Rate of cardiac arrhythmias and silent brain lesions in experienced marathon runners: rationale, design and baseline data of the Berlin Beat of Running study

Karl Georg Haeusler, Juliane Herm, Claudia Kunze, Matthias Krüll, Lars Brechtel, Jürgen Lock, Marc Hohenhaus, Peter U Heuschmann, Jochen B Fiebach, Wilhelm Haverkamp, Matthias Endres, Gerhard Jan Jungehulsing, Karl Georg Haeusler, Juliane Herm, Claudia Kunze, Matthias Krüll, Lars Brechtel, Jürgen Lock, Marc Hohenhaus, Peter U Heuschmann, Jochen B Fiebach, Wilhelm Haverkamp, Matthias Endres, Gerhard Jan Jungehulsing

Abstract

Background: Regular exercise is beneficial for cardiovascular health but a recent meta-analysis indicated a relationship between extensive endurance sport and a higher risk of atrial fibrillation, an independent risk factor for stroke. However, data on the frequency of cardiac arrhythmias or (clinically silent) brain lesions during and after marathon running are missing.

Methods/design: In the prospective observational "Berlin Beat of Running" study experienced endurance athletes underwent clinical examination (CE), 3 Tesla brain magnetic resonance imaging (MRI), carotid ultrasound imaging (CUI) and serial blood sampling (BS) within 2-3 days prior (CE, MRI, CUI, BS), directly after (CE, BS) and within 2 days after (CE, MRI, BS) the 38th BMW BERLIN-MARATHON 2011. All participants wore a portable electrocardiogram (ECG)-recorder throughout the 4 to 5 days baseline study period. Participants with pathological MRI findings after the marathon, troponin elevations or detected cardiac arrhythmias will be asked to undergo cardiac MRI to rule out structural abnormalities. A follow-up is scheduled after one year.

Results: Here we report the baseline data of the enrolled 110 athletes aged 36-61 years. Their mean age was 48.8 ± 6.0 years, 24.5% were female, 8.2% had hypertension and 2.7% had hyperlipidaemia. Participants have attended a mean of 7.5 ± 6.6 marathon races within the last 5 years and a mean of 16 ± 36 marathon races in total. Their weekly running distance prior to the 38th BMW BERLIN-MARATHON was 65 ± 17 km. Finally, 108 (98.2%) Berlin Beat-Study participants successfully completed the 38th BMW BERLIN-MARATHON 2011.

Discussion: Findings from the "Berlin Beats of Running" study will help to balance the benefits and risks of extensive endurance sport. ECG-recording during the marathon might contribute to identify athletes at risk for cardiovascular events. MRI results will give new insights into the link between physical stress and brain damage.

Trial registration: clinicaltrials.gov NCT01428778.

References

    1. Mora S, Cook N, Buring JE, Ridker PM, Lee I-M. Physical activity and reduced risk of cardiovascular events: potential mediating mechanisms. Circulation. 2007;116:2110–2118.
    1. Endres M, Gertz K, Lindauer U, Katchanov J, Schultze J, Schröck H, Nickenig G, Kuschinsky W, Dirnagl U, Laufs U. Mechanisms of stroke protection by physical activity. Ann Neurol. 2003;54:582–590.
    1. Winzer BM, Whiteman DC, Reeves MM, Paratz JD. Physical activity and cancer prevention: a systematic review of clinical trials. Cancer Causes Control. 2011;22:811–826.
    1. Carek PJ, Laibstain SE, Carek SM. Exercise for the treatment of depression and anxiety. Int J Psychiatry Med. 2011;41:15–28.
    1. Redelmeier DA, Greenwald JA. Competing risks of mortality with marathons: retrospective analysis. BMJ. 2007;335:1275–1277.
    1. Albert CM, Mittleman MA, Chae CU, Lee IM, Hennekens CH, Manson JE. Triggering of sudden death from cardiac causes by vigorous exertion. N Engl J Med. 2000;343:1355–1361.
    1. Oomah SR, Mousavi N, Bhullar N, Kumar K, Walker JR, Lytwyn M, Colish J, Wassef A, Kirkpatrick IDC, Sharma S, Jassal DS. The role of three-dimensional echocardiography in the assessment of right ventricular dysfunction after a half marathon: comparison with cardiac magnetic resonance imaging. J Am Soc Echocardiogr. 2011;24:207–213.
    1. Trivax JE, Franklin BA, Goldstein JA, Chinnaiyan KM, Gallagher MJ, DeJong AT, Colar JM, Haines DE, McCullough PA. Acute cardiac effects of marathon running. J Appl Physiol. 2010;108:1148–1153.
    1. Knebel F, Schimke I, Schroeckh S, Peters H, Eddicks S, Schattke S, Brechtel L, Lock J, Wernecke KD, Dreger H, Grubitz S, Schmidt J, Baumann G, Borges AC. Myocardial function in older male amateur marathon runners: assessment by tissue Doppler echocardiography, speckle tracking, and cardiac biomarkers. J Am Soc Echocardiogr. 2009;22:803–809.
    1. Abdulla J, Nielsen JR. Is the risk of atrial fibrillation higher in athletes than in the general population? A systematic review and meta-analysis. Europace. 2009;11:1156–1159.
    1. Mont L, Elosua R, Brugada J. Endurance sport practice as a risk factor for atrial fibrillation and atrial flutter. Europace. 2009;11:11–17.
    1. Aizer A, Gaziano JM, Cook NR, Manson JE, Buring JE, Albert CM. Relation of vigorous exercise to risk of atrial fibrillation. Am J Cardiol. 2009;103:1572–1577.
    1. Wolf PA, Abbott RD, Kannel WB. Atrial fibrillation as an independent risk factor for stroke: the Framingham Study. Stroke. 1991;22:983–988.
    1. Nieuwlaat R, Dinh T, Olsson SB, Camm AJ, Capucci A, Tieleman RG, Lip GYH, Crijns HJGM. Should we abandon the common practice of withholding oral anticoagulation in paroxysmal atrial fibrillation? Eur Heart J. 2008;29:915–922.
    1. Kobayashi A, Iguchi M, Shimizu S, Uchiyama S. Silent Cerebral Infarcts and Cerebral White Matter Lesions in Patients with Nonvalvular Atrial Fibrillation. J Stroke Cerebrovasc Dis. 2010.
    1. Debette S, Markus HS. The clinical importance of white matter hyperintensities on brain magnetic resonance imaging: systematic review and meta-analysis. BMJ. 2010;341:c3666.
    1. Maron BJ, Douglas PS, Graham TP, Nishimura RA, Thompson PD. Task Force 1: preparticipation screening and diagnosis of cardiovascular disease in athletes. J Am Coll Cardiol. 2005;45:1322–1326.
    1. Thompson PD, Franklin BA, Balady GJ, Blair SN, Corrado D, Estes NAM, Fulton JE, Gordon NF, Haskell WL, Link MS, Maron BJ, Mittleman MA, Pelliccia A, Wenger NK, Willich SN, Costa F. Exercise and acute cardiovascular events placing the risks into perspective: a scientific statement from the American Heart Association Council on Nutrition, Physical Activity, and Metabolism and the Council on Clinical Cardiology. Circulation. 2007;115:2358–2368.
    1. Corrado D, Schmied C, Basso C, Borjesson M, Schiavon M, Pelliccia A, Vanhees L, Thiene G. Risk of sports: do we need a pre-participation screening for competitive and leisure athletes? Eur Heart J. 2011;32:934–944.
    1. Drezner JA. Contemporary approaches to the identification of athletes at risk for sudden cardiac death. Curr Opin Cardiol. 2008;23:494–501.
    1. Wheeler MT, Heidenreich PA, Froelicher VF, Hlatky MA, Ashley EA. Cost-effectiveness of preparticipation screening for prevention of sudden cardiac death in young athletes. Ann Intern Med. 2010;152:276–286.
    1. Luurila OJ, Karjalainen J, Viitasalo M, Toivonen L. Arrhythmias and ST segment deviation during prolonged exhaustive exercise (ski marathon) in healthy middle-aged men. Eur Heart J. 1994;15:507–513.
    1. Ayus JC, Varon J, Arieff AL. Hyponatremia, cerebral edema, and noncardiogenic pulmonary edema in marathon runners. Ann Intern Med. 2000;132:711–714.
    1. Saenz AJ, Lee-Lewandrowski E, Wood MJ, Neilan TG, Siegel AJ, Januzzi JL, Lewandrowski KB. Measurement of a plasma stroke biomarker panel and cardiac troponin T in marathon runners before and after the 2005 Boston marathon. Am J Clin Pathol. 2006;126:185–189.
    1. Brott T, Adams HP, Olinger CP, Marler JR, Barsan WG, Biller J, Spilker J, Holleran R, Eberle R, Hertzberg V. Measurements of acute cerebral infarction: a clinical examination scale. Stroke. 1989;20:864–870.
    1. Rossi AC, Brands PJ, Hoeks APG. Automatic recognition of the common carotid artery in longitudinal ultrasound B-mode scans. Med Image Anal. 2008;12:653–665.
    1. Hotter B, Pittl S, Ebinger M, Oepen G, Jegzentis K, Kudo K, Rozanski M, Schmidt WU, Brunecker P, Xu C, Martus P, Endres M, Jungehülsing GJ, Villringer A, Fiebach JB. Prospective study on the mismatch concept in acute stroke patients within the first 24 h after symptom onset - 1000Plus study. BMC Neurol. 2009;9:60.
    1. Carr JC, Simonetti O, Bundy J, Li D, Pereles S, Finn JP. Cine MR angiography of the heart with segmented true fast imaging with steady-state precession. Radiology. 2001;219:828–834.
    1. Simonetti OP, Kim RJ, Fieno DS, Hillenbrand HB, Wu E, Bundy JM, Finn JP, Judd RM. An improved MR imaging technique for the visualization of myocardial infarction. Radiology. 2001;218:215–223.
    1. Camm AJ, Kirchhof P, Lip GYH, Schotten U, Savelieva I, Ernst S, Van Gelder IC, Al-Attar N, Hindricks G, Prendergast B, Heidbuchel H, Alfieri O, Angelini A, Atar D, Colonna P, De Caterina R, De Sutter J, Goette A, Gorenek B, Heldal M, Hohloser SH, Kolh P, Le Heuzey J-Y, Ponikowski P, Rutten FH, Vahanian A, Auricchio A, Bax J, Ceconi C, Dean V, Filippatos G. et al.Guidelines for the management of atrial fibrillation: The Task Force for the Management of Atrial Fibrillation of the European Society of Cardiology (ESC) Eur Heart J. 2010;31:2369–2429.
    1. Benameur K, Bykowski JL, Luby M, Warach S, Latour LL. Higher Prevalence of Cortical Lesions Observed in Patients with Acute Stroke Using High-Resolution Diffusion-Weighted Imaging. Am J Neuroradiol. 2006;27:1987–1989.
    1. Frayne R, Goodyear BG, Dickhoff P, Lauzon ML, Sevick RJ. Magnetic resonance imaging at 3.0 Tesla: challenges and advantages in clinical neurological imaging. Invest Radiol. 2003;38:385–402.
    1. Rustemli A, Bhatti TK, Wolff SD. Evaluating cardiac sources of embolic stroke with MRI. Echocardiography. 2007;24:301–308. discussion 308.
    1. Bruder O, Göricke S, Hunold P, Lowitsch M, Barkhausen J, Sabin GV, Forsting M, Fiebach JB. Myocardial scars are an underestimated cardiovascular burden in patients with internal carotid artery stenosis. Cerebrovas Dis. 2009;28:80–87.

Source: PubMed

3
Sottoscrivi