Aldehyde Dehydrogenases: Not Just Markers, but Functional Regulators of Stem Cells

Giuseppe Vassalli, Giuseppe Vassalli

Abstract

Aldehyde dehydrogenase (ALDH) is a superfamily of enzymes that detoxify a variety of endogenous and exogenous aldehydes and are required for the biosynthesis of retinoic acid (RA) and other molecular regulators of cellular function. Over the past decade, high ALDH activity has been increasingly used as a selectable marker for normal cell populations enriched in stem and progenitor cells, as well as for cell populations from cancer tissues enriched in tumor-initiating stem-like cells. Mounting evidence suggests that ALDH not only may be used as a marker for stem cells but also may well regulate cellular functions related to self-renewal, expansion, differentiation, and resistance to drugs and radiation. ALDH exerts its functional actions partly through RA biosynthesis, as all-trans RA reverses the functional effects of pharmacological inhibition or genetic suppression of ALDH activity in many cell types in vitro. There is substantial evidence to suggest that the role of ALDH as a stem cell marker comes down to the specific isoform(s) expressed in a particular tissue. Much emphasis has been placed on the ALDH1A1 and ALDH1A3 members of the ALDH1 family of cytosolic enzymes required for RA biosynthesis. ALDH1A1 and ALDH1A3 regulate cellular function in both normal stem cells and tumor-initiating stem-like cells, promoting tumor growth and resistance to drugs and radiation. An improved understanding of the molecular mechanisms by which ALDH regulates cellular function will likely open new avenues in many fields, especially in tissue regeneration and oncology.

Figures

Figure 1
Figure 1
Flow cytometry analysis of ALDH activity in cells isolated from a human cardiac atrial appendage tissue specimen using the Aldefluor™ assay. (a) ALDHbr gating is established by incubating Aldefluor™-reacted cells with the ALDH inhibitor DEAB (negative control). An ALDH/side scatter (SSC) plot is shown. ALDHbr gating was set to include the top 0.05% of DEAB-treated cells with respect to the intensity of the fluorescent signal. (b) Aldefluor-reacted cells analyzed in the absence of DEAB treatment.
Figure 2
Figure 2
Model of ALDH1A1 regulation, potential retinoid signaling pathways, and functional effects of ALDH in CSCs. Retinol is oxidized to retinal by retinol dehydrogenases, and retinal is then oxidized to RA by ALDH1 enzymes (green dotted line). In the classic pathway, RA enters the nucleus and binds to dimers of RARα and RXRs triggering the expression of its downstream target genes including RARβ (yellow dotted line). In the nonclassic pathway, RA binds to dimers of RXRs and PPARβ/δ to induce the expression of its downstream target genes including Akt (orange dotted line). In cells expressing ERα, RA can bind to dimers of RXRs and ERα (not shown). RA can also bind with RARα outside the nucleus to activate the PI3K/Akt pathway. Wnt pathway regulates ALDH1A1 through β-catenin/TCF-dependent transcription. MUC1-C induces ERK signaling and phosphorylates C/EBPβ. The complex of MUC1-C and C/EBPβ occupies the sequence upstream from the transcription initiation site of ALDH1, triggering ALDH1A1 expression. TGF-β-induced Smad4 downregulates ALDH1 (red dotted line). Notch promotes ALDH activity in CSCs through induction of deacetylase SIRT2, leading to ALDH1A1 deacetylation, while ALDH1A1 acetylation by acetyltransferase PCAF inhibits ALDH activity (blue dotted line; some parts of this figure were adapted with modifications from Figures 1 and 2 from Xu et al. [20], with editor's permission).

References

    1. Reya T., Morrison S. J., Clarke M. F., Weissman I. L. Stem cells, cancer, and cancer stem cells. Nature. 2001;414(6859):105–111. doi: 10.1038/35102167.
    1. Burns C. E., Zon L. I. Portrait of a stem cell. Developmental Cell. 2002;3(5):612–613. doi: 10.1016/S1534-5807(02)00329-5.
    1. Cai J., Weiss M. L., Rao M. S. In search of “stemness”. Experimental Hematology. 2004;32(7):585–598. doi: 10.1016/j.exphem.2004.03.013.
    1. Ivanova N. B., Dimos J. T., Schaniel C., Hackney J. A., Moore K. A., Lemischka I. R. A stem cell molecular signature. Science. 2002;298(5593):601–604. doi: 10.1126/science.1073823.
    1. Ramalho-Santos M., Yoon S., Matsuzaki Y., Mulligan R. C., Melton D. A. “Stemness”: transcriptional profiling of embryonic and adult stem cells. Science. 2002;298(5593):597–600. doi: 10.1126/science.1072530.
    1. Fortunel N. O., Otu H. H., Ng H. H., et al. Comment on “‘Stemness’: transcriptional profiling of embryonic and adult stem cells” and “A stem cell molecular signature” (I) Science. 2003;302(5644):p. 393. doi: 10.1126/science.1086384.
    1. Bernstein I. D., Andrews R. G., Rowley S. Isolation of human hematopoietic stem cells. Blood Cells. 1994;20:15–23.
    1. Kim M., Turnquist H., Jackson J., et al. The multidrug resistance transporter ABCG2 (breast cancer resistance protein 1) effluxes Hoechst 33342 and is overexpressed in hematopoietic stem cells. Clinical Cancer Research. 2002;8(1):22–28.
    1. Zhou S., Schuetz J. D., Bunting K. D., et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nature Medicine. 2001;7(9):1028–1034. doi: 10.1038/nm0901-1028.
    1. Cai J., Wu Y., Mirua T., et al. Properties of a fetal multipotent neural stem cell (NEP cell) Developmental Biology. 2002;251(2):221–240. doi: 10.1006/dbio.2002.0828.
    1. Moreb J. S. Aldehyde dehydrogenase as a marker for stem cells. Current Stem Cell Research & Therapy. 2008;3(4):237–246. doi: 10.2174/157488808786734006.
    1. Marchitti S. A., Brocker C., Stagos D., Vasiliou V. Non-P450 aldehyde oxidizing enzymes: The aldehyde dehydrogenase superfamily. Expert Opinion on Drug Metabolism & Toxicology. 2008;4(6):697–720. doi: 10.1517/17425255.4.6.697.
    1. Jackson B., Brocker C., Thompson D. C., et al. Update on the aldehyde dehydrogenase gene (ALDH) superfamily. Human Genomics. 2011;5(4):283–303. doi: 10.1186/1479-7364-5-4-283.
    1. Singh S., Brocker C., Koppaka V., et al. Aldehyde dehydrogenases in cellular responses to oxidative/electrophilicstress. Free Radical Biology & Medicine. 2013;56:89–101. doi: 10.1016/j.freeradbiomed.2012.11.010.
    1. Kastan M. B., Schlaffer E., Russo J. E., Colvin O. M., Civin C. I., Hilton J. Direct demonstration of elevated aldehyde dehydrogenase in human hematopoietic progenitor cells. Blood. 1990;74:1945–1950.
    1. Jones R. J., Barber J. P., Vala M. S., et al. Assessment of aldehyde dehydrogenase in viable cells. Blood. 1995;85:2742–2746.
    1. Storms R. W., Trujillo A. P., Springer J. B., et al. Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proceedings of the National Academy of Sciences of the United States of America. 1999;96(16):9118–9123. doi: 10.1073/pnas.96.16.9118.
    1. Laird D. J., De Tomaso A. W., Weissman I. L. Stem cells are units of natural selection in a colonial ascidian. Cell. 2006;124(3):647–648. doi: 10.1016/j.cell.2006.01.030.
    1. Fillmore C. M., Kuperwasser C. Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Research. 2008;10(2, article R25) doi: 10.1186/bcr1982.
    1. Xu X., Chai S., Wang P., et al. Aldehyde dehydrogenases and cancer stem cells. Cancer Letters. 2015;369(1):50–57. doi: 10.1016/j.canlet.2015.08.018.
    1. Hess D. A., Meyerrose T. E., Wirthlin L., et al. Functional characterization of highly purified human hematopoietic repopulating cells isolated according to aldehyde dehydrogenase activity. Blood. 2004;104(6):1648–1655. doi: 10.1182/blood-2004-02-0448.
    1. Storms R. W., Green P. D., Safford K. M., et al. Distinct hematopoietic progenitor compartments are delineated by the expression of aldehyde dehydrogenase and CD34. Blood. 2005;106(1):95–102. doi: 10.1182/blood-2004-09-3652.
    1. Hess D. A., Wirthlin L., Craft T. P., et al. Selection based on CD133 and high aldehyde dehydrogenase activity isolates long-term reconstituting human hematopoietic stem cells. Blood. 2006;107(5):2162–2169. doi: 10.1182/blood-2005-06-2284.
    1. Pearce D. J., Bonnet D. The combined use of Hoechst efflux ability and aldehyde dehydrogenase activity to identify murine and human hematopoietic stem cells. Experimental Hematology. 2007;35(9):1437–1446. doi: 10.1016/j.exphem.2007.06.002.
    1. Christ O., Lucke K., Imren S., et al. Improved purification of hematopoietic stem cells based on their elevated aldehyde dehydrogenase activity. Haematologica. 2007;92(9):1165–1172. doi: 10.3324/haematol.11366.
    1. Liu C., Chen B. J., DeOliveira D., Sempowski G. D., Chao N. J., Storms R. W. Progenitor cell dose determines the pace and completeness of engraftment in a xenograft model for cord blood transplantation. Blood. 2010;116(25):5518–5527. doi: 10.1182/blood-2009-12-260810.
    1. Gentry T., Foster S., Winstead L., Deibert E., Fiordalisi M., Balber A. Simultaneous isolation of human BM hematopoietic, endothelial and mesenchymal progenitor cells by flow sorting based on aldehyde dehydrogenase activity: implications for cell therapy. Cytotherapy. 2007;9(3):259–274. doi: 10.1080/14653240701218516.
    1. Capoccia B. J., Robson D. L., Levac K. D., et al. Revascularization of ischemic limbs after transplantation of human bone marrow cells with high aldehyde dehydrogenase activity. Blood. 2009;113(21):5340–5351. doi: 10.1182/blood-2008-04-154567.
    1. Fallon P., Gentry T., Balber A. E., et al. Mobilized peripheral blood SSCloALDHbr cells have the phenotypic and functional properties of primitive haematopoietic cells and their number correlates with engraftment following autologous transplantation. British Journal of Haematology. 2003;122(1):99–108. doi: 10.1046/j.1365-2141.2003.04357.x.
    1. Gunduz E., Demirel G., Bal C., Gulbas Z. Evaluation of mobilized peripheral stem cells according to CD34 and aldehyde dehydrogenase expression and effect of SSClo ALDHbr cells on hematopoietic recovery. Cytotherapy. 2010;12(8):1006–1012. doi: 10.3109/14653249.2010.509393.
    1. Lioznov M. V., Freiberger P., Kröger N., Zander A. R., Fehse B. Aldehyde dehydrogenase activity as a marker for the quality of hematopoietic stem cell transplants. Bone Marrow Transplantation. 2005;35(9):909–914. doi: 10.1038/sj.bmt.1704928.
    1. Shoulars K., Noldner P., Troy J. D., et al. Development and validation of a rapid, aldehyde dehydrogenase bright–based cord blood potency assay. Blood. 2016;127(19):2346–2354. doi: 10.1182/blood-2015-08-666990.
    1. Povsic T. J., Zavodni K. L., Vainorius E., Kherani J. F., Goldschmidt-Clermont P. J., Peterson E. D. Common endothelial progenitor cell assays identify discrete endothelial progenitor cell populations. American Heart Journal. 2009;157(2):335–344. doi: 10.1016/j.ahj.2008.10.010.
    1. Storrie White H., Smith L., Gentry T., Balber A. E. Mechanisms of action of human aldehyde dehydrogenase bright cells in therapy of cardiovascular diseases: expression analysis of angiogenic factors and aldehyde dehydrogenase isozymes. Journal of Stem Cell Research & Therapy. 2011;2(1) doi: 10.4172/2157-7633.s1-001.
    1. Sherman S. E., Kuljanin M., Cooper T. T., Putman D. M., Lajoie G. A., Hess D. A. High aldehyde dehydrogenase activity identifies a subset of human mesenchymal stromal cells with vascular regenerative potential. Stem Cells. 2017;35(6):1542–1553. doi: 10.1002/stem.2612.
    1. Sondergaard C. S., Hess D. A., Maxwell D. J., et al. Human cord blood progenitors with high aldehyde dehydrogenase activity improve vascular density in a model of acute myocardial infarction. Journal of Translational Medicine. 2010;8(1):p. 24. doi: 10.1186/1479-5876-8-24.
    1. Perin E. C., Murphy M. P., March K. L., et al. Evaluation of cell therapy on exercise performance and limb perfusion in peripheral artery disease: the CCTRN PACE Trial (patients with intermittent claudication injected with ALDH bright cells) Circulation. 2017;135(15):1417–1428. doi: 10.1161/CIRCULATIONAHA.116.025707.
    1. Perin E. C., Silva G. V., Zheng Y., et al. Randomized, double-blind pilot study of transendocardial injection of autologous aldehyde dehydrogenase–bright stem cells in patients with ischemic heart failure. American Heart Journal. 2012;163(3):415–421.e1. doi: 10.1016/j.ahj.2011.11.020.
    1. Povsic T. J., Zavodni K. L., Kelly F. L., et al. Circulating progenitor cells can be reliably identified on the basis of aldehyde dehydrogenase activity. Journal of the American College of Cardiology. 2007;50(23):2243–2248. doi: 10.1016/j.jacc.2007.08.033.
    1. Cai J., Cheng A., Luo Y., et al. Membrane properties of rat embryonic multipotent neural stem cells. Journal of Neurochemistry. 2004;88(1):212–226. doi: 10.1046/j.1471-4159.2003.02184.x.
    1. Corti S., Locatelli F., Papadimitriou D., et al. Identification of a primitive brain-derived neural stem cell population based on aldehyde dehydrogenase activity. Stem Cells. 2006;24(4):975–985. doi: 10.1634/stemcells.2005-0217.
    1. Obermair F. J., Fiorelli R., Schroeter A., et al. A novel classification of quiescent and transit amplifying adult neural stem cells by surface and metabolic markers permits a defined simultaneous isolation. Stem Cell Research. 2010;5(2):131–143. doi: 10.1016/j.scr.2010.05.001.
    1. Corti S., Locatelli F., Papadimitriou D., et al. Transplanted ALDHhiSSClo neural stem cells generate motor neurons and delay disease progression of nmd mice, an animal model of SMARD1. Human Molecular Genetics. 2006;15(2):167–187. doi: 10.1093/hmg/ddi446.
    1. Corti S., Nizzardo M., Nardini M., et al. Neural stem cell transplantation can ameliorate the phenotype of a mouse model of spinal muscular atrophy. The Journal of Clinical Investigation. 2008;118(10):3316–3330. doi: 10.1172/JCI35432.
    1. Vauchez K., Marolleau J. P., Schmid M., et al. Aldehyde dehydrogenase activity identifies a population of human skeletal muscle cells with high myogenic capacities. Molecular Therapy. 2009;17(11):1948–1958. doi: 10.1038/mt.2009.204.
    1. Jean E., Laoudj-Chenivesse D., Notarnicola C., et al. Aldehyde dehydrogenase activity promotes survival of human muscle precursor cells. Journal of Cellular and Molecular Medicine. 2011;15(1):119–133. doi: 10.1111/j.1582-4934.2009.00942.x.
    1. Ginestier C., Hur M. H., Charafe-Jauffret E., et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell. 2007;1(5):555–567. doi: 10.1016/j.stem.2007.08.014.
    1. Rovira M., Scott S. G., Liss A. S., Jensen J., Thayer S. P., Leach S. D. Isolation and characterization of centroacinar/terminal ductal progenitor cells in adult mouse pancreas. Proceedings of the National Academy of Sciences of the United States of America. 2010;107(1):75–80. doi: 10.1073/pnas.0912589107.
    1. Oakie A., Li J., Fellows G. F., Hess D. A., Wang R. Characterization and Differentiation of Sorted Human Fetal Pancreatic ALDHhi and ALDHhi/CD133+ Cells Toward Insulin-Expressing Cells. Stem Cells and Development. 2018;27(4):275–286. doi: 10.1089/scd.2017.0135.
    1. Burger P. E., Gupta R., Xiong X., et al. High aldehyde dehydrogenase activity: a novel functional marker of murine prostate stem/progenitor cells. Stem Cells. 2009;27(9):2220–2228. doi: 10.1002/stem.135.
    1. Dollé L., Best J., Empsen C., et al. Successful isolation of liver progenitor cells by aldehyde dehydrogenase activity in naïve mice. Hepatology. 2012;55(2):540–552. doi: 10.1002/hep.24693.
    1. Szabo A. Z., Fong S., Yue L., et al. The CD44+ ALDH+ population of human keratinocytes is enriched for epidermal stem cells with long-term repopulating ability. Stem Cells. 2013;31(4):786–799. doi: 10.1002/stem.1329.
    1. Puttini S., Plaisance I., Barile L., et al. ALDH1A3 is the key isoform that contributes to aldehyde dehydrogenase activity and affects in vitro proliferation in cardiac atrial appendage progenitor cells. Frontiers in Cardiovascular Medicine. 2018;5:p. 90. doi: 10.3389/fcvm.2018.00090.
    1. Koninckx R., Daniëls A., Windmolders S., et al. The cardiac atrial appendage stem cell: a new and promising candidate for myocardial repair. Cardiovascular Research. 2013;97(3):413–423. doi: 10.1093/cvr/cvs427.
    1. Zhou J., Zhang Y. Cancer stem cells: models, mechanisms and implications for improved treatment. Cell Cycle. 2008;7(10):1360–1370. doi: 10.4161/cc.7.10.5953.
    1. Dean M., Fojo T., Bates S. Tumour stem cells and drug resistance. Nature Reviews Cancer. 2005;5(4):275–284. doi: 10.1038/nrc1590.
    1. Lapidot T., Sirard C., Vormoor J., et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 1994;367(6464):645–648. doi: 10.1038/367645a0.
    1. Al-Hajj M., Wicha M. S., Benito-Hernandez A., Morrison S. J., Clarke M. F. Prospective identification of tumorigenic breast cancer cells. Proceedings of the National Academy of Sciences of the United States of America. 2003;100(7):3983–3988. doi: 10.1073/pnas.0530291100.
    1. Dylla S. J., Beviglia L., Park I. K., et al. Colorectal cancer stem cells are enriched in xenogeneic tumors following chemotherapy. PLoS One. 2008;3(6, article e2428) doi: 10.1371/journal.pone.0002428.
    1. Li X., Lewis M. T., Huang J., et al. Intrinsic resistance of tumorigenic breast cancer cells to chemotherapy. Journal of the National Cancer Institute. 2008;100(9):672–679. doi: 10.1093/jnci/djn123.
    1. Tanei T., Morimoto K., Shimazu K., et al. Association of breast cancer stem cells identified by aldehyde dehydrogenase 1 expression with resistance to sequential paclitaxel and epirubicin-based chemotherapy for breast cancers. Clinical Cancer Research. 2009;15(12):4234–4241. doi: 10.1158/1078-0432.CCR-08-1479.
    1. Jimeno A., Feldmann G., Suarez-Gauthier A., et al. A direct pancreatic cancer xenograft model as a platform for cancer stem cell therapeutic development. Molecular Cancer Therapeutics. 2009;8(2):310–314. doi: 10.1158/1535-7163.MCT-08-0924.
    1. Mueller M.-T., Hermann P. C., Witthauer J., et al. Combined targeted treatment to eliminate tumorigenic cancer stem cells in human pancreatic cancer. Gastroenterology. 2009;137(3):1102–1113. doi: 10.1053/j.gastro.2009.05.053.
    1. Rasheed Z. A., Yang J., Wang Q., et al. Prognostic significance of tumorigenic cells with mesenchymal features in pancreatic adenocarcinoma. Journal of the National Cancer Institute. 2010;102(5):340–351. doi: 10.1093/jnci/djp535.
    1. Li T., Su Y., Mei Y., et al. ALDH1A1 is a marker for malignant prostate stem cells and predictor of prostate cancer patients’ outcome. Laboratory Investigation. 2010;90(2):234–244. doi: 10.1038/labinvest.2009.127.
    1. Pors K., Moreb J. S. Aldehyde dehydrogenases in cancer: an opportunity for biomarker and drug development? Drug Discovery Today. 2014;19(12):1953–1963. doi: 10.1016/j.drudis.2014.09.009.
    1. Alison M. R., Guppy N. J., Lim S. M. L., Nicholson L. J. Finding cancer stem cells: are aldehyde dehydrogenases fit for purpose? The Journal of Pathology. 2010;222(4):335–344. doi: 10.1002/path.2772.
    1. Orywal K., Szmitkowski M. Alcohol dehydrogenase and aldehyde dehydrogenase in malignant neoplasms. Clinical and Experimental Medicine. 2017;17(2):131–139. doi: 10.1007/s10238-016-0408-3.
    1. Rodriguez-Torres M., Allan A. L. Aldehyde dehydrogenase as a marker and functional mediator of metastasis in solid tumors. Clinical & Experimental Metastasis. 2016;33(1):97–113. doi: 10.1007/s10585-015-9755-9.
    1. Charafe-Jauffret E., Ginestier C., Iovino F., et al. Aldehyde dehydrogenase 1–positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clinical Cancer Research. 2010;16(1):45–55. doi: 10.1158/1078-0432.CCR-09-1630.
    1. Marcato P., Dean C. A., Pan D., et al. Aldehyde dehydrogenase activity of breast cancer stem cells is primarily due to isoform ALDH1A3 and its expression is predictive of metastasis. Stem Cells. 2011;29(1):32–45. doi: 10.1002/stem.563.
    1. Marcato P., Dean C. A., Liu R. Z., et al. Aldehyde dehydrogenase 1A3 influences breast cancer progression via differential retinoic acid signaling. Molecular Oncology. 2015;9(1):17–31. doi: 10.1016/j.molonc.2014.07.010.
    1. Liu Y., Nenutil R., Appleyard M. V., et al. Lack of correlation of stem cell markers in breast cancer stem cells. British Journal of Cancer. 2014;110(8):2063–2071. doi: 10.1038/bjc.2014.105.
    1. Kashii-Magaribuchi K., Takeuchi R., Haisa Y., et al. Induced expression of cancer stem cell markers ALDH1A3 and Sox-2 in hierarchical reconstitution of apoptosis-resistant human breast cancer cells. Acta Histochemica et Cytochemica. 2016;49(5):149–158. doi: 10.1267/ahc.16031.
    1. Ma S., Chan K. W., Lee T. K. W., et al. Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations. Molecular Cancer Research. 2008;6(7):1146–1153. doi: 10.1158/1541-7786.MCR-08-0035.
    1. Singh S., Arcaroli J., Chen Y., et al. ALDH1B1 is crucial for colon tumorigenesis by modulating Wnt/β-catenin, notch and PI3K/Akt signaling pathways. PLoS One. 2015;10(5, article e0121648) doi: 10.1371/journal.pone.0121648.
    1. Feng H., Liu Y., Bian X., Zhou F., Liu Y. ALDH1A3 affects colon cancer in vitro proliferation and invasion depending on CXCR4 status. British Journal of Cancer. 2018;118(2):224–232. doi: 10.1038/bjc.2017.363.
    1. Moreb J. S., Baker H. V., Chang L. J., et al. ALDH isozymes downregulation affects cell growth, cell motility and gene expression in lung cancer cells. Molecular Cancer. 2008;7(1):p. 87. doi: 10.1186/1476-4598-7-87.
    1. Liu J., Xiao Z., Wong S. K.-M., et al. Lung cancer tumorigenicity and drug resistance are maintained through ALDHhi CD44hi tumor initiating cells. Oncotarget. 2013;4(10):1698–1711. doi: 10.18632/oncotarget.1246.
    1. Yan J., De Melo J., Cutz J. C., Aziz T., Tang D. Aldehyde dehydrogenase 3A1 associates with prostate tumorigenesis. British Journal of Cancer. 2014;110(10):2593–2603. doi: 10.1038/bjc.2014.201.
    1. Orywal K., Jelski W., Werel T., Szmitkowski M. The diagnostic significance of serum alcohol dehydrogenase isoenzymes and aldehyde dehydrogenase activity in prostate cancer patients. Anticancer Research. 2017;37(9):4961–4965. doi: 10.21873/anticanres.11906.
    1. Kahlert C., Bergmann F., Beck J., et al. Low expression of aldehyde deyhdrogenase 1A1 (ALDH1A1) is a prognostic marker for poor survival in pancreatic cancer. BMC Cancer. 2011;11(1):p. 275. doi: 10.1186/1471-2407-11-275.
    1. Kuroda T., Hirohashi Y., Torigoe T., et al. ALDH1-high ovarian cancer stem-like cells can be isolated from serous and clear cell adenocarcinoma cells, and ALDH1 high expression is associated with poor prognosis. PLoS One. 2013;8(6, article e65158) doi: 10.1371/journal.pone.0065158.
    1. Wang Y., Zhe H., Gao P., Zhang N., Li G., Qin J. Cancer stem cell marker ALDH1 expression is associated with lymph node metastasis and poor survival in esophageal squamous cell carcinoma: a study from high incidence area of northern China. Diseases of the Esophagus. 2012;25(6):560–565. doi: 10.1111/j.1442-2050.2011.01279.x.
    1. Wakamatsu Y., Sakamoto N., Oo H. Z., et al. Expression of cancer stem cell markers ALDH1, CD44 and CD133 in primary tumor and lymph node metastasis of gastric cancer. Pathology International. 2012;62(2):112–119. doi: 10.1111/j.1440-1827.2011.02760.x.
    1. Li X. S., Xu Q., Fu X. Y., Luo W. S. ALDH1A1 overexpression is associated with the progression and prognosis in gastric cancer. BMC Cancer. 2014;14(1):p. 705. doi: 10.1186/1471-2407-14-705.
    1. Awad O., Yustein J. T., Shah P., et al. High ALDH activity identifies chemotherapy-resistant Ewing’s sarcoma stem cells that retain sensitivity to EWS-FLI1 inhibition. PLoS One. 2010;5(11, article e13943) doi: 10.1371/journal.pone.0013943.
    1. Flahaut M., Jauquier N., Chevalier N., et al. Aldehyde dehydrogenase activity plays a key role in the aggressive phenotype of neuroblastoma. BMC Cancer. 2016;16(1):p. 781. doi: 10.1186/s12885-016-2820-1.
    1. Luo Y., Dallaglio K., Chen Y., et al. ALDH1A isozymes are markers of human melanoma stem cells and potential therapeutic targets. Stem Cells. 2012;30(10):2100–2113. doi: 10.1002/stem.1193.
    1. Cheung A. M. S., Wan T. S. K., Leung J. C. K., et al. Aldehyde dehydrogenase activity in leukemic blasts defines a subgroup of acute myeloid leukemia with adverse prognosis and superior NOD/SCID engrafting potential. Leukemia. 2007;21(7):1423–1430. doi: 10.1038/sj.leu.2404721.
    1. Ran D., Schubert M., Pietsch L., et al. Aldehyde dehydrogenase activity among primary leukemia cells is associated with stem cell features and correlates with adverse clinical outcomes. Experimental Hematology. 2009;37(12):1423–1434. doi: 10.1016/j.exphem.2009.10.001.
    1. Gerber J. M., Smith B. D., Ngwang B., et al. A clinically relevant population of leukemic CD34+CD38− cells in acute myeloid leukemia. Blood. 2012;119(15):3571–3577. doi: 10.1182/blood-2011-06-364182.
    1. Januchowski R., Wojtowicz K., Zabel M. The role of aldehyde dehydrogenase (ALDH) in cancer drug resistance. Biomedicine & Pharmacotherapy. 2013;67(7):669–680. doi: 10.1016/j.biopha.2013.04.005.
    1. Sullivan J. P., Spinola M., Dodge M., et al. Aldehyde dehydrogenase activity selects for lung adenocarcinoma stem cells dependent on notch signaling. Cancer Research. 2010;70(23):9937–9948. doi: 10.1158/0008-5472.CAN-10-0881.
    1. Deng Y., Zhou J., Fang L., et al. ALDH1 is an independent prognostic factor for patients with stages II–III rectal cancer after receiving radiochemotherapy. British Journal of Cancer. 2014;110(2):430–434. doi: 10.1038/bjc.2013.767.
    1. Prasmickaite L., Engesæter B. Ø., Skrbo N., et al. Aldehyde dehydrogenase (ALDH) activity does not select for cells with enhanced aggressive properties in malignant melanoma. PLoS One. 2010;5(5, article e10731) doi: 10.1371/journal.pone.0010731.
    1. Boonyaratanakornkit J. B., Yue L., Strachan L. R., et al. Selection of tumorigenic melanoma cells using ALDH. Journal of Investigative Dermatology. 2010;130(12):2799–2808. doi: 10.1038/jid.2010.237.
    1. Hilton J. Role of aldehyde dehydrogenase in cyclophosphamide-resistant L1210 leukemia. Cancer Research. 1984;445:p. 156.
    1. Sládek N. E., Kollander R., Sreerama L., Kiang D. T. Cellular levels of aldehyde dehydrogenases (ALDH1A1 and ALDH3A1) as predictors of therapeutic responses to cyclophosphamide-based chemotherapy of breast cancer: a retrospective study. Cancer Chemotherapy and Pharmacology. 2002;49(4):309–321. doi: 10.1007/s00280-001-0412-4.
    1. Honoki K., Fujii H., Kubo A., et al. Possible involvement of stem-like populations with elevated ALDH1 in sarcomas for chemotherapeutic drug resistance. Oncology Reports. 2010;24(2):501–505. doi: 10.3892/or_00000885.
    1. Kawasoe M., Yamamoto Y., Okawa K., et al. Acquired resistance of leukemic cells to AraC is associated with the upregulation of aldehyde dehydrogenase 1 family member A2. Experimental Hematology. 2013;41(7):597–603.e2. doi: 10.1016/j.exphem.2013.03.004.
    1. Magni M., Shammah S., Schiro R., Mellado W., Dalla-Favera R., Gianni A. M. Induction of cyclophosphamide-resistance by aldehyde-dehydrogenase gene transfer. Blood. 1996;87:1097–1103.
    1. Kohn F. R., Landkamer G. J., Manthey C. L., Ramsay N. K., Sladek N. E. Effect of aldehyde dehydrogenase inhibitors on the ex vivo sensitivity of human multipotent and committed hematopoietic progenitor cells and malignant blood cells to oxazaphosphorines. Cancer Research. 1987;47(12):3180–3185.
    1. Sahovic E. A., Colvin M., Hilton J., Ogawa M. Role for aldehyde dehydrogenase in survival of progenitors for murine blast cell colonies after treatment with 4hydroperoxycyclophosphamide in vitro. Cancer Research. 1988;48(5):1223–1226.
    1. Kaizer H., Stuart R. K., Brookmeyer R., et al. Autologous bone marrow transplantation in acute leukemia: a phase I study of in vitro treat ment of marrow with 4-hydroperoxycyclophosphamide to purge tumor cells. Blood. 1985;65:1504–1510.
    1. Moreb J. S., Turner C., Sreerama L., Zucali J. R., Sladek N. E., Schweder M. Interleukin-1 and tumor necrosis factor alpha induce class 1 aldehyde dehydrogenase mRNA and protein in bone marrow cells. Leukemia & Lymphoma. 1995;20(1-2):77–84. doi: 10.3109/10428199509054756.
    1. Brennan S. K., Meade B., Wang Q., Merchant A. A., Kowalski J., Matsui W. Mantle cell lymphoma activation enhances bortezomib sensitivity. Blood. 2010;116(20):4185–4191. doi: 10.1182/blood-2010-02-268375.
    1. Landen C. N., Goodman B., Katre A. A., et al. Targeting aldehyde dehydrogenase cancer stem cells in ovarian cancer. Molecular Cancer Therapeutics. 2010;9(12):3186–3199. doi: 10.1158/1535-7163.MCT-10-0563.
    1. Morimoto K., Kim S. J., Tanei T., et al. Stem cell marker aldehyde dehydrogenase 1-positive breast cancers are characterized by negative estrogen receptor, positive human epidermal growth factor receptor type 2, and high Ki67 expression. Cancer Science. 2009;100(6):1062–1068. doi: 10.1111/j.1349-7006.2009.01151.x.
    1. Hida K., Maishi N., Akiyama K., et al. Tumor endothelial cells with high aldehyde dehydrogenase activity show drug resistance. Cancer Science. 2017;108(11):2195–2203. doi: 10.1111/cas.13388.
    1. Duru N., Fan M., Candas D., et al. HER2-associated radioresistance of breast cancer stem cells isolated from HER2-negative breast cancer cells. Clinical Cancer Research. 2012;18(24):6634–6647. doi: 10.1158/1078-0432.CCR-12-1436.
    1. Wang Y., Li W., Patel S. S., et al. Blocking the formation of radiation–induced breast cancer stem cells. Oncotarget. 2014;5(11):3743–3755. doi: 10.18632/oncotarget.1992.
    1. Cojoc M., Peitzsch C., Kurth I., et al. Aldehyde dehydrogenase is regulated by β-catenin/TCF and promotes radioresistance in prostate cancer progenitor cells. Cancer Research. 2015;75(7):1482–1494. doi: 10.1158/0008-5472.CAN-14-1924.
    1. Kitahara O., Katagiri T., Tsunoda T., Harima Y., Nakamura Y. Classification of sensitivity or resistance of cervical cancers to ionizing radiation according to expression profiles of 62 genes selected by cDNA microarray analysis. Neoplasia. 2002;4(4):295–303. doi: 10.1038/sj.neo.7900251.
    1. Muramoto G. G., Russell J. L., Safi R., et al. Inhibition of aldehyde dehydrogenase expands hematopoietic stem cells with radioprotective capacity. Stem Cells. 2010;28(3):523–534. doi: 10.1002/stem.299.
    1. Ma I., Allan A. L. The role of human aldehyde dehydrogenase in normal and cancer stem cells. Stem Cell Reviews and Reports. 2011;7(2):292–306. doi: 10.1007/s12015-010-9208-4.
    1. Zhao D., McCaffery P., Ivins K. J., et al. Molecular identification of a major retinoic-acid-synthesizing enzyme, a retinaldehyde-specific dehydrogenase. European Journal of Biochemistry. 1996;240(1):15–22. doi: 10.1111/j.1432-1033.1996.0015h.x.
    1. Elizondo G., Corchero J., Sterneck E., Gonzalez F. J. Feedback inhibition of the retinaldehyde dehydrogenase geneALDH1 by retinoic acid through retinoic acid receptor α and CCAAT/enhancer-binding protein β. Journal of Biological Chemistry. 2000;275(50):39747–39753. doi: 10.1074/jbc.M004987200.
    1. Collins S. J. Retinoic acid receptors, hematopoiesis and leukemogenesis. Current Opinion in Hematology. 2008;15(4):346–351. doi: 10.1097/MOH.0b013e3283007edf.
    1. Duester G., Mic F. A., Molotkov A. Cytosolic retinoid dehydrogenases govern ubiquitous metabolism of retinol to retinaldehyde followed by tissue-specific metabolism to retinoic acid. Chemico-Biological Interactions. 2003;143-144:201–210. doi: 10.1016/S0009-2797(02)00204-1.
    1. Appel B., Eisen J. S. Retinoids run rampant: multiple roles during spinal cord and motor neuron development. Neuron. 2003;40(3):461–464. doi: 10.1016/S0896-6273(03)00688-3.
    1. Chute J. P., Muramoto G. G., Whitesides J., et al. Inhibition of aldehyde dehydrogenase and retinoid signaling induces the expansion of human hematopoietic stem cells. Proceedings of the National Academy of Sciences of the United States of America. 2006;103(31):11707–11712. doi: 10.1073/pnas.0603806103.
    1. Ginestier C., Wicinski J., Cervera N., et al. Retinoid signaling regulates breast cancer stem cell differentiation. Cell Cycle. 2009;8(20):3297–3302. doi: 10.4161/cc.8.20.9761.
    1. Tallman M. S., Andersen J. W., Schiffer C. A., et al. All-trans-retinoic acid in acute promyelocytic leukemia. The New England Journal of Medicine. 1997;337(15):1021–1028. doi: 10.1056/NEJM199710093371501.
    1. Ying M., Wang S., Sang Y., et al. Regulation of glioblastoma stem cells by retinoic acid: role for Notch pathway inhibition. Oncogene. 2011;30(31):3454–3467. doi: 10.1038/onc.2011.58.
    1. Masia S., Alvarez S., de Lera A. R., Barettino D. Rapid, nongenomic actions of retinoic acid on phosphatidylinositol-3-kinase signaling pathway mediated by the retinoic acid receptor. Molecular Endocrinology. 2007;21(10):2391–2402. doi: 10.1210/me.2007-0062.
    1. Radominska-Pandya A., Chen G., Czernik P. J., et al. Direct interaction of all-trans-retinoic acid with protein kinase C (PKC). Implications for PKC signaling and cancer therapy. Journal of Biological Chemistry. 2000;275(29):22324–22330. doi: 10.1074/jbc.M907722199.
    1. Ross-Innes C. S., Stark R., Holmes K. A., et al. Cooperative interaction between retinoic acid receptor-α and estrogen receptor in breast cancer. Genes & Development. 2010;24(2):171–182. doi: 10.1101/gad.552910.
    1. Johansson H. J., Sanchez B. C., Mundt F., et al. Retinoic acid receptor alpha is associated with tamoxifen resistance in breast cancer. Nature Communications. 2013;4(1):p. 2175. doi: 10.1038/ncomms3175.
    1. Schug T. T., Berry D. C., Toshkov I. A., Cheng L., Nikitin A. Y., Noy N. Overcoming retinoic acid-resistance of mammary carcinomas by diverting retinoic acid from PPARβ/δ to RAR. Proceedings of the National Academy of Sciences of the United States of America. 2008;105(21):7546–7551. doi: 10.1073/pnas.0709981105.
    1. Yang Y., Zhou W., Xia J., et al. NEK2 mediates ALDH1A1-dependent drug resistance in multiple myeloma. Oncotarget. 2014;5(23):11986–11997. doi: 10.18632/oncotarget.2388.
    1. Hartley D. P., Ruth J. A., Petersen D. R. The hepatocellular metabolism of 4-hydroxynonenal by alcohol dehydrogenase, aldehyde dehydrogenase, and glutathione S-transferase. Archives of Biochemistry and Biophysics. 1995;316(1):197–205. doi: 10.1006/abbi.1995.1028.
    1. Gorrini C., Harris I. S., Mak T. W. Modulation of oxidative stress as an anticancer strategy. Nature Reviews Drug Discovery. 2013;12(12):931–947. doi: 10.1038/nrd4002.
    1. Mizuno T., Suzuki N., Makino H., et al. Cancer stem-like cells of ovarian clear cell carcinoma are enriched in the ALDH-high population associated with an accelerated scavenging system in reactive oxygen species. Gynecologic Oncology. 2015;137(2):299–305. doi: 10.1016/j.ygyno.2014.12.005.
    1. Ikeda J., Mamat S., Tian T., et al. Reactive oxygen species and aldehyde dehydrogenase activity in Hodgkin lymphoma cells. Laboratory Investigation. 2012;92(4):606–614. doi: 10.1038/labinvest.2012.4.
    1. Raha D., Wilson T. R., Peng J., et al. The cancer stem cell marker aldehyde dehydrogenase is required to maintain a drug-tolerant tumor cell subpopulation. Cancer Research. 2014;74(13):3579–3590. doi: 10.1158/0008-5472.CAN-13-3456.
    1. Kim R. J., Park J. R., Roh K. J., et al. High aldehyde dehydrogenase activity enhances stem cell features in breast cancer cells by activating hypoxia-inducible factor-2α. Cancer Letters. 2013;333(1):18–31. doi: 10.1016/j.canlet.2012.11.026.
    1. Lawenda B. D., Kelly K. M., Ladas E. J., Sagar S. M., Vickers A., Blumberg J. B. Should supplemental antioxidant administration be avoided during chemotherapy and radiation therapy? Journal of the National Cancer Institute. 2008;100(11):773–783. doi: 10.1093/jnci/djn148.
    1. Yanagawa Y., Chen J. C., Hsu L. C., Yoshida A. The transcriptional regulation of human aldehyde dehydrogenase I gene. The structural and functional analysis of the promoter. Journal of Biological Chemistry. 1995;270(29):17521–17527. doi: 10.1074/jbc.270.29.17521.
    1. Alam M., Ahmad R., Rajabi H., Kharbanda A., Kufe D. MUC1-C oncoprotein activates ERK→C/EBPβ signaling and induction of aldehyde dehydrogenase 1A1 in breast cancer cells. Journal of Biological Chemistry. 2013;288(43):30892–30903. doi: 10.1074/jbc.M113.477158.
    1. Hoshino Y., Nishida J., Katsuno Y., et al. Smad4 decreases the population of pancreatic cancer–initiating cells through transcriptional repression of ALDH1A1. The American Journal of Pathology. 2015;185(5):1457–1470. doi: 10.1016/j.ajpath.2015.01.011.
    1. Rice K. L., Izon D. J., Ford J., Boodhoo A., Kees U. R., Greene W. K. Overexpression of stem cell associated ALDH1A1, a target of the leukemogenic transcription factor TLX1/HOX11, inhibits lymphopoiesis and promotes myelopoiesis in murine hematopoietic progenitors. Leukemia Research. 2008;32(6):873–883. doi: 10.1016/j.leukres.2007.11.001.
    1. Canino C., Luo Y. Y., Marcato P., Blandino G., Pass H. I., Cioce M. A STAT3-NFkB/DDIT3/CEBPβ axis modulates ALDH1A3 expression in chemoresistant cell subpopulations. Oncotarget. 2015;6(14):12637–12653. doi: 10.18632/oncotarget.3703.
    1. Maddox J., Shakya A., South S., et al. Transcription factor Oct1 is a somatic and cancer stem cell determinant. PLoS Genetics. 2012;8(11, article e1003048) doi: 10.1371/journal.pgen.1003048.
    1. Brown R., Curry E., Magnani L., Wilhelm-Benartzi C. S., Borley J. Poised epigenetic states and acquired drug resistance in cancer. Nature Reviews Cancer. 2014;14(11):747–753. doi: 10.1038/nrc3819.
    1. Lovén J., Hoke H. A., Lin C. Y., et al. Selective inhibition of tumor oncogenes by disruption of super-enhancers. Cell. 2013;153(2):320–334. doi: 10.1016/j.cell.2013.03.036.
    1. Shi J., Vakoc C. R. The mechanisms behind the therapeutic activity of BET bromodomain inhibition. Molecular Cell. 2014;54(5):728–736. doi: 10.1016/j.molcel.2014.05.016.
    1. Yokoyama Y., Zhu H., Lee J. H., et al. BET inhibitors suppress ALDH activity by targeting ALDH1A1 super-enhancer in ovarian cancer. Cancer Research. 2016;76(21):6320–6330. doi: 10.1158/0008-5472.CAN-16-0854.
    1. Melo C. A., Drost J., Wijchers P. J., et al. eRNAs are required for p53-dependent enhancer activity and gene transcription. Molecular Cell. 2013;49(3):524–535. doi: 10.1016/j.molcel.2012.11.021.
    1. Zhao D., Mo Y., Li M. T., et al. NOTCH-induced aldehyde dehydrogenase 1A1 deacetylation promotes breast cancer stem cells. The Journal of Clinical Investigation. 2014;124(12):5453–5465. doi: 10.1172/JCI76611.
    1. Hirata N., Yamada S., Shoda T., Kurihara M., Sekino Y., Kanda Y. Sphingosine-1-phosphate promotes expansion of cancer stem cells via S1PR3 by a ligand-independent Notch activation. Nature Communications. 2014;5(1):p. 4806. doi: 10.1038/ncomms5806.
    1. Mu X., Isaac C., Greco N., Huard J., Weiss K. Notch signaling is associated with ALDH activity and an aggressive metastatic phenotype in murine osteosarcoma cells. Frontiers in Oncology. 2013;3:p. 143. doi: 10.3389/fonc.2013.00143.
    1. Moreb J. S., Gabr A., Vartikar G. R., Gowda S., Zucali J. R., Mohuczy D. Retinoic acid down-regulates aldehyde dehydrogenase and increases cytotoxicity of 4-hydroperoxycyclophosphamide and acetaldehyde. The Journal of Pharmacology and Experimental Therapeutics. 2005;312(1):339–345. doi: 10.1124/jpet.104.072496.
    1. Russo J. E. Inhibition of mouse and human class 1 aldehyde dehydrogenase by 4-(N,N-dialkylamino)benzaldehyde compounds. (Advances in Experimental Medicine and Biology).Enzymology and Molecular Biology of Carbonyl Metabolism 6. 1996;414:217–224. doi: 10.1007/978-1-4615-5871-2_25.
    1. Moreb J. S., Ucar D., Han S., et al. The enzymatic activity of human aldehyde dehydrogenases 1A2 and 2 (ALDH1A2 and ALDH2) is detected by Aldefluor, inhibited by diethylaminobenzaldehyde and has significant effects on cell proliferation and drug resistance. Chemico-Biological Interactions. 2012;195(1):52–60. doi: 10.1016/j.cbi.2011.10.007.
    1. Kusuma G. D., Abumaree M. H., Pertile M. D., Perkins A. V., Brennecke S. P., Kalionis B. Mesenchymal stem/stromal cells derived from a reproductive tissue niche under oxidative stress have high aldehyde dehydrogenase activity. Stem Cell Reviews and Reports. 2016;12(3):285–297. doi: 10.1007/s12015-016-9649-5.
    1. He X., Gonzalez V., Tsang A., Thompson J., Tsang T. C., Harris D. T. Differential gene expression profiling of CD34+ CD133+ umbilical cord blood hematopoietic stem progenitor cells. Stem Cells and Development. 2005;14(2):188–198. doi: 10.1089/scd.2005.14.188.
    1. Forsberg E. C., Prohaska S. S., Katzman S., Heffner G. C., Stuart J. M., Weissman I. L. Differential expression of novel potential regulators in hematopoietic stem cells. PLoS Genetics. 2005;1(3, article e28) doi: 10.1371/journal.pgen.0010028.
    1. Kiel M. J., Yilmaz O. H., Iwashita T., Yilmaz O. H., Terhorst C., Morrison S. J. SLAM family receptors distinguish hematopoietic stem and progenitor cells and reveal endothelial niches for stem cells. Cell. 2005;121(7):1109–1121. doi: 10.1016/j.cell.2005.05.026.
    1. Levi B. P., Yilmaz O. H., Duester G., Morrison S. J. Aldehyde dehydrogenase 1a1 is dispensable for stem cell function in the mouse hematopoietic and nervous systems. Blood. 2009;113(8):1670–1680. doi: 10.1182/blood-2008-05-156752.
    1. Eirew P., Kannan N., Knapp D. J. H. F., et al. Aldehyde dehydrogenase activity is a biomarker of primitive normal human mammary luminal cells. Stem Cells. 2012;30(2):344–348. doi: 10.1002/stem.1001.
    1. la Rosa P., Bielli P., Compagnucci C., et al. Sam68 promotes self-renewal and glycolytic metabolism in mouse neural progenitor cells by modulating Aldh1a3 pre-mRNA 3′-end processing. elife. 2016;5 doi: 10.7554/eLife.20750.
    1. Marcato P., Dean C. A., Giacomantonio C. A., Lee P. W. K. Aldehyde dehydrogenase: Its role as a cancer stem cell marker comes down to the specific isoform. Cell Cycle. 2011;10(9):1378–1384. doi: 10.4161/cc.10.9.15486.
    1. Januchowski R., Wojtowicz K., Zabel M. Aldehyde dehydrogenase 1A1 in stem cells and cancer. Oncotarget. 2016;7(10):11018–11032. doi: 10.18632/oncotarget.6920.
    1. Kozovska Z., Patsalias A., Bajzik V., et al. ALDH1A inhibition sensitizes colon cancer cells to chemotherapy. BMC Cancer. 2018;18(1):p. 656. doi: 10.1186/s12885-018-4572-6.
    1. Touma S. E., Perner S., Rubin M. A., Nanus D. M., Gudas L. J. Retinoid metabolism and ALDH1A2 (RALDH2) expression are altered in the transgenic adenocarcinoma mouse prostate model. Biochemical Pharmacology. 2009;78(9):1127–1138. doi: 10.1016/j.bcp.2009.06.022.
    1. Yang Z., Yang L., Zou Q., et al. Positive ALDH1A3 and negative GPX3 expressions are biomarkers for poor prognosis of gallbladder cancer. Disease Markers. 2013;35(3):172. doi: 10.1155/2013/187043.
    1. Kim Y. J., Yoon H. Y., Kim J. S., et al. HOXA9, ISL1 and ALDH1A3 methylation patterns as prognostic markers for nonmuscle invasive bladder cancer: Array-based DNA methylation and expression profiling. International Journal of Cancer. 2013;133(5):1135–1142. doi: 10.1002/ijc.28121.
    1. Zhang W., Yan W., You G., et al. Genome-wide DNA methylation profiling identifies ALDH1A3 promoter methylation as a prognostic predictor in G-CIMP− primary glioblastoma. Cancer Letters. 2013;328(1):120–125. doi: 10.1016/j.canlet.2012.08.033.
    1. Trasino S. E., Harrison E. H., Wang T. T. Androgen regulation of aldehyde dehydrogenase 1A3 (ALDH1A3) in the androgen-responsive human prostate cancer cell line LNCaP. Experimental Biology and Medicine. 2007;232(6):762–771.
    1. Shao C., Sullivan J. P., Girard L., et al. Essential role of aldehyde dehydrogenase 1A3 for the maintenance of non–small cell lung cancer stem cells is associated with the STAT3 pathway. Clinical Cancer Research. 2014;20(15):4154–4166. doi: 10.1158/1078-0432.CCR-13-3292.
    1. Chen Y., Orlicky D. J., Matsumoto A., Singh S., Thompson D. C., Vasiliou V. Aldehyde dehydrogenase 1B1 (ALDH1B1) is a potential biomarker for human colon cancer. Biochemical and Biophysical Research Communications. 2011;405(2):173–179. doi: 10.1016/j.bbrc.2011.01.002.
    1. Moreb J. S., Mohuczy D., Ostmark B., Zucali J. R. RNAi-mediated knockdown of aldehyde dehydrogenase class-1A1 and class-3A1 is specific and reveals that each contributes equally to the resistance against 4-hydroperoxycyclophosphamide. Cancer Chemotherapy and Pharmacology. 2007;59(1):127–136. doi: 10.1007/s00280-006-0233-6.
    1. Parajuli B., Fishel M. L., Hurley T. D. Selective ALDH3A1 inhibition by benzimidazole analogues increase mafosfamide sensitivity in cancer cells. Journal of Medicinal Chemistry. 2014;57(2):449–461. doi: 10.1021/jm401508p.
    1. Sreerama L., Sládek N. E. Three different stable human breast adenocarcinoma sublines that overexpress ALDH3A1 and certain other enzymes, apparently as a consequence of constitutively upregulated gene transcription mediated by transactivated EpREs (electrophile responsive elements) present in the 5′-upstream regions of these genes. Chem Biol Interact. 2001;130-132(1-3):247–260.
    1. Muzio G., Maggiora M., Paiuzzi E., Oraldi M., Canuto R. A. Aldehyde dehydrogenases and cell proliferation. Free Radical Biology & Medicine. 2012;52(4):735–746. doi: 10.1016/j.freeradbiomed.2011.11.033.
    1. Yu W. S., Jeong S. J., Kim J. H., et al. The genome-wide expression profile of 1,2,3,4,6-penta-O-galloyl-β-D-glucose-treated MDA-MB-231 breast cancer cells: molecular target on cancer metabolism. Molecules and Cells. 2011;32(2):123–132. doi: 10.1007/s10059-011-2254-1.
    1. Marchitti S. A., Brocker C., Orlicky D. J., Vasiliou V. Molecular characterization, expression analysis, and role of ALDH3B1 in the cellular protection against oxidative stress. Free Radical Biology & Medicine. 2010;49(9):1432–1443. doi: 10.1016/j.freeradbiomed.2010.08.004.
    1. Yoon K. A., Nakamura Y., Arakawa H. Identification of ALDH4 as a p53-inducible gene and its protective role in cellular stresses. Journal of Human Genetics. 2004;49(3):134–140. doi: 10.1007/s10038-003-0122-3.
    1. Stewart M. J., Malek K., Xiao Q., Dipple K. M., Crabb D. W. The novel aldehyde dehydrogenase gene, ALDH5, encodes an active aldehyde dehydrogenase enzyme. Biochemical and Biophysical Research Communications. 1995;211(1):144–151. doi: 10.1006/bbrc.1995.1789.
    1. Lenburg M. E., Liou L. S., Gerry N. P., Frampton G. M., Cohen H. T., Christman M. F. Previously unidentified changes in renal cell carcinoma gene expression identified by parametric analysis of microarray data. BMC Cancer. 2003;3(1):p. 31. doi: 10.1186/1471-2407-3-31.
    1. Lucas B., Grigo K., Erdmann S., Lausen J., Klein-Hitpass L., Ryffel G. U. HNF4α reduces proliferation of kidney cells and affects genes deregulated in renal cell carcinoma. Oncogene. 2005;24(42):6418–6431. doi: 10.1038/sj.onc.1208794.
    1. Kaur H., Mao S., Li Q., et al. RNA-Seq of human breast ductal carcinoma in situ models reveals aldehyde dehydrogenase isoform 5A1 as a novel potential target. PLoS One. 2012;7(12, article e50249) doi: 10.1371/journal.pone.0050249.
    1. Rexer B. N., Zheng W. L., Ong D. E. Retinoic acid biosynthesis by normal human breast epithelium is via aldehyde dehydrogenase 6, absent in MCF-7 cells. Cancer Research. 2001;61(19):7065–7070.
    1. Abdulrahman M., Maina E. N., Morris M. R., et al. Identification of novel VHL targets that are associated with the development of renal cell carcinoma. Oncogene. 2007;26(11):1661–1672. doi: 10.1038/sj.onc.1209932.
    1. van den Hoogen C., van der Horst G., Cheung H., Buijs J. T., Pelger R. C. M., van der Pluijm G. The aldehyde dehydrogenase enzyme 7A1 is functionally involved in prostate cancer bone metastasis. Clinical & Experimental Metastasis. 2011;28(7):615–625. doi: 10.1007/s10585-011-9395-7.
    1. Gupta P. B., onder T. T., Jiang G., et al. Identification of selective inhibitors of cancer stem cells by high-throughput screening. Cell. 2009;138(4):645–659. doi: 10.1016/j.cell.2009.06.034.
    1. Mao P., Joshi K., Li J., et al. Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3. Proceedings of the National Academy of Sciences of the United States of America. 2013;110(21):8644–8649. doi: 10.1073/pnas.1221478110.
    1. Sullivan K. E., Rojas K., Cerione R. A., Nakano I., Wilson K. F. The stem cell/cancer stem cell marker ALDH1A3 regulates the expression of the survival factor tissue transglutaminase, in mesenchymal glioma stem cells. Oncotarget. 2017;8(14):22325–22343. doi: 10.18632/oncotarget.16479.
    1. Pérez-Alea M., McGrail K., Sánchez-Redondo S., et al. ALDH1A3 is epigenetically regulated during melanocyte transformation and is a target for melanoma treatment. Oncogene. 2017;36(41):5695–5708. doi: 10.1038/onc.2017.160.
    1. Bunting K. D., Townsend A. J. De novo expression of transfected human class 1 aldehyde dehydrogenase (ALDH) causes resistance to oxazaphosphorine anti-cancer alkylating agents in hamster V79 cell lines. Elevated class 1 ALDH activity is closely correlated with reduction in DNA interstrand cross-linking and lethality. Journal of Biological Chemistry. 1996;271(20):11884–11890. doi: 10.1074/jbc.271.20.11884.
    1. Takebe N., Zhao S. C., Adhikari D., et al. Generation of dual resistance to 4-hydroperoxycyclophosphamide and methotrexate by retroviral transfer of the human aldehyde. Dehydrogenase class 1 gene and a mutated dihydrofolate reductase gene. Molecular Therapy. 2001;3(1):88–96. doi: 10.1006/mthe.2000.0236.
    1. Jang J. W., Song Y., Kim S. H., Kim J., Seo H. R. Potential mechanisms of CD133 in cancer stem cells. Life Sciences. 2017;184:25–29. doi: 10.1016/j.lfs.2017.07.008.
    1. Wang L., Zuo X., Xie K., Wei D. Cancer Stem Cells. Vol. 1692. New York, NY, USA: Humana Press; 2018. The role of CD44 and cancer stem cells; pp. 31–42. (Methods in Molecular Biology).
    1. Huddle B. C., Grimley E., Buchman C. D., et al. Structure-based optimization of a novel class of aldehyde dehydrogenase 1A (ALDH1A) subfamily-selective inhibitors as potential adjuncts to ovarian cancer chemotherapy. Journal of Medicinal Chemistry. 2018;61(19):8754–8773. doi: 10.1021/acs.jmedchem.8b00930.

Source: PubMed

3
Sottoscrivi