The effect of postpartum vitamin A supplementation on breast milk immune regulators and infant immune functions: study protocol of a randomized, controlled trial

Shaikh Meshbahuddin Ahmad, Md Iqbal Hossain, Peter Bergman, Yearul Kabir, Rubhana Raqib, Shaikh Meshbahuddin Ahmad, Md Iqbal Hossain, Peter Bergman, Yearul Kabir, Rubhana Raqib

Abstract

Background: Because of limited impact on infant morbidity, mortality, and vitamin A status, the new guideline of the World Health Organization (WHO) does not recommend postpartum vitamin A supplementation (VAS) as a public health intervention in developing countries. However, breast milk contains numerous immune-protective components that are important for infant immune development, and several of these components are regulated by vitamin A.

Methods/design: Postpartum women are being enrolled within 3 days (d) of delivery at a maternity clinic located in a slum area of Dhaka city and randomized to one of four postpartum VAS regimens (32/group, total 128). The regimens are as follows: Group 1: 200,000 IU VAS at <3 d and placebo at 6 weeks postpartum; Group 2: placebo at <3 d and 200,000 IU VAS at 6 weeks postpartum; Group 3: 200,000 IU VAS, both at <3 d and 6 weeks postpartum; Group 4: placebo, both at <3 d and 6 weeks postpartum. Breast milk samples at <3 d (before supplementation) and 4 months postpartum will be used to measure vitamin A and bioactive compounds. Infant blood samples at 2 and 4 months of age will be used to measure vitamin A, as well as innate and vaccine-specific immune responses. Dietary, anthropometric, and morbidity data are also being collected.

Discussion: This is the first placebo-controlled randomized clinical trial of postnatal vitamin A supplementation to investigate the key bioactive compounds in breast milk, important for infant immunity, in relation to dose and time point of postpartum supplementation and whether such maternal supplementation improves infant immune status during the critical period of early infancy.

Trial registration: ClinicalTrials.gov: NCT02043223 , 5 December 2013.

Figures

Figure 1
Figure 1
Study flow chart.aAccording to the national Expanded Program for Immunization (EPI) for newborn and infants. OPV, oral poliovirus vaccine; PENTA, pentavalent vaccines- a combination of five vaccines that comprise diphtheria, tetanus, whole cell pertussis, hepatitis B and haemophilus influenzae type b conjugate. bBased on maternal supplementations (Study interventions): Group 1: 200,000 IU VA at <3 d and placebo at 6 wk; Group 2: placebo at <3 d and 200,000 IU VA at 6-wk; Group 3: 200,000 IU VA, both at <3 d and 6 wk; and Group 4: placebo, both at <3 d and 6 wk.

References

    1. Groer MW, Beckstead JW. Multidimensional scaling of multiplex data: human milk cytokines. Biol Res Nurs. 2011;13(3):289–96. doi: 10.1177/1099800411402055.
    1. Agarwal S, Karmaus W, Davis S, Gangur V. Immune markers in breast milk and fetal and maternal body fluids: a systematic review of perinatal concentrations. J Hum Lact. 2010;27(2):171–86. doi: 10.1177/0890334410395761.
    1. Hettinga K, van Valenberg H, de Vries S, Boeren S, van Hooijdonk T, van Arendonk J, et al. The host defense proteome of human and bovine milk. PLoS One. 2011;6(4):e19433. doi: 10.1371/journal.pone.0019433.
    1. Xu Q, Kopp JB. Retinoid and TGF-beta families: crosstalk in development, neoplasia, immunity, and tissue repair. Semin Nephrol. 2012;32(3):287–94. doi: 10.1016/j.semnephrol.2012.04.008.
    1. Ahmad SM, Haskell MJ, Raqib R, Stephensen CB. Men with low vitamin A stores respond adequately to primary yellow fever and secondary tetanus toxoid vaccination. J Nutr. 2008;138(11):2276–83. doi: 10.3945/jn.108.092056.
    1. Ahmad SM, Haskell MJ, Raqib R, Stephensen CB. Markers of innate immune function are associated with vitamin A stores in men. J Nutr. 2009;139(2):377–85. doi: 10.3945/jn.108.100198.
    1. Ahmad SM, Haskell MJ, Raqib R, Stephensen CB. Vitamin A status is associated with T-cell responses in Bangladeshi men. Br J Nutr. 2009;102(6):797–802. doi: 10.1017/S0007114509316165.
    1. Lima MS, Ribeiro PP, Medeiros JM, Silva IF, Medeiros AC, Dimenstein R. Influence of postpartum supplementation with vitamin A on the levels of immunoglobulin A in human colostrum. J Pediatr (Rio J). 2012;88(2):115–8.
    1. Filteau SM, Rice AL, Ball JJ, Chakraborty J, Stoltzfus R, de Francisco A, et al. Breast milk immune factors in Bangladeshi women supplemented postpartum with retinol or beta-carotene. Am J Clin Nutr. 1999;69(5):953–8.
    1. Castellote C, Casillas R, Ramirez-Santana C, Perez-Cano FJ, Castell M, Moretones MG, et al. Premature delivery influences the immunological composition of colostrum and transitional and mature human milk. J Nutr. 2011;141(6):1181–7. doi: 10.3945/jn.110.133652.
    1. WHO, UNICEF, IVACG Task Force . Vitamin A supplements: a guide to their use in the treatment and prevention of vitamin A deficiency and xerophthalmia. 2. Geneva: World Health Organization; 1997.
    1. Ross DA. Recommendations for vitamin A supplementation. J Nutr. 2002;132(9 Suppl):2902S–6S.
    1. Gogia S, Sachdev HS. Maternal postpartum vitamin A supplementation for the prevention of mortality and morbidity in infancy: a systematic review of randomized controlled trials. Int J Epidemiol. 2010;39(5):1217–26. doi: 10.1093/ije/dyq080.
    1. Gogia S, Sachdev HS. Vitamin A supplementation for the prevention of morbidity and mortality in infants six months of age or less. Cochrane Database Syst Rev. 2011;10
    1. Oliveira-Menegozzo JM, Bergamaschi DP, Middleton P, East CE. Vitamin A supplementation for postpartum women. Cochrane Database Syst Rev. 2010;10
    1. World Health Organization . Guideline. Vitamin A supplementation in postpartum women. Geneva: World Health Organization; 2011.
    1. Dimenstein R, Lourenco RM, Ribeiro KD. Impact on colostrum retinol levels of immediate postpartum supplementation with retinyl palmitate. Rev Panam Salud Publica. 2007;22(1):51–4. doi: 10.1590/S1020-49892007000600007.
    1. Iliff PJ, Humphrey JH, Mahomva AI, Zvandasara P, Bonduelle M, Malaba L, et al. Tolerance of large doses of vitamin A given to mothers and their babies shortly after delivery. Nutrition Research. 1999;19(10):1437–46. doi: 10.1016/S0271-5317(99)00101-3.
    1. Bendich A, Langseth L. Safety of vitamin A. Am J Clin Nutr. 1989;49(2):358–71.
    1. Hathcock JN, Hattan DG, Jenkins MY, McDonald JT, Sundaresan PR, Wilkening VL. Evaluation of vitamin A toxicity. Am J Clin Nutr. 1990;52(2):183–202.
    1. Carpenter TO, Pettifor JM, Russell RM, Pitha J, Mobarhan S, Ossip MS, et al. Severe hypervitaminosis A in siblings: evidence of variable tolerance to retinol intake. J Pediatr. 1987;111(4):507–12. doi: 10.1016/S0022-3476(87)80109-9.
    1. Humphrey JH, Iliff PJ, Marinda ET, Mutasa K, Moulton LH, Chidawanyika H, et al. Effects of a single large dose of vitamin A, given during the postpartum period to HIV-positive women and their infants, on child HIV infection, HIV-free survival, and mortality. J Infect Dis. 2006;193(6):860–71. doi: 10.1086/500366.
    1. Nevinsky GA, Buneva VN. Human catalytic RNA- and DNA-hydrolyzing antibodies. J Immunol Methods. 2002;269(1–2):235–49. doi: 10.1016/S0022-1759(02)00234-X.
    1. Lacroix-Desmazes S, Wootla B, Delignat S, Dasgupta S, Nagaraja V, Kazatchkine MD, et al. Pathophysiology of catalytic antibodies. Immunol Lett. 2006;103(1):3–7. doi: 10.1016/j.imlet.2005.10.007.
    1. Ulevitch RJ, Tobias PS. Receptor-dependent mechanisms of cell stimulation by bacterial endotoxin. Annu Rev Immunol. 1995;13:437–57. doi: 10.1146/annurev.iy.13.040195.002253.
    1. Weidemann B, Schletter J, Dziarski R, Kusumoto S, Stelter F, Rietschel ET, et al. Specific binding of soluble peptidoglycan and muramyldipeptide to CD14 on human monocytes. Infect Immun. 1997;65(3):858–64.
    1. Sanjabi S, Zenewicz LA, Kamanaka M, Flavell RA. Anti-inflammatory and pro-inflammatory roles of TGF-beta, IL-10, and IL-22 in immunity and autoimmunity. Curr Opin Pharmacol. 2009;9(4):447–53. doi: 10.1016/j.coph.2009.04.008.
    1. Stavnezer J, Kang J. The surprising discovery that TGF beta specifically induces the IgA class switch. J Immunol. 2009;182(1):5–7. doi: 10.4049/jimmunol.182.1.5.
    1. Donnet-Hughes A, Duc N, Serrant P, Vidal K, Schiffrin EJ. Bioactive molecules in milk and their role in health and disease: the role of transforming growth factor-beta. Immunol Cell Biol. 2000;78(1):74–9. doi: 10.1046/j.1440-1711.2000.00882.x.
    1. Tan JT, Dudl E, LeRoy E, Murray R, Sprent J, Weinberg KI, et al. IL-7 is critical for homeostatic proliferation and survival of naive T cells. Proc Natl Acad Sci U S A. 2001;98(15):8732–7. doi: 10.1073/pnas.161126098.
    1. Seddon B, Tomlinson P, Zamoyska R. Interleukin 7 and T cell receptor signals regulate homeostasis of CD4 memory cells. Nat Immunol. 2003;4(7):680–6. doi: 10.1038/ni946.
    1. Lopez AF, Eglinton JM, Lyons AB, Tapley PM, To LB, Park LS, et al. Human interleukin-3 inhibits the binding of granulocyte-macrophage colony-stimulating factor and interleukin-5 to basophils and strongly enhances their functional activity. J Cell Physiol. 1990;145(1):69–77. doi: 10.1002/jcp.1041450111.
    1. Reeves AA, Johnson MC, Vasquez MM, Maheshwari A, Blanco CL. TGF-beta2, a protective intestinal cytokine, is abundant in maternal human milk and human-derived fortifiers but not in donor human milk. Breastfeed Med. 2013;8(6):496–502. doi: 10.1089/bfm.2013.0017.
    1. Filteau SM, Lietz G, Mulokozi G, Bilotta S, Henry CJ, Tomkins AM. Milk cytokines and subclinical breast inflammation in Tanzanian women: effects of dietary red palm oil or sunflower oil supplementation. Immunology. 1999;97(4):595–600. doi: 10.1046/j.1365-2567.1999.00834.x.
    1. Siegal FP, Kadowaki N, Shodell M, Fitzgerald-Bocarsly PA, Shah K, Ho S, et al. The nature of the principal type 1 interferon-producing cells in human blood. Science. 1999;284(5421):1835–7. doi: 10.1126/science.284.5421.1835.
    1. Fonteneau JF, Gilliet M, Larsson M, Dasilva I, Munz C, Liu YJ, et al. Activation of influenza virus-specific CD4+ and CD8+ T cells: a new role for plasmacytoid dendritic cells in adaptive immunity. Blood. 2003;101(9):3520–6. doi: 10.1182/blood-2002-10-3063.
    1. Di Pucchio T, Chatterjee B, Smed-Sorensen A, Clayton S, Palazzo A, Montes M, et al. Direct proteasome-independent cross-presentation of viral antigen by plasmacytoid dendritic cells on major histocompatibility complex class I. Nat Immunol. 2008;9(5):551–7. doi: 10.1038/ni.1602.
    1. Burl S, Townend J, Njie-Jobe J, Cox M, Adetifa UJ, Touray E, et al. Age-dependent maturation of Toll-like receptor-mediated cytokine responses in Gambian infants. PLoS One. 2011;6(4):e18185. doi: 10.1371/journal.pone.0018185.
    1. Lisciandro JG, Prescott SL, Nadal-Sims MG, Devitt CJ, Pomat W, Siba PM, et al. Ontogeny of Toll-like and NOD-like receptor-mediated innate immune responses in Papua New Guinean infants. PLoS One. 2012;7(5):e36793. doi: 10.1371/journal.pone.0036793.
    1. Battaglia M, Gregori S, Bacchetta R, Roncarolo MG. Tr1 cells: from discovery to their clinical application. Semin Immunol. 2006;18(2):120–7. doi: 10.1016/j.smim.2006.01.007.
    1. Chang HS, Sack DA. Development of a novel in vitro assay (ALS assay) for evaluation of vaccine-induced antibody secretion from circulating mucosal lymphocytes. Clin Diagn Lab Immunol. 2001;8(3):482–8.
    1. Slifka MK, Matloubian M, Ahmed R. Bone marrow is a major site of long-term antibody production after acute viral infection. J Virol. 1995;69(3):1895–902.
    1. Benner R, Hijmans W, Haaijman JJ. The bone marrow: the major source of serum immunoglobulins, but still a neglected site of antibody formation. Clin Exp Immunol. 1981;46(1):1–8.
    1. Giuliano AR, Neilson EM, Kelly BE, Canfield LM. Simultaneous quantitation and separation of carotenoids and retinol in human milk by high-performance liquid chromatography. Methods Enzymol. 1992;213:391–9. doi: 10.1016/0076-6879(92)13141-J.
    1. Alam DS, van Raaij JM, Hautvast JG, Yunus M, Wahed MA, Fuchs GJ. Effect of dietary fat supplementation during late pregnancy and first six months of lactation on maternal and infant vitamin A status in rural Bangladesh. J Health Popul Nutr. 2010;28(4):333–42. doi: 10.3329/jhpn.v28i4.6039.
    1. Newman V. Vitamin A, and breastfeeding: a comparison of data from developed and developing countries. Wellstart International: San Diego; 1993.
    1. Stoltzfus R, Underwood BA. Breastmilk vitamin A as an indicator of vitamin A status of women and infants. Bull World Health Organ. 1995;59(suppl):517S–24S.
    1. Allen LH, Haskell MJ. Vitamin A requirements of infants under six months of age. Food Nutr Bull. 2001;22:214–34.
    1. Haskell MJ, Brown KH. Maternal vitamin A nutriture and the vitamin A content of human milk. J Mammary Gland Biol Neoplasia. 1999;4(3):243–57. doi: 10.1023/A:1018745812512.
    1. Ayah RA, Mwaniki DL, Magnussen P, Tedstone AE, Marshall T, Alusala D, et al. The effects of maternal and infant vitamin A supplementation on vitamin A status: a randomised trial in Kenya. Br J Nutr. 2007;98(2):422–30. doi: 10.1017/S0007114507705019.
    1. Stoltzfus RJ, Hakimi M, Miller KW, Rasmussen KM, Dawiesah S, Habicht JP, et al. High dose vitamin A supplementation of breast-feeding Indonesian mothers: effects on the vitamin A status of mother and infant. J Nutr. 1993;123(4):666–75.
    1. Ahmed F, Mahmuda I, Sattar A, Akhtaruzzaman M. Anaemia and vitamin A deficiency in poor urban pregnant women of Bangladesh. Asia Pac J Clin Nutr. 2003;12(4):460–6.
    1. Lee V, Ahmed F, Wada S, Ahmed T, Ahmed AS, Parvin Banu C, et al. Extent of vitamin A deficiency among rural pregnant women in Bangladesh. Public Health Nutr. 2008;11(12):1326–31. doi: 10.1017/S1368980008002723.

Source: PubMed

3
Sottoscrivi