bed-can occur in response to adenosine and this is facilitated by collaterals. We investigated the effects of adenosine on coronary flow reserve (CFR) in patients presenting with ST-segment-elevation myocardial infarction to better understand the physiological mechanism underpinning the variable response to adenosine. Methods and Results Pressure-wire assessment of the IRA after percutaneous coronary intervention was performed in 93 patients presenting with ST-segment-elevation myocardial infarction to calculate index of microvascular resistance, CFR, and collateral flow index by pressure. Modified collateral Rentrop grade to the IRA was recorded, as was microvascular obstruction by cardiac magnetic resonance imaging. Coronary steal (CFR <0.9), no change in flow (CFR=0.9-1.1), and hyperemic flow (CFR >1.1) after adenosine occurred in 19 (20%), 15 (16%), and 59 (63%) patients, respectively. Patients with coronary steal had higher modified Rentrop score to the IRA (1 [0, 1.75] versus 0 [0, 1], P<0.001) and a higher collateral flow index by pressure (0.25±0.10 versus 0.15±0.10, P=0.004) than the hyperemic group. The coronary steal group also had significantly higher index of microvascular resistance (61.68 [28.13, 87.04] versus 23.93 [14.67, 37.00], P=0.006) and had more disease (stenosis >50%) in the donor arteries (52.63% versus 22.03%, P=0.02) than the hyperemic group. Conclusions Adenosine-induced coronary steal may be responsible for a reduction in coronary flow reserve in a proportion of patients presenting with ST-segment-elevation myocardial infarction. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT03145194. URL: https://www.isrctn.com; Unique identifier: ISRCTN3176727.

Keywords: ST‐segment–elevation myocardial infarction; adenosine; collateral circulation; microvascular dysfunction.

Conflict of interest statement

At the time of study, authors had no conflicts of interest to declare. West has been appointed as CMO of Abbott Vascular since completion of this study.

Figures

Figure 1. Schematic representation of coronary steal…
Figure 1. Schematic representation of coronary steal post‐PCI in patients presenting with STEMI.
Fixed microvascular injury (“closed,” nonresponding microvasculature) in the stented infarct‐related artery (IRA) territory fails to respond to adenosine, whereas the non‐IRA‐related artery microcirculation retains the ability to vasodilate. An upstream stenosis in the donor artery will result in a pressure gradient favoring collateral‐dependent coronary steal—a fall in collateral flow during arteriolar vasodilatation to less than resting baseline levels. Quantification and direction of coronary flow is graphically depicted by size and darkness of arrow. CAD indicates coronary artery disease; PCI, percutaneous coronary intervention; and STEMI, ST‐segment–elevation myocardial infarction.
Figure 2. Stratification of patients by coronary…
Figure 2. Stratification of patients by coronary flow reserve (CFR) derived by thermodilution transit time (Tmn).
A and B, Hyperemic adenosine response, CFR >1.1, n=59; (C and D) No effect of adenosine, CFR=0.9 to 1.10, n=15; (E and F) Coronary steal after adenosine, CFR <0.90, n=19. Data are given as mean±SD, with P<0.05 given as bold.
Figure 3. Recruitment details of study patients.
Figure 3. Recruitment details of study patients.
CMR indicates cardiac magnetic resonance; IMR, index of microcirculatory resistance; IRA, infarct‐related artery; MI, myocardial infarction; PPCI, primary percutaneous coronary intervention; and STEMI, ST‐segment–elevation myocardial infarction.
Figure 4. Receiver operator curves of the…
Figure 4. Receiver operator curves of the parameters (alone and in combination) associated with slow flow response to adenosine and coronary steal.
AUC indicates area under the curve; CFIp, collateral flow index by pressure; and IMR, index of microcirculatory resistance.

References

    1. Pitarys CJ II, Virmani R, Vildibill HD Jr, Jackson EK, Forman MB. Reduction of myocardial reperfusion injury by intravenous adenosine administered during the early reperfusion period. Circulation. 1991;83:237–247. DOI: 10.1161/01.CIR.83.1.237.
    1. Huang RI, Patel P, Walinsky P, Fischman DL, Ogilby JD, Awar M, Frankil C, Savage MP. Efficacy of intracoronary nicardipine in the treatment of no‐reflow during percutaneous coronary intervention. Catheter Cardiovasc Interv. 2006;68:671–676. DOI: 10.1002/ccd.20885.
    1. Parikh KH, Chag MC, Shah KJ, Shah UG, Baxi HA, Chandarana AH, Naik AM, Shah JN, Shah HD, Goyal RK. Intracoronary boluses of adenosine and sodium nitroprusside in combination reverses slow/no‐reflow during angioplasty: a clinical scenario of ischemic preconditioning. Can J Physiol Pharmacol. 2007;85:476–482. DOI: 10.1139/y07-013.
    1. Mahaffey KW, Puma JA, Barbagelata NA, DiCarli MF, Leesar MA, Browne KF, Eisenberg PR, Bolli R, Casas AC, Molina‐Viamonte V, et al. Adenosine as an adjunct to thrombolytic therapy for acute myocardial infarction: results of a multicenter, randomized, placebo‐controlled trial: the Acute Myocardial Infarction STudy of ADenosine (AMISTAD) trial. J Am Coll Cardiol. 1999;34:1711–1720. DOI: 10.1016/S0735-1097(99)00418-0.
    1. Ross AM, Gibbons RJ, Stone GW, Kloner RA, Alexander RW. A randomized, double‐blinded, placebo‐controlled multicenter trial of adenosine as an adjunct to reperfusion in the treatment of acute myocardial infarction (AMISTAD‐II). J Am Coll Cardiol. 2005;45:1775–1780. DOI: 10.1016/j.jacc.2005.02.061.
    1. Nazir SA, McCann GP, Greenwood JP, Kunadian V, Khan JN, Mahmoud IZ, Blackman DJ, Been M, Abrams KR, Shipley L, et al. Strategies to attenuate micro‐vascular obstruction during P‐PCI: the randomized reperfusion facilitated by local adjunctive therapy in ST‐elevation myocardial infarction trial. Eur Heart J. 2016;37:1910–1919. DOI: 10.1093/eurheartj/ehw136.
    1. Seiler C. Assessment of functional significance of the stenotic substrate by Doppler flow measurements. In: Nienaber CA, Sechtem U, eds. Imaging and Intervention in Cardiology. Dordrecht/Boston/London: Kluwer Academic Publishers; 1996:17.
    1. Berry C, Balachandran KP, L'Allier PL, Lesperance J, Bonan R, Oldroyd KG. Importance of collateral circulation in coronary heart disease. Eur Heart J. 2007;28:278–291. DOI: 10.1093/eurheartj/ehl446.
    1. Rowe GG. Inequalities of myocardial perfusion in coronary artery disease ("coronary steal"). Circulation. 1970;42:193–194. DOI: 10.1161/01.CIR.42.2.193.
    1. Cohen MV, Sonnenblick EH, Kirk ES. Coronary steal: its role in detrimental effect of isoproterenol after acute coronary occlusion in dogs. Am J Cardiol. 1976;38:880–888. DOI: 10.1016/0002-9149(76)90801-8.
    1. Schaper W, Lewi P, Flameng W, Gijpen L. Myocardial steal produced by coronary vasocilation in chronic coronary artery occlusion. Basic Res Cardiol. 1973;68:3–20.
    1. Werner GS, Fritzenwanger M, Prochnau D, Schwarz G, Ferrari M, Aarnoudse W, Pijls NH, Figulla HR. Determinants of coronary steal in chronic total coronary occlusions donor artery, collateral, and microvascular resistance. J Am Coll Cardiol. 2006;48:51–58. DOI: 10.1016/j.jacc.2005.11.093.
    1. Group TTS . The thrombolysis in myocardial infarction (TIMI) trial. N Engl J Med. 1985;312:932–936.
    1. Chesebro JH, Knatterud G, Roberts R, Borer J, Cohen LS, Dalen J, Dodge HT, Francis CK, Hillis D, Ludbrook P, et al. Thrombolysis in Myocardial Infarction (TIMI) trial, phase I: a comparison between intravenous tissue plasminogen activator and intravenous streptokinase. Clinical findings through hospital discharge. Circulation. 1987;76:142–154. DOI: 10.1161/01.CIR.76.1.142.
    1. van 't Hof AW, Liem A, Suryapranata H, Hoorntje JC, de Boer MJ, ZijlstraF.Angiographic assessment of myocardial reperfusion in patients treated with primary angioplasty for acute myocardial infarction: myocardial blush grade. Zwolle Myocardial Infarction Study Group. Circulation. 1998;97:2302–2306. DOI: 10.1161/01.cir.97.23.2302.
    1. Fearon WF, Farouque HM, Balsam LB, Caffarelli AD, Cooke DT, Robbins RC, Fitzgerald PJ, Yeung AC, Yock PG. Comparison of coronary thermodilution and Doppler velocity for assessing coronary flow reserve. Circulation. 2003;108:2198–2200. DOI: 10.1161/01.CIR.0000099521.31396.9D.
    1. De Bruyne B, Pijls NH, Smith L, Wievegg M, Heyndrickx GR. Coronary thermodilution to assess flow reserve: experimental validation. Circulation. 2001;104:2003–2006. DOI: 10.1161/hc4201.099223.
    1. Barbato E, Aarnoudse W, Aengevaeren WR, Werner G, Klauss V, Bojara W, Herzfeld I, Oldroyd KG, Pijls NH, De Bruyne B. Validation of coronary flow reserve measurements by thermodilution in clinical practice. Eur Heart J. 2004;25:219–223. DOI: 10.1016/j.ehj.2003.11.009.
    1. Rahman H, Corcoran D, Aetesam‐Ur‐Rahman M, Hoole SP, Berry C, Perera D. Diagnosis of patients with angina and non‐obstructive coronary disease in the catheter laboratory. Heart. 2019;105:1536–1542. DOI: 10.1136/heartjnl-2019-315042.
    1. Pijls NH, van Son JA, Kirkeeide RL, De Bruyne B, Gould KL. Experimental basis of determining maximum coronary, myocardial, and collateral blood flow by pressure measurements for assessing functional stenosis severity before and after percutaneous transluminal coronary angioplasty. Circulation. 1993;87:1354–1367. DOI: 10.1161/01.CIR.87.4.1354.
    1. Hoole SP, Jaworski C, Brown AJ, McCormick LM, Agrawal B, Clarke SC, West NE. Serial assessment of the index of microcirculatory resistance during primary percutaneous coronary intervention comparing manual aspiration catheter thrombectomy with balloon angioplasty (IMPACT study): a randomised controlled pilot study. Open Heart. 2015;2:e000238. DOI: 10.1136/openhrt-2015-000238.
    1. Layland J, Carrick D, McEntegart M, Ahmed N, Payne A, McClure J, Sood A, McGeoch R, MacIsaac A, Whitbourn R, et al. Vasodilatory capacity of the coronary microcirculation is preserved in selected patients with non‐ST‐segment‐elevation myocardial infarction. Circ Cardiovasc Interv. 2013;6:231–236. DOI: 10.1161/CIRCINTERVENTIONS.112.000180.
    1. Pijls NH, Bech GJ, el Gamal MI, Bonnier HJ, De Bruyne B, Van Gelder B, Michels HR, Koolen JJ. Quantification of recruitable coronary collateral blood flow in conscious humans and its potential to predict future ischemic events. J Am Coll Cardiol. 1995;25:1522–1528. DOI: 10.1016/0735-1097(95)00111-G.
    1. Lee JH, Kim CY, Kim N, Jang SY, Bae MH, Yang DH, Cho Y, Chae SC, Park HS. Coronary collaterals function and clinical outcome between patients with acute and chronic total occlusion. JACC Cardiovasc Interv. 2017;10:585–593. DOI: 10.1016/j.jcin.2016.12.009.
    1. Perera D, Kanaganayagam GS, Saha M, Rashid R, Marber MS, Redwood SR. Coronary collaterals remain recruitable after percutaneous intervention. Circulation. 2007;115:2015–2021. DOI: 10.1161/CIRCULATIONAHA.106.665257.
    1. Fearon WF, Low AF, Yong AS, McGeoch R, Berry C, Shah MG, Ho MY, Kim HS, Loh JP, Oldroyd KG. Prognostic value of the index of microcirculatory resistance measured after primary percutaneous coronary intervention. Circulation. 2013;127:2436–2441. DOI: 10.1161/CIRCULATIONAHA.112.000298.
    1. de Waha S, Desch S, Eitel I, Fuernau G, Zachrau J, Leuschner A, Gutberlet M, Schuler G, Thiele H. Impact of early vs. late microvascular obstruction assessed by magnetic resonance imaging on long‐term outcome after ST‐elevation myocardial infarction: a comparison with traditional prognostic markers. Eur Heart J. 2010;31:2660–2668. DOI: 10.1093/eurheartj/ehq247.
    1. Boehrer JD, Lange RA, Willard JE, Hillis LD. Influence of collateral filling of the occluded infarct‐related coronary artery on prognosis after acute myocardial infarction. Am J Cardiol. 1992;69:10–12. DOI: 10.1016/0002-9149(92)90668-O.
    1. Gohlke H, Heim E, Roskamm H. Prognostic importance of collateral flow and residual coronary stenosis of the myocardial infarct artery after anterior wall Q‐wave acute myocardial infarction. Am J Cardiol. 1991;67:1165–1169. DOI: 10.1016/0002-9149(91)90920-G.
    1. Gould KL. Coronary steal. Is it clinically important? Chest. 1989;96:227–228. DOI: 10.1378/chest.96.2.227.
    1. Demer LL, Gould KL, Goldstein RA, Kirkeeide RL. Noninvasive assessment of coronary collaterals in man by PET perfusion imaging. J Nucl Med. 1990;31:259–270.
    1. Ntalianis A, Sels J‐W, Davidavicius G, Tanaka N, Muller O, Trana C, Barbato E, Hamilos M, Mangiacapra F, Heyndrickx GR, et al. Fractional flow reserve for the assessment of nonculprit coronary artery stenoses in patients with acute myocardial infarction. JACC Cardiovasc Interv. 2010;3:1274. DOI: 10.1016/j.jcin.2010.08.025.
    1. de Waha S, Desch S, Eitel I, Fuernau G, Lurz P, Leuschner A, Grothoff M, Gutberlet M, Schuler G, Thiele H. Relationship and prognostic value of microvascular obstruction and infarct size in ST‐elevation myocardial infarction as visualized by magnetic resonance imaging. Clin Res Cardiol. 2012;101:487–495. DOI: 10.1007/s00392-012-0419-3.
    1. Cenko E, van der Schaar M, Yoon J, Kedev S, Valvukis M, Vasiljevic Z, Ašanin M, Miličić D, Manfrini O, Badimon L, et al. Sex‐specific treatment effects after primary percutaneous intervention: a study on coronary blood flow and delay to hospital presentation. J Am Heart Assoc. 2019;8:e011190. DOI: 10.1161/JAHA.118.011190.
    1. Tubau JF, Chaitman BR, Bourassa MG, Lesperance J, Dupras G. Importance of coronary collateral circulation in interpreting exercise test results. Am J Cardiol. 1981;47:27–32. DOI: 10.1016/0002-9149(81)90285-X.
    1. Billinger M, Fleisch M, Eberli FR, Meier B, Seiler C. Collateral and collateral‐adjacent hyperemic vascular resistance changes and the ipsilateral coronary flow reserve. Documentation of a mechanism causing coronary steal in patients with coronary artery disease. Cardiovasc Res. 2001;49:600–608. DOI: 10.1016/S0008-6363(00)00175-9.
    1. Billinger M, Kloos P, Eberli FR, Windecker S, Meier B, Seiler C. Physiologically assessed coronary collateral flow and adverse cardiac ischemic events: a follow‐up study in 403 patients with coronary artery disease. J Am Coll Cardiol. 2002;40:1545–1550. DOI: 10.1016/S0735-1097(02)02378-1.
    1. Meier P, Lansky AJ, Fahy M, Xu K, White HD, Bertrand ME, Mehran R, Stone GW. The impact of the coronary collateral circulation on outcomes in patients with acute coronary syndromes: results from the ACUITY trial. Heart. 2014;100:647–651. DOI: 10.1136/heartjnl-2013-304435.
    1. Sabia PJ, Powers ER, Ragosta M, Sarembock IJ, Burwell LR, Kaul S. An association between collateral blood flow and myocardial viability in patients with recent myocardial infarction. N Engl J Med. 1992;327:1825–1831. DOI: 10.1056/NEJM199212243272601.
    1. Habib GB, Heibig J, Forman SA, Brown BG, Roberts R, Terrin ML, Bolli R. Influence of coronary collateral vessels on myocardial infarct size in humans. Results of phase I thrombolysis in myocardial infarction (TIMI) trial. The TIMI Investigators. Circulation. 1991;83:739–746. DOI: 10.1161/01.CIR.83.3.739.
    1. Clements IP, Christian TF, Higano ST, Gibbons RJ, Gersh BJ. Residual flow to the infarct zone as a determinant of infarct size after direct angioplasty. Circulation. 1993;88:1527–1533. DOI: 10.1161/01.CIR.88.4.1527.
    1. Meier P, Indermuehle A, Pitt B, Traupe T, de Marchi SF, Crake T, Knapp G, Lansky AJ, Seiler C. Coronary collaterals and risk for restenosis after percutaneous coronary interventions: a meta‐analysis. BMC Med. 2012;10:62. DOI: 10.1186/1741-7015-10-62.
    1. Klug G, Mayr A, Schenk S, Esterhammer R, Schocke M, Nocker M, Jaschke W, Pachinger O, Metzler B. Prognostic value at 5 years of microvascular obstruction after acute myocardial infarction assessed by cardiovascular magnetic resonance. J Cardiovasc Magn Reson. 2012;14:46. DOI: 10.1186/1532-429X-14-46.
    1. Smits PC, Abdel‐Wahab M, Neumann F‐J, Boxma‐de Klerk BM, Lunde K, Schotborgh CE, Piroth Z, Horak D, Wlodarczak A, Ong PJ, et al. Fractional flow reserve‐guided multivessel angioplasty in myocardial infarction. N Engl J Med. 2017;376:1234–1244. DOI: 10.1056/NEJMoa1701067.
    1. Pasceri V, Patti G, Pelliccia F, Gaudio C, Speciale G, Mehran R, Dangas GD. Complete revascularization during primary percutaneous coronary intervention reduces death and myocardial infarction in patients with multivessel disease: meta‐analysis and meta‐regression of randomized trials. JACC Cardiovasc Interv. 2018;11:833–843. DOI: 10.1016/j.jcin.2018.02.028.
    1. Mehta SR, Wood DA, Storey RF, Mehran R, Bainey KR, Nguyen H, Meeks B, Di Pasquale G, López‐Sendón J, Faxon DP, et al. Complete revascularization with multivessel PCI for myocardial infarction. N Engl J Med. 2019;381:1411–1421. DOI: 10.1056/NEJMoa1907775.
    1. Yamamoto K, Ito H, Iwakura K, Shintani Y, Masuyama T, Hori M, Kawano S, Higashino Y, Fujii K. Pressure‐derived collateral flow index as a parameter of microvascular dysfunction in acute myocardial infarction. J Am Coll Cardiol. 2001;38:1383–1389. DOI: 10.1016/S0735-1097(01)01585-6.

Source: PubMed

3
Sottoscrivi