Chronic Low Grade Inflammation in Pathogenesis of PCOS

Ewa Rudnicka, Katarzyna Suchta, Monika Grymowicz, Anna Calik-Ksepka, Katarzyna Smolarczyk, Anna M Duszewska, Roman Smolarczyk, Blazej Meczekalski, Ewa Rudnicka, Katarzyna Suchta, Monika Grymowicz, Anna Calik-Ksepka, Katarzyna Smolarczyk, Anna M Duszewska, Roman Smolarczyk, Blazej Meczekalski

Abstract

Polycystic ovary syndrome (PCOS) is a one of the most common endocrine disorders, with a prevalence rate of 5-10% in reproductive aged women. It's characterized by (1) chronic anovulation, (2) biochemical and/or clinical hyperandrogenism, and (3) polycystic ovarian morphology. PCOS has significant clinical implications and can lead to health problems related to the accumulation of adipose tissue, such as obesity, insulin resistance, metabolic syndrome, and type 2 diabetes. There is also evidence that PCOS patients are at higher risk of cardiovascular diseases, atherosclerosis, and high blood pressure. Several studies have reported the association between polycystic ovary syndrome (PCOS) and low-grade chronic inflammation. According to known data, inflammatory markers or their gene markers are higher in PCOS patients. Correlations have been found between increased levels of C-reactive protein (CRP), interleukin 18 (IL-18), tumor necrosis factor (TNF-α), interleukin 6 (IL-6), white blood cell count (WBC), monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1α (MIP-1α) in the PCOS women compared with age- and BMI-matched controls. Women with PCOS present also elevated levels of AGEs and increased RAGE (receptor for advanced glycation end products) expression. This chronic inflammatory state is aggravating by obesity and hyperinsulinemia. There are studies describing mutual impact of hyperinsulinemia and obesity, hyperandrogenism, and inflammatory state. Endothelial cell dysfunction may be also triggered by inflammatory cytokines. Many factors involved in oxidative stress, inflammation, and thrombosis were proposed as cardiovascular risk markers showing the endothelial cell damage in PCOS. Those markers include asymmetric dimethylarginine (ADMA), C-reactive protein (CRP), homocysteine, plasminogen activator inhibitor-I (PAI-I), PAI-I activity, vascular endothelial growth factor (VEGF) etc. It was also proposed that the uterine hyperinflammatory state in polycystic ovary syndrome may be responsible for significant pregnancy complications ranging from miscarriage to placental insufficiency. In this review, we discuss the most importance evidence concerning the role of the process of chronic inflammation in pathogenesis of PCOS.

Keywords: CRP; chronic inflammation; insulin resistance; interleukins; polycystic ovary syndrome.

Conflict of interest statement

The authors declare no conflict of interest.

References

    1. The Rotterdam ESHRE/ASRM-Sponsored PCOS Consensus Workshop Group Revised 2003 consensus on diagnostic criteria and long-term health risks related to polycystic ovary syndrome. Fertil. Steril. 2004;81:19–25. doi: 10.1016/j.fertnstert.2003.10.004.
    1. Diamanti-Kandarakis E., Dunaif A. Insulin resistance and the polycystic ovary syndrome revisited: An update on mechanisms and implications. Endocr. Rev. 2012;33:981–1030. doi: 10.1210/er.2011-1034.
    1. Aziz M., Sidelmann J.J., Faber J., Wissing M.-L.M., Naver K.V., Mikkelsen A.-L., Nilas L., Skouby S.O. Polycystic ovary syndrome: Cardiovascular risk factors according to specific phenotypes. AOGS. 2015;94:1082–1089. doi: 10.1111/aogs.12706.
    1. Lim S.S., Davies M.J., Norman R.J., Moran L.J. Overweight, obesity and central obesity in women with polycystic ovary syndrome: A systematic review and meta-analysis. Hum. Reprod. Update. 2012;18:618–637. doi: 10.1093/humupd/dms030.
    1. Monteiro R., Azevedo I. Chronic inflammation in obesity and the metabolic syndrome. Mediat. Inflamm. 2010;2010:1–10. doi: 10.1155/2010/289645.
    1. Pereira S.S., Alvarez-Leite J.I. Low grade inflammation, obesity, and diabetes. Cur. Obes. Rep. 2014;3:422–431. doi: 10.1007/s13679-014-0124-9.
    1. Maiorino M.I., Bellastella G., Giugliano D., Esposito K. Review from inflammation to sexual dysfunctions: A journey through diabetes, obesity, and metabolic syndrome. Endocrinol. Investig. 2018;41:1249–1258. doi: 10.1007/s40618-018-0872-6.
    1. Xiong Y.L., Liang X.Y., Yang X., Li Y., Wei L. Low grade chronic inflammation in the peripheral blood and ovaries of women with polycystic ovarian syndrome. Eur. J. Obst. Gynecol. Reprod. Biol. 2011;159:148–150. doi: 10.1016/j.ejogrb.2011.07.012.
    1. Boulman N., Levy Y., Leiba R., Shachar S., Linn R., Zinder O., Blumenfeld Z. Increased C-reactive protein levels in the polycystic ovary syndrome: A marker of cardiovascular disease. J. Clin. Endocrinol. Metab. 2004;89:2160–2165. doi: 10.1210/jc.2003-031096.
    1. Rudnicka E., Kunicki M., Suchta K., Machura P., Grymowicz M., Smolarczyk R. Inflammatory Markers in Women with Polycystic Ovary Syndrome. Biomed Res. Int. 2020;2020:4092470. doi: 10.1155/2020/4092470.
    1. Mažibrada I., Djukić T., Perović S., Plješa-Ercegovac M., Plavšić L., Bojanin D., Bjekić-Macut J., Simić P.D., Simić T., Savić-Radojević A., et al. The association of hs-CRP and fibrinogen with anthropometric and lipid parameters in non-obese adolescent girls with polycystic ovary syndrome. J. Pediatr. Endocrinol. Metab. 2018;27:1213–1220. doi: 10.1515/jpem-2017-0511.
    1. Franik G., Sadlocha M., Madej P., Owczarek A., Skrzypulec-Plinta V., Plinta R., Chudek J., Olszanecka-Glinianowicz M. Circulating omentin-1 levels and inflammation in polycystic ovary syndrome. Ginekol. Pol. 2020;91:308–312. doi: 10.5603/GP.2020.0057.
    1. McClung J., Karl P. Iron deficiency and obesity: The contribution of inflammation and diminished iron absorption. Nutr. Rev. 2009;67:100–104. doi: 10.1111/j.1753-4887.2008.00145.x.
    1. Kelly C.C.J., Lyall H., Petrie J.R., Gould G.W., Connell J.M.C., Sattar N. Low grade chronic inflammation in women with polycystic ovarian syndrome. J. Clin. Endocrinol. Metab. 2001;86:2453–2455. doi: 10.1210/jcem.86.6.7580.
    1. Tola E.N., Yalcin S.E., Dugan N. The predictive effect of inflammatory markers and lipid accumulation product index on clinical symptoms associated with polycystic ovary syndrome in nonobese adolescents and younger aged women. Eur. J. Obst. Gynecol. Reprod. Biol. 2017;214:168–172. doi: 10.1016/j.ejogrb.2017.05.014.
    1. Souza Dos Santos A.C., Soares N.P., Costa E.C., Ferrezini de Sa J.C., Azevedo G.D., Lemos T.M. The impact of body mass on inflammatory markers and insulin resistance in polycystic ovary syndrome. Gynecol. Endocrinol. 2015;31:225–228. doi: 10.3109/09513590.2014.976546.
    1. Orio F., Jr., Palomba S., Cascella T., Di Biase S., Manguso F., Tauchmanova L., Nardo L.G., Labella D., Savastano S., Russo T., et al. The increase of leukocytes as a new putative marker of low-grade chronic inflammation and early cardiovascular risk in polycystic ovary syndrome. J. Clin. Endocrinol. Metabol. 2005;90:2–5. doi: 10.1210/jc.2004-0628.
    1. Escobar Morreale H.F., Laque-Ramirez M., Gonzalez F. Circulating inflammatory markers in polycystic ovary syndrome: A systematic review and meta-analysis. Fertil. Steril. 2011;95:1048–1058. doi: 10.1016/j.fertnstert.2010.11.036.
    1. Toulis K.A., Goulis D.G., Mintziori G., Kintiraki E., Eukarpidis E., Mouratoglou S.-A., Pavlaki A., Stergianos S., Poulasouchidou M., Tzellos T.G., et al. Meta-analysis of cardiovascular disease risk markers in polycystic ovary syndrome. Hum. Reprod. Update. 2011;17:741–760. doi: 10.1093/humupd/dmr025.
    1. Diamanti-Kandrakis E., Paterakis T., Alexandraki K., Piperi C.H., Aessopos A., Katsikis I., Katsilambros N., Kreatsas G., Panidis D. Indices of low-grade chronic inflammation in polycystic ovary syndrome and the beneficial effect of metformin. Eur. J. Clin. Investig. 2006;21:1426–1431. doi: 10.1093/humrep/del003.
    1. Deligeoroglou E., Vrachnis N., Athanasopoulos N., Iliodromiti Z., Sifakis S., Siristatidis C., Creatsas G., Iliodromiti S. Mediators of chronic inflammation in polycystic ovarian syndrome. Gynecol. Endocrinol. 2012;28:974–978. doi: 10.3109/09513590.2012.683082.
    1. Kaya C., Pabuccu R., Berker B. Plasma interleukin-18 levels are increased in the polycystic ovary syndrome: Relationship of carotid intima-media wall thickness and cardiovascular risk factors. Fertil. Steril. 2010;93:1200–1207. doi: 10.1016/j.fertnstert.2008.10.070.
    1. Escobar-Morreale H.F., Botella-Carretero J.I., Villuendas G., Sancho J., San Millan J.L. Serum interleukin-18 concentrations are increased in the polycystic ovary syndrome: Relationship to insulin resistance and to obesity. J. Clin. Endocrinol. Metab. 2004;89:806–811. doi: 10.1210/jc.2003-031365.
    1. Glintborg D., Andersen M., Richelsen B., Bruun J.M. Plasma monocyte chemoattractant protein-1 (MCP-1) and macrophage inflammatory protein-1alpha are increased in patients with polycystic ovary syndrome (PCOS) and associated with adiposity, but unaffected by pioglitazone treatment. Clin. Endocrinol. 2009;7:652–658. doi: 10.1111/j.1365-2265.2009.03523.x.
    1. Hu W., Qiao J., Yang Y., Wang L., Li R. Elevated C-reactive protein and monocyte chemoattractant protein-1 in patients with polycystic ovary syndrome. Eur. J. Obs. Gynecol. Reprod. Biol. 2011;157:53–56. doi: 10.1016/j.ejogrb.2011.03.015.
    1. De Jager S.C., Kraaijeveld A.O., Grauss R.W., de Jager W., Liem S.S., van der Hoeven B.L., Prakken B.J., Putter H., van Berkel T.J.C., Atsma D.E., et al. CCL3 (MIP-1 alpha) levels are elevated during acute coronary syndromes and show strong prognostic power for future ischemic events. J. Mol. Cell Cardiol. 2008;45:446–452. doi: 10.1016/j.yjmcc.2008.06.003.
    1. Duleba A.J., Dokras A. Is PCOS an inflammatory process? Fertil. Steril. 2012;97:7–12. doi: 10.1016/j.fertnstert.2011.11.023.
    1. Olszanecka-Gilnianowicz M., Banś M., Zahorska-Markiewicz B., Janowska J., Kocełak P., Madej P., Klimek K. Is the polycystic ovary syndrome associated with chronic inflammation per se? Eur. J. Obs. Gynecol. Reprod. Biol. 2007;133:197–202. doi: 10.1016/j.ejogrb.2006.10.037.
    1. Liu M., Gao J., Zhang Y., Li P., Wang H., Ren X., Changmin L. Serum levels of TSP-1, NFĸB and TGF-ß1 in polycystic ovarian syndrome (PCOS) patients in northern China suggest PCOS is associated with chronic inflammation. Clin. Endocrinol. 2015;83:913–922. doi: 10.1111/cen.12951.
    1. Kolbus A., Walch K., Nagele F., Wenzl R., Unfried G., Huber J.C. Interleukin -1α but not interleukin-1ß gene polymorphism is associated with polycystic ovary syndrome. J. Reprod. Immunol. 2007;73:188–193. doi: 10.1016/j.jri.2006.08.002.
    1. Wang B., Zhou S., Wang J., Liu J., Ni F., Liu C., Yan J., Mu Y., Cao Y., Ma X. Lack of association between interleukin -1a gene (IL-1a) C (-889) T variant and polycystic ovary syndrome in Chinese women. Endocrine. 2009;35:198–203. doi: 10.1007/s12020-009-9152-8.
    1. Escobar-Morreale H.F., Calvo R.M., Sancho J., San Milan J.L. TNF-αand hyperandrogenism: A clinical, biochemical, and molecular genetic study. J. Clin. Endocrinol. Metab. 2001;86:3761–3767.
    1. Yun J.H., Choi J.W., Lee K.J., Shin J.S., Baek K.H. The promoter -1031(T/C) polymorphism in tumor necrosis factor-αassociated with polycystic ovary syndrome. Reprod. Biol. Endocrinol. 2011;9:131. doi: 10.1186/1477-7827-9-131.
    1. Milner C.R., Craig J.E., Hussey N.D., Norman J.R. No association between the -308 polymorphism in the tumor necrosis factor alpha (TNF-α) promoter region and polycystic ovaries. Mol. Hum. Reprod. 1999;5:5–9. doi: 10.1093/molehr/5.1.5.
    1. Brown D.W., Giles W.H., Croft J.B. White blood cell count: An independent predictor of coronary heart disease mortality among a national cohort. J. Clin. Epidemiol. 2001;54:16–22. doi: 10.1016/S0895-4356(00)00296-1.
    1. Papolou O., Livadas S., Karachalios A., Tolia N., Kokkoris P., Tripolitakis K., Diamanti-Kandrakis E. White blood cells levels and PCOS: Direct and indirect relationship with obesity and insulin resistance, but not with hyperandrogenemia. Hormones. 2015;14:91–100.
    1. Herlihy A.C., Kelly R.E., Hogan J.L., O’Connor N., Farah N., Turner M.J. Polycystic ovary syndrome and peripheral blood white cell count. J. Obstet. Gynecol. 2011;31:242–244. doi: 10.3109/01443615.2011.553693.
    1. Phelan N., O’Connor A., Tun T.K., Correia N., Boran G., Roche H.M. Leukocytosis in women with polycystic ovary syndrome (PCOS) is incompletely explained by obesity and insulin resistance. Clin. Endocrinol. 2013;78:107–113. doi: 10.1111/j.1365-2265.2012.04454.x.
    1. Mantalaris A., Panoskaltsis S., Sakai Y., Bourne P., Chang C., Messing E.M., Wu J.H. Localization of androgen receptor expression in human bone marrow. J. Pathol. 2001;193:361–366. doi: 10.1002/1096-9896(0000)9999:9999<::AID-PATH803>;2-W.
    1. Wiernik P.H. Androgen therapy for acute myeloid and hairy cell leukemia. Cur. Treat. Options Oncol. 2018;19:519. doi: 10.1007/s11864-018-0519-z.
    1. Garg D., Merhi Z. Relationship between Advanced Glycation End Products and Steroidogenesis in PCOS. Rep. Biol. Endocrinol. 2016;14:71. doi: 10.1186/s12958-016-0205-6.
    1. Merhi Z. Advanced glycation end products and their relevance in female reproduction. Hum. Reprod. 2014;29:135–145. doi: 10.1093/humrep/det383.
    1. Diamanti-Kandarakis E., Piperi C., Kalofoutis A., Creatsas G. Increased levels of serum advanced glycation end-products in women with polycystic ovary syndrome. Clin. Endocrinol. 2005;62:37–43. doi: 10.1111/j.1365-2265.2004.02170.x.
    1. Yang P., Feng J., Peng Q., Liu X., Fan Z. Advanced Glycation End Products: Potential Mechanism and Therapeutic Target in Cardiovascular Complications under Diabetes. Oxidative Med. Cell. Longev. 2019:9570616. doi: 10.1155/2019/9570616.
    1. Zuo T., Zhu M., Xu W. Roles of Oxidative Stress in Polycystic Ovary Syndrome and Cancers. Oxidative Med. Cell. Longev. 2016:8589318. doi: 10.1155/2016/8589318.
    1. Murri M., Luque-Ramírez M., Insenser M., Ojeda-Ojeda M., Escobar-Morreale H.F. Circulating markers of oxidative stress and polycystic ovary syndrome (PCOS): A systematic review and meta-analysis. Hum. Reprod. Update. 2013;19:268–288. doi: 10.1093/humupd/dms059.
    1. Zhang J., Bao Y., Zhou X., Zheng L. Polycystic ovary syndrome and mitochondrial dysfunction. Reprod. Biol. Endocrinol. 2019;17:1–15. doi: 10.1186/s12958-019-0509-4.
    1. Cozzolino M., Seli E. Mitochondrial function in women with polycystic ovary syndrome. Curr. Opin. Obs. Gynecol. 2020;32:205–212. doi: 10.1097/GCO.0000000000000619.
    1. Uysal S., Isik A.Z., Eris S., Yigit S., Yalcin Y., Ozbay P.O. Correlation of endometrial glycodelin expression and pregnancy outcome in cases with polycystic ovary syndrome treated with clomiphene citrate lpus metformine. A controlled study. Obstet. Gynecol. Int. 2015:278591. doi: 10.1155/2015/278591.
    1. Gonzales F., Considine R.V., Abdelhadi O.A., Acton A.J. Inflammation triggered by saturated fat ingestion is linked to insulin resistance and hyperandrogenism in polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2020;105:2152–2167. doi: 10.1210/clinem/dgaa108.
    1. Gonzales F. Nutrient- induced inflammation in polycystic ovary syndrome: Role in the development of metabolic aberration and ovarian dysfunction. Semin. Reprod. Med. 2015;33:276–286.
    1. Stocco C. Tissue physiology and pathology of aromatase. Steroids. 2012;77:27–35. doi: 10.1016/j.steroids.2011.10.013.
    1. De Luca C., Olefsky J.M. Inflammation and insulin resistance. FEBS Lett. 2008;582:97–105. doi: 10.1016/j.febslet.2007.11.057.
    1. Shoelson S.E., Lee J., Goldfine A.B. Inflammation and insulin resistance. J. Clin. Investig. 2006;116:1793–1801. doi: 10.1172/JCI29069.
    1. Zatterale F., Longo M., Naderi J., Raciti G.A., Desiderio A., Miele C., Beguinot F. Chronic Adipose Tissue Inflammation Linking Obesity to Insulin Resistance and Type 2 Diabetes. Front. Psychol. 2020;10:1607. doi: 10.3389/fphys.2019.01607.
    1. Rehman K., Akash M.S. Mechanisms of inflammatory responses and development of insulin resistance: How are they interlinked? J. Biomed. Sci. 2016;23:87. doi: 10.1186/s12929-016-0303-y.
    1. Chylikova J., Dvorackova J., Tauber Z., Kamarad V. M1/M2 macrophage polarization in human obese adipose tissue. Biomed. Pap. Med. Fac. Univ. Palacky Olomouc Czech. Republic. 2018;162:79–82. doi: 10.5507/bp.2018.015.
    1. Weisser S.B., McLarren K.W., Kuroda E., Sly L.M. Generation and characterization of murine alternatively activated macrophages. Meth. Molecul. Biolog. 2013;946:225–239.
    1. Lumeng C.N., DelProposto J.B., Westcott D.J., Saltiel A.R. Phenotypic switching of adipose tissue macrophages with obesity is generated by spatiotemporal differences in macrophage subtypes. Diabetes. 2008;57:3239–3246. doi: 10.2337/db08-0872.
    1. Lumeng C.N., Bodzin J.L., Saltiel A.R. Obesity induces a phenotypic switch in AT macrophage polarization. J. Clin. Investig. 2007;117:175–184. doi: 10.1172/JCI29881.
    1. Castoldi A., Naffah de Souza C., Câmara N.O., Moraes-Vieira P.M. The macrophage switch in obesity development. Front. Immunol. 2016:637. doi: 10.3389/fimmu.2015.00637.
    1. Boulenouar S., Michelet X., Duquette D., Alvarez D., Hogan A.E., Dold C., O’Connor D., Stutte S., Tavakkoli A., Winters D., et al. Adipose type one innate lymphoid cells regulate macrophage homeostasis through targeted cytotoxicity. Immunity. 2017:273–286. doi: 10.1016/j.immuni.2017.01.008.
    1. Chawla A., Nguyen K.D., Goh Y.P. Macrophage-mediated inflammation in metabolic disease. Nat. Rev. Immunol. 2011:738–749. doi: 10.1038/nri3071.
    1. Burhans M.G., Hagman D.K., Kuzma J.N., Schmidt K.A., Kratz M. Contribution of AT inflammation to the development of T2D mellitus. Compr. Physiol. 2018;9:1–58. doi: 10.1002/cphy.c170040.
    1. Nakatani Y., Kaneto H., Kawamori D., Hatazaki M., Miyatsuka T., Matsuoka T.-A., Kajimoto Y., Matsuhisa M., Yamasaki Y., Hori M. Modulation of the JNK pathway in liver affects IR status. J. Biol. Chem. 2004;279:45803–45809. doi: 10.1074/jbc.M406963200.
    1. Blüher M., Bashan N., Shai I., Harman-Boehm I., Tarnovscki T., Avinaoch E., Stumvoll M., Dietrich A., Klöting N., Rudich A. Activated Ask1-MKK4-p38MAPK/JNK stress signaling pathway in human omental fat tissue may link macrophage infiltration to whole-body Insulin sensitivity. J. Clin. Endocrinol. Metab. 2009;94:2507–2515. doi: 10.1210/jc.2009-0002.
    1. Lee B.C., Lee J. Cellular and molecular players in AT inflammation in the development of obesity-induced IR. Biochim. Biophys. Acta. 2014;1842:446–462. doi: 10.1016/j.bbadis.2013.05.017.
    1. Haase J., Weyer U., Immig K., Klöting N., Blüher M., Eilers J., Bechmann I., Gericke M. Local proliferation of macrophages in AT during obesity-induced inflammation. Diabetologia. 2014:562–571. doi: 10.1007/s00125-013-3139-y.
    1. Dumesic D.A., Phan J.D., Leung K.L., Grogan T.R., Ding X., Li X., Hoyos L.R., Abbott D.H., Chazenbalk G.D. Adipose insulin resistance in normalweight women with polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2019;104:2171–2183. doi: 10.1210/jc.2018-02086.
    1. Meng C. Nitric oxide (NO) levels in patients with polycystic ovary syndrome (PCOS): A meta-analysis. J. Int. Med. Res. 2019;47:4083–4094. doi: 10.1177/0300060519864493.
    1. Lagana A.S., Rossetti P., Sapia F., Chiofalo B., Buscema M., Valenti G., Rapisarda A.M.C., Vitale S.V. Evidence-based and patient-oriented inositol treatment in polycystic ovary syndrome: Changing the perspective of the disease. Int. J. Endocrinol. Metab. 2017;15:1–2. doi: 10.5812/ijem.43695.
    1. Facchinetti F., Unfer V., Dewailly D., Kamenov Z.A., Diamanti-Kandarakis E., Laganà A.S., Nestler J.E., Soulage C.O. Inositols in polycystic ovary syndrome: An overview on the advances. Trends Endocrinol. Metab. 2020;31:435–447. doi: 10.1016/j.tem.2020.02.002.
    1. Gambineri A., Pelusi C., Vicennati V., Pagotto U., Pasquali R. Obesity and the polycystic ovary syndrome. Int. J. Obes. 2002;26:883–896. doi: 10.1038/sj.ijo.0801994.
    1. Martin S.S., Qasim A., Reilly M.P. Leptin resistance. A possible interface of inflammation and metabolism in obesity related cardiovascular disease. J. Am. Coll. Cardiol. 2008;52:1201–1210. doi: 10.1016/j.jacc.2008.05.060.
    1. Henriques F., Bedard A.H., Luiz Batista Junior M. Adipose Tissue Inflammation and Metabolic Disorders. Adipose Tissue Update. 2019:1–11. doi: 10.5772/intechopen.88631.
    1. Wu H., Ballantyne C.M. Metabolic Inflammation and Insulin Resistance in Obesity. Circ. Res. 2020;126:1549–1564. doi: 10.1161/CIRCRESAHA.119.315896.
    1. Heilbronn L.K., Liu B. Do ATMs promote IR or AT remodelling in humans? Horm. Mol. Biol. Clin. Investig. 2014;20:3–13. doi: 10.1515/hmbci-2014-0036.
    1. Reilly S.M., Saltiel A.R. Adapting to obesity with AT inflammation. Nat. Rev. Endocrinol. 2017;13:633–643. doi: 10.1038/nrendo.2017.90.
    1. Shukla P., Mukherjee S. Mitochondrial dysfunction: An emerging link in the pathophysiology of polycystic ovary syndrome. Mitochondrion. 2020;52:24–39. doi: 10.1016/j.mito.2020.02.006.
    1. Kandaraki E., Chatzigeorgiou A., Piperi C., Palioura E., Palimeri S., Korkolopoulou P., Koutsilieris M., Papavassiliou A.G. Reduced ovarian glyoxalase-I activity by dietary glycotoxins and androgen excess: A causative link to polycystic ovarian syndrome. Mol. Med. 2012;18:1183–1189. doi: 10.2119/molmed.2012.00293.
    1. Milles H.M., Davies M.J., Morris D.H., Bankart J., Backledge H., Khunti K., Howlett T.A. Diabetes and cardiovascular events in women with polycycstic ovary syndrome: A 20-year retrospective cohort study. Clin. Endocrinol. 2012 doi: 10.1111/cen.12068.
    1. Caglar G.S., Oztas E., Karadag D., Pabuccu R., Demirtas S. Ischemia-modified albumin and cardiovascular risk markers in polycystic ovary syndrome with or without insulin resistance. Fertil. Steril. 2011;95:310–313. doi: 10.1016/j.fertnstert.2010.06.092.
    1. Nejabati H.R., Samandi N., Roshangar L., Nouri M. N1-methylniconamide as a possible modulator of cardiovascular risk markers in polycystic ovary syndrome. Life Sci. 2019;235 doi: 10.1016/j.lfs.2019.116843.
    1. Sthyapalan T., Atkin S.L. Recent advances in cardiovascular aspects of polycystic ovary syndrome. Eur. J. Endocrinol. 2012;166:575–583. doi: 10.1530/EJE-11-0755.
    1. Wyskida K., Franik G., Pohl N., Markuszewski L., Owczarek A., Madej P., Chudek J., Olszanecka-Glinianowicz M. Pentraxin 3 as a marker of endothelial dysfunction in young women with polycystic ovary syndrome. Scan J. Clin Lab. Investig. 2019;79:419–423. doi: 10.1080/00365513.2019.1637535.
    1. Sari U., Kaygusuz I., Kafali H. Is Pentraxin 3 a new cardiovascular risk marker in polycystic ovary syndrome? Gynecol. Obstet. Investig. 2014;78:173–178. doi: 10.1159/000363744.
    1. Wyskida K., Franik G., Choręza P., Pohl N., Markuszewski L., Owczarek A., Madej P., Chudek J., Olszanecka-Glinianowicz M. Pentraxin 3 levels in young women with and without polycystic ovary syndrome (PCOS) in relation to the nutritional status and systemic inflammation. Int. J. Endocrinol. 2014;170:401–409. doi: 10.1155/2020/1380176.
    1. Sahin F.K., Sahin S.B., Balik G., Ural U.M., Tekin Y.B., Cure M.C., Senturk S., Yuce S., Cure E. Does low pentraxin-3 levels associate with polycystic ovary syndrome and obesity? Int. J. Clin. Exp. Med. 2014;7:3512–3519.
    1. Camaioni A., Klinger F.G., Campagnolo L., Salusti A. The influence of pentraxin 3 on the ovarian function and its impact on fertility. Front. Immunol. 2018;9:2808. doi: 10.3389/fimmu.2018.02808.
    1. Pan J., Zhou C., Zhou Z., Yang Z., Dai T., Huang H., Jin L. Elevated ovarian pentraxin 3 in pilycystic ovary syndrome. J. Assist. Reprod Genet. 2021 doi: 10.1007/s10815-021-02105-4.
    1. Jakubowicz D.J., Iuorno M.J., Jakubowicz S., Roberts K.A., Nestler J.E. Effects of metformin on early pregnancy loss in the polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 2002;87:524–529. doi: 10.1210/jcem.87.2.8207.
    1. Yu H.-F., Chen H.-S., Rao D.-P., Gong J. Association between polycystic ovary syndrome and the risk of pregnancy complications. Medicine. 2016;95:51. doi: 10.1097/MD.0000000000004863.
    1. Van der Spuy Z.M., Dryer S.J. The pathogenesis of infertility and early pregnancy loss in polycystic ovary syndrome. Best Pract. Res. Clin. Obstet. Gynaecol. 2004;18:755–771. doi: 10.1016/j.bpobgyn.2004.06.001.
    1. Wang Q., Luo L., Lei Q., Lin M.-M., Huang X., Chen M.-H., Zeng Y.-H., Zhou C.-Q. Low aneuploidy rate in early pregnancy loss abortuses from patients with polycycstic ovary syndrome. Reprod. Biomed. Online. 2016;33:85–92. doi: 10.1016/j.rbmo.2016.04.006.
    1. Luo L., Gu F., Jie H., Ding C., Zhao Q., Wang Q., Zhou C. Early miscarriage rate in lean polycystic ovary syndrome women after euploid embryo transfer–A matched-pair study. RBM Online. 2017 doi: 10.1016/j.rbmo.2017.07.010.
    1. Tersigni C., Vatish M., D’Ippolito S., Scambia G., Di Simone N. Abnormal uterine inflammation in obstetric syndromes: Molecular insights into the role of chemokine decoy receptor D6 and inflammasome NLRP3. Mol. Hum. Reprod. 2020;26:117–127. doi: 10.1093/molehr/gaz067.
    1. Zeng X.-L., Zhang Y.-F., Tian Q., Xue Y., An R.-F. Effects of metformin on pregnancy outcomes in women with polycystic ovary syndrome. Medicine. 2016;95:36. doi: 10.1097/MD.0000000000004526.

Source: PubMed

3
Sottoscrivi