Comparison of PfHRP-2/pLDH ELISA, qPCR and microscopy for the detection of plasmodium events and prediction of sick visits during a malaria vaccine study

Ismail Mahat Bashir, Nekoye Otsyula, George Awinda, Michele Spring, Petra Schneider, John Njenga Waitumbi, Ismail Mahat Bashir, Nekoye Otsyula, George Awinda, Michele Spring, Petra Schneider, John Njenga Waitumbi

Abstract

Background: Compared to expert malaria microscopy, malaria biomarkers such as Plasmodium falciparum histidine rich protein-2 (PfHRP-2), and PCR provide superior analytical sensitivity and specificity for quantifying malaria parasites infections. This study reports on parasite prevalence, sick visits parasite density and species composition by different diagnostic methods during a phase-I malaria vaccine trial.

Methods: Blood samples for microscopy, PfHRP-2 and Plasmodium lactate dehydrogenase (pLDH) ELISAs and real time quantitative PCR (qPCR) were collected during scheduled (n = 298) or sick visits (n = 38) from 30 adults participating in a 112-day vaccine trial. The four methods were used to assess parasite prevalence, as well as parasite density over a 42-day period for patients with clinical episodes.

Results: During scheduled visits, qPCR (39.9%, N = 119) and PfHRP-2 ELISA (36.9%, N = 110) detected higher parasite prevalence than pLDH ELISA (16.8%, N = 50) and all methods were more sensitive than microscopy (13.4%, N = 40). All microscopically detected infections contained P. falciparum, as mono-infections (95%) or with P. malariae (5%). By qPCR, 102/119 infections were speciated. P. falciparum predominated either as monoinfections (71.6%), with P. malariae (8.8%), P. ovale (4.9%) or both (3.9%). P. malariae (6.9%) and P. ovale (1.0%) also occurred as co-infections (2.9%). As expected, higher prevalences were detected during sick visits, with prevalences of 65.8% (qPCR), 60.5% (PfHRP-2 ELISA), 21.1% (pLDH ELISA) and 31.6% (microscopy). PfHRP-2 showed biomass build-up that climaxed (1813±3410 ng/mL SD) at clinical episodes.

Conclusion: PfHRP-2 ELISA and qPCR may be needed for accurately quantifying the malaria parasite burden. In addition, qPCR improves parasite speciation, whilst PfHRP-2 ELISA is a potential predictor for clinical disease caused by P. falciparum.

Trial registration: ClinicalTrials.gov NCT00666380.

Conflict of interest statement

Competing Interests: The authors wish to declare that GlaxoSmithKline Biologicals (GSK) provided their proprietary adjuvant “AS01B”. This does not alter the authors' adherence to all the PLOS ONE policies on sharing data and materials.

Figures

Figure 1. Trends in malaria prevalence by…
Figure 1. Trends in malaria prevalence by diagnostic method among the study participants that did not develop clinical malaria during the 112-day study.
At every visit, malaria prevalences are highest when detected by PfHRP-2 ELISA and qRT-PCR methods and lowest when measured with microscopy and pLDH ELISA.
Figure 2. Comparison of routine microscopy, p…
Figure 2. Comparison of routine microscopy, pLDH/PfHRP-2 ELISA and qPCR for a group of study participants who had acute blood smears prepared at sick visits.
Each column (1–38) represents one blood sample with the corresponding microscopy, pLDH/PfHRP-2 ELISA and qRT-PCR results, ordered by parasite density as determined by microscopy (top graph) and antigen levels (pLDH/PfHRP-2) or Ct values (qPCR). As the levels of parasitemia decreases, the concordance between the different methods also decreases. PfHRP-2 and qPCR detect parasites densities way beyond the detection limit of microscopy.
Figure 3. Utility of microscopy, qPCR, PfHRP-2…
Figure 3. Utility of microscopy, qPCR, PfHRP-2 and pLDH ELISAs in predicting clinical episodes.
Parasite dynamics before clinical malaria attack (day 0) as measured by (A) PfHRP-2, (B) pLDH (C) Microscopy and (D) qPCR, for the 12 participants with microscopically confirmed clinical malaria. Parasite dynamics after clinical attack are also presented for PfHRP-2 (A). Error bars represent standard error of mean of the parasitemia values at each time point. The arrows indicate the day of treatment. Microscopy, pLDH and qPCR did not detect malaria parasites after the treatment.

References

    1. World Health Organization (2008) Global malaria control and elimination: report of a technical review. ().
    1. Okell LC, Ghani AC, Lyons E, Drakeley CJ (2009) Submicroscopic infection in Plasmodium falciparum-endemic populations: a systematic review and meta-analysis. J Infect Dis 200 (10) 1509–17.
    1. Guerin PJ, Olliaro P, Nosten F, Druilhe P, Laxminarayan R, et al. (2002) Malaria: current status of control, diagnosis, treatment, and a proposed agenda for research and development. Lancet Infect Dis 2 (9) 564–573.
    1. Moody A (2002) Rapid diagnostic tests for malaria parasites. Clin Microbiol Rev 15 (1) 66–78.
    1. Kamau E, Tolbert LS, Kortepeter L, Pratt M, Nyakoe N, et al. (2011) Development of a highly sensitive genus-specific quantitative reverse transcriptase real-time PCR assay for detection and quantitation of Plasmodium by amplifying RNA and DNA of the 18S rRNA genes. J Clin Microbiol 49 (8) 2946–2953.
    1. Kifude CM, Rajasekariah HG, Sullivan DJ Jr, Stewart VA, Angov E, et al. (2008) Enzyme-linked immunosorbent assay for detection of Plasmodium falciparum histidine-rich protein 2 in blood, plasma, and serum. Clin Vaccine Immunol 2008, 15 (6) 1012–1018.
    1. Martin SK, Rajasekariah GH, Awinda G, Waitumbi J, Kifude C (2009) Unified parasite lactate dehydrogenase and histidine-rich protein ELISA for quantification of Plasmodium falciparum . Am J Trop Med Hyg 80 (4) 516–522.
    1. Saah AJ, Hoover DR (1997) “Sensitivity” and “specificity” reconsidered: the meaning of these terms in analytical and diagnostic settings. Ann Intern Med 126 (1) 91–94.
    1. Muirhead-Thomson RC (1954) Low gametocyte thresholds of infection of Anopheles with Plasmodium falciparum; a significant factor in malaria epidemiology. Br Med J 1 (4853) 68–70.
    1. Schneider P, Bousema JT, Gouagna LC, Otieno S, van de Vegte-Bolmer M, et al. (2007) Submicroscopic Plasmodium falciparum gametocyte densities frequently result in mosquito infection. Am J Trop Med Hyg 76 (3) 470–474.
    1. Ochola LB, Marsh K, Lowe B, Gal S, Pluschke G, et al. (2005) Estimation of the sequestered parasite load in severe malaria patients using both host and parasite markers. Parasitol 131 (Pt 4) 449–458.
    1. Leke RF, Djokam RR, Mbu R, Leke RJ, Fogako J, et al. (1999) Detection of the Plasmodium falciparum antigen histidine-rich protein 2 in blood of pregnant women: implications for diagnosing placental malaria. J Clin Microbiol 37 (9) 2992–2996.
    1. Waitumbi JN, Anyona SB, Hunja CW, Kifude CM, Polhemus ME, et al. (2009) Impact of RTS,S/AS02(A) and RTS,S/AS01(B) on genotypes of P. falciparum in adults participating in a malaria vaccine clinical trial. PLoSONE 4 (11) e7849.
    1. Prudhomme O'Meara W, Remich S, Ogutu B, Lucas M, Mtalib R, et al. (2006) Systematic comparison of two methods to measure parasite density from malaria blood smears. Parasitol Res 99 (4) 500–504.
    1. World Health Organization. (2010) Basic malaria microscopy. 2nd edition. 88 p.
    1. Amexo M, Tolhurst R, Barnish G, Bates I (2004) Malaria misdiagnosis: effects on the poor and vulnerable. Lancet 364 (9448) 1896–1898.
    1. Hanscheid T (2003) Current strategies to avoid misdiagnosis of malaria. Clin Microbiol Infect 9 (6) 497–504.
    1. McKenzie FE, Sirichaisinthop J, Miller RS, Gasser RA Jr, Wongsrichanalai C (2003) Dependence of malaria detection and species diagnosis by microscopy on parasite density. Am J Trop Med Hyg 69 (4) 372–376.
    1. Ohrt C, Obare P, Nanakorn A, Adhiambo C, Awuondo K, et al. (2007) Establishing a malaria diagnostics centre of excellence in Kisumu, Kenya. Malar J 6: 79.
    1. Parra ME, Evans CB, Taylor DW (1991) Identification of Plasmodium falciparum histidine-rich protein 2 in the plasma of humans with malaria. J Clin Microbiol 29 (8) 1629–1634.
    1. Waitumbi JN, Gerlach J, Afonina I, Anyona SB, Koros JN, et al. (2011) Malaria prevalence defined by microscopy, antigen detection, DNA amplification and total nucleic acid amplification in a malaria-endemic region during the peak malaria transmission season. Trop Med Int Health 16 (7) 786–93.
    1. Oduola AM, Omitowoju GO, Sowunmi A, Makler MT, Falade CO, et al. (1997) Plasmodium falciparum: evaluation of lactate dehydrogenase in monitoring therapeutic responses to standard antimalarial drugs in Nigeria. Exp Parasitol 87 (3) 283–289.
    1. Piper R, Lebras J, Wentworth L, Hunt-Cooke A, Houze S, et al. (1999) Immunocapture diagnostic assays for malaria using Plasmodium lactate dehydrogenase (pLDH). Am J Trop Med Hyg 60 (1) 109–118.
    1. Kattenberg JH, Tahita CM, Versteeg IA, Tinto H, Traoré Coulibaly M, et al. (2012) Evaluation of antigen detection tests, microscopy, and polymerase chain reaction for diagnosis of malaria in peripheral blood in asymptomatic pregnant women in Nanoro, Burkina Faso. Am J Trop Med Hyg 87 (2) 251–256.
    1. Mayor A, Moro L, Aguilar R, Bardají A, Cisteró P, et al. (2012) How hidden can malaria be in pregnant women? Diagnosis by microscopy, placental histology, polymerase chain reaction and detection of histidine-rich protein 2 in plasma. Clin Infect Dis 54 (11) 1561–1568.
    1. Aguilar R, Machevo S, Menéndez C, Bardají A, Nhabomba A, et al. (2012) Comparison of placental blood microscopy and the ICT HRP2 rapid diagnostic test to detect placental malaria. Trans R Soc Trop Med Hyg 106 (9) 573–5.
    1. Maltha J, Gamboa D, Bendezu J, Sanchez L, Cnops L, et al. (2012) Rapid diagnostic tests for malaria diagnosis in the Peruvian Amazon: impact of pfhrp2 gene deletions and cross-reactions. PLoS One 7 (8) e43094 doi:
    1. Koita OA, Doumbo OK, Ouattara A, Tall LK, Konaré A, et al. (2012) False-negative rapid diagnostic tests for malaria and deletion of the histidine-rich repeat region of the hrp2 gene. Am J Trop Med Hyg 86 (2) 194–8.
    1. Rubio JM, Benito A, Berzosa PJ, Roche J, Puente S, et al. (1999) Usefulness of seminested multiplex PCR in surveillance of imported malaria in Spain. J Clin Microbiol 37 (10) 3260–3264.
    1. Di Santi SM, Kirchgatter K, Brunialti KC, Oliveira AM, Ferreira SR, et al. (2004) PCR - based diagnosis to evaluate the performance of malaria reference centers. Rev Inst Med Trop Sao Paulo 46 (4) 183–187.
    1. Vo TK, Bigot P, Gazin P, Sinou V, De Pina JJ, et al. (2007) Evaluation of a real-time PCR assay for malaria diagnosis in patients from Vietnam and in returned travellers. Trans R Soc Trop Med Hyg 101 (5) 422–428.
    1. Noedl H, Yingyuen K, Laoboonchai A, Fukuda M, Sirichaisinthop J, et al. (2006) Sensitivity and specificity of an antigen detection ELISA for malaria diagnosis. Am J Trop Med Hyg 75 (6) 1205–1208.
    1. Hendriksen IC, Mwanga-Amumpaire J, von Seidlein L, Mtove G, White LJ, et al. (2012) Diagnosing Severe Falciparum Malaria in Parasitaemic African Children: A Prospective Evaluation of Plasma PfHRP2 Measurement. PLoS Med 9 (8) e10011297 doi:
    1. Noedl H, Wernsdorfer WH, Miller RS, Wongsrichanalai C (2002) Histidine-rich protein II: a novel approach to malaria drug sensitivity testing. Antimicrob Agents Chemother 46 (6) 1658–1664.
    1. Wernsdorfer WH (2002) Protection against malaria among seafarers. Int Marit Health 53 (1–4) 7–17.
    1. Dal-Bianco MP, Koster KB, Kombila UD, Kun JF, Grobusch MP, et al. (2007) High prevalence of asymptomatic Plasmodium falciparum infection in Gabonese adults. Am J Trop Med Hyg 77 (5) 939–942.
    1. Ochola LB, Vounatsou P, Smith T, Mabaso ML, Newton CR (2006) The reliability of diagnostic techniques in the diagnosis and management of malaria in the absence of a gold standard. Lancet Infect Dis 6 (9) 582–588.
    1. Mehlotra RK, Lorry K, Kastens W, Miller SM, Alpers MP, et al. (2000) Random distribution of mixed species malaria infections in Papua New Guinea. Am J Trop Med Hyg 62 (2) 225–231.
    1. Singh B, Bobogare A, Cox-Singh J, Snounou G, Abdullah MS, et al. (1999) A genus- and species-specific nested polymerase chain reaction malaria detection assay for epidemiologic studies. Am J Trop Med Hyg 60 (4) 687–692.
    1. Johnston SP, Pieniazek NJ, Xayavong MV, Slemenda SB, Wilkins PP, et al. (2006) PCR as a confirmatory technique for laboratory diagnosis of malaria. J Clin Microbiol 44 (3) 1087–1089.
    1. Arez AP, Pinto J, Palsson K, Snounou G, Jaenson TG, et al. (2003) Transmission of mixed Plasmodium species and Plasmodium falciparum genotypes. Am J Trop Med Hyg 68 (2) 161–168.
    1. da Rocha JA, de Oliveira SB, Povoa MM, Moreira LA, Krettli AU (2008) Malaria vectors in areas of Plasmodium falciparum epidemic transmission in the Amazon region, Brazil. Am J Trop Med Hyg 78 (6) 872–877.
    1. Bruce MC, Donnelly CA, Alpers MP, Galinski MR, Barnwell JW (2000) Cross-species interactions between malaria parasites in humans. Science 287 (5454) 845–848.
    1. Markus MB (2012) Dormancy in mammalian malaria. Trends Parasitol 28 (2) 39–45.
    1. Harrington WE, Mutabingwa TK, Muehlenbachs A, Sorensen B, Bolla MC, et al. (2009) Competitive facilitation of drug-resistant Plasmodium falciparum malaria parasites in pregnant women who receive preventive treatment. Proc Natl Acad Sci U S A 106 (22) 9027–32.

Source: PubMed

3
Sottoscrivi