Dapagliflozin Activates Neurons in the Central Nervous System and Regulates Cardiovascular Activity by Inhibiting SGLT-2 in Mice

Thiquynhnga Nguyen, Song Wen, Min Gong, Xinlu Yuan, Dongxiang Xu, Chaoxun Wang, Jianlan Jin, Ligang Zhou, Thiquynhnga Nguyen, Song Wen, Min Gong, Xinlu Yuan, Dongxiang Xu, Chaoxun Wang, Jianlan Jin, Ligang Zhou

Abstract

Purpose: This study investigates the possible effect and central mechanism of novel antidiabetic medication sodium glucose transporter-2 (SGLT-2i) on the cardiovascular activity.

Material and methods: Thirty-four normal male C57BL/6 mice were randomly assigned to 2 groups to receive single Dapagliflozin (1.52mg/kg) dose via intragastric gavage or a comparable dose of saline. Glycemic level (BG), blood pressure (BP) and heart rate (HR) were measured 2 hours after administration of the respective treatments. Immunohistochemical tests were performed to determine the effect of SGLT-2i on neural localization of SGLT-2 and c-Fos, a neural activator. The distributional relationships of SGLT-2 and c-Fos were examined by immunofluorescence.

Results: Administration of SGLT-2i significantly decreased BP but did not affect the HR. There was no difference in BG between the two groups. Results showed that SGLT-2 was localized to specific regions involved in autonomic control. Expression of c-Fos was significantly higher in major critical nuclei in the aforementioned regions in groups treated with Dapagliflozin.

Conclusion: This study demonstrates that SGLT-2 is expressed in CNS tissues involved in autonomic control and possibly influence cardiovascular function. Dapagliflozin influences central autonomic activity via unidentified pathways by inhibiting central or peripheral SGLT-2. These results provide a new concept that sympathetic inhibition by SGLT-2i can be mediated by central autonomic system, a mechanism that explains how SGLT-2i improves the cardiovascular function.

Keywords: brain nuclei; c-Fos; cardiovascular activity; dapagliflozin; sodium glucose co-transporter-2.

Conflict of interest statement

The drug tablets were provided by Astra Zeneca. The authors declare that they have no conflicts of interest for this work.

© 2020 Nguyen et al.

Figures

Figure 1
Figure 1
(A) Analysis of blood glucose in mice 2 h after administration of SGLT-2i (Dapagliflozin). There was no difference in blood glucose across groups. n = 34, RM-ANOVA, Sidak multiple comparison test. (B) Comparison of systolic pressure between control and SGLT-2i before and at 2 h after administration of treatments, n = 14, mean ± SEM. *P < 0.05 vs control. ns: P > 0.05 vs control. RM ANOVA, Tukey multiple comparison test. (C) Comparison of diastolic pressure between control and SGLT-2i before and at 2 h after administration of treatments, n = 14, mean ± SEM. *P < 0.05 vs control. ns: P > 0.05 vs control. RM ANOVA, Tukey multiple comparison test. (D) Comparison of heart rate between control and SGLT-2i before and at 2 h after administration of treatments, n = 14, mean ± SEM. ns: P > 0.05 vs control. RM ANOVA, Tukey multiple comparison test.
Figure 2
Figure 2
Grayscale contrast showing expression of SGLT-2 in Telencephalon (A and B); Diencephalon (C and D); Midbrain and Brainstem (E and F). Abbreviations: AOM, medial anterior olfactory region; AOL, anterior olfactory nucleus, lateral part; AOD, anterior olfactory nucleus, dorsal part; AOVP, anterior olfactory nucleus, ventroposterior part; DTT, dorsal tenia tecta layer; E/OV, olfactory ventricle (olfactory part of lateral ventricle); AOP, anterior olfactory nucleus, posterior part; aca, anterior commissure, anterior part; PrL, prelimbic cortex; fmi, forceps minor of the corpus callosum; CPu, caudate putamen (striatum); Nv, navicular nucleus of the basal forebrain; DTT, dorsal tenia tecta; DP, dorsal peduncular cortex; Cg2, cingulate cortex, area 2; LSI, lateral septal nucleus, intermediate part; LSV, lateral septal nucleus, ventral part; LSD, lateral septal nucleus, dorsal part; VDB, nucleus of the vertical limb of the diagonal band; CC, corpus callosum; LSD, lateral septal nucleus, dorsal part; MnPO, median preoptic nucleus; BNST, bed nucleus of the stria terminalis; ac, anterior commissure; LPO, lateral preoptic area; MPA, medial preoptic area; MPO, medial preoptic nucleus; PVA, paraventricular thalamic nucleus, anterior part; PVN, paraventricular hypothalamic nucleus; CM, central medial thalamic nucleus; AM, anteromedial thalamic nucleus; Re, reuniens thalamic nucleus; LH, lateral hypothalamus; RCh, retrochiasmatic area; CA3, field CA3 of the hippocampus; PVA, paraventricular thalamic nucleus, anterior part; PVP, paraventricular thalamic nucleus, posterior part; PV, paraventricular thalamic nucleus; IAM, interanteromedial thalamic nucleus; Re, reuniens thalamus nucleus; PH, posterior hypothalamic nucleus; AHC, anterior hypothalamic area, central part; DMD, dorsomedial hypothalamic nucleus, dorsal part; DM, dorsomedial hypothalamic nucleus; VMH, ventromedial hypothalamic nucleus; VMHVL, ventromedial hypothalamic nucleus, ventrolateral part; Arc, arcuate hypothalamic nucleus; ME, median eminence; ML, medial mammillary nucleus, lateral part; VTM, ventral tuberomammillary nucleus; p1PAG, p1 periaqueductal gray; PrC, precommissural nucleus; PAG, periaqueductal gray; Aq, aqueduct; Pn, pontine nuclei; DCIC, dorsal cortex of the inferior colliculus; DLL, dorsal nucleus of the lateral leminiscus; DRD, dorsal raphe nucleus, dorsal part; PTg, pedunculopontine tegmental nucleus; LPB, lateral parabrachial nucleus; DTgP, dorsal tegmental nucleus, pericentral part; DTgC, dorsal tegmental nucleus, central part; CG, central gray; LC, locus coerules; PDTg, posterodorsal tgmental nucleus; PO, periolivary nucleus; py, pyramidal tract; 4V, 4th ventricle; solitary tract nucleus; Rt, reticular nucleus; AP, area postrema.
Figure 3
Figure 3
Comparison of FOS-IR for nuclei between control and SGLT-2i in telencephalon (A); amygdalar nuclei and hippocampus (B); thalamus (C); hypothalamus (D); midbrain (E); brainstem (F), n = 12, mean ± SEM. *P < 0.05 vs control; ns: no significance; Two-way ANOVA, Sidak multiple comparison test. Abbreviations: BNST, bed nucleus of stria terminalis; MnPO, median preoptic nucleus; LPO, lateral preoptic area; MPO, medial preoptic nucleus; MPA, medial preoptic area; MS, medial septum; Me, medial amygdala nucleus; Ce, central amygdala nucleus; BMA, basomedial amygdala nucleus; BLA, basolateral amygdala nucleus; Pirl, piriform cortex; CA3, field CA3 of the hippocampus; PVA, paraventricular nucleus of thalamus; CM, central medial thalamic nucleus; Rh, rhomboid thalamic nucleus; Re, reuniens thalamic nucleus; IAM, interanteromedial thalamic nucleus; PVN, paraventricular nucleus of hypothalamus; VMH, ventromedial hypothalamus; LH, lateral hypothalamic area; ARC, arcuate nucleus; AHC, anterior hypothalamic nucleus; SC, superior colliculus; PAG, periaqueductal gray; DR, dorsal raphe nucleus; PTg, pedunculopontine tegmental nucleus; VTA, ventral tegmental area; Pn, potine nucleus; AP, area postrema; Sol/NTS, nucleus of solitary tract; Py, pyramidal tract; LC, locus coeruleus; CG, central gray; PO, periolivary nucleus; LPB, lateral parabrachial nucleus; Rt, reticular nucleus.
Figure 4
Figure 4
Analysis of c-Fos expression between SGLT-2i (A, B, C) and control group (D, E, F) in MnPO, PVA, and PVN (A); Superior colliculus, PAG, and LC (B); NTS, CA3, and amygdalar nuclei (C); Scale bar: 100μm. Abbreviations: MnPO, median preoptic nucleus; ac, anterior commissure; PVA, paraventricular thalamic nucleus; D3V, dorsal 3rd ventricle; PVN, paraventricular hypothalamic nucleus; 3V, 3rd ventricle; Aq, aqueduct; PAG, periaqueductal gray; LC, locus coeruleus; 4V, 4th ventricle; NTS, nucleus of solitary tract; AP, area postrema; CC, central canal; CA3, the field CA3 of hippocampus; Me, medial amygdala nucleus; Ce, central amygdala nucleus; BMA, basomedial amygdala nucleus; BLA, basolateral amygdala nucleus; Pirl, piriform cortex.
Figure 5
Figure 5
Continued.
Figure 5
Figure 5
Continued.
Figure 5
Figure 5
(A) c-Fos expression is upregulated in SGLT-2i group (A, B, C, D) vs control group (E, F, G, H) as determined by immunofluorescence assay in MnPO (A); PVA (B); PVN (C); SC (D); PAG (E); LC (F); NTS (G); CA3 (H); Me (I); Red: Alexa Fluor-594, staining showing c-Fos expression in nucleus of neurons; Green: Alexa Fluor-488, staining showing SGLT-2 expression surround nucleus of neurons; Scale bar: 100μm. Magnification: A and E=5X; B, C, D and F, G, H=20X. Abbreviations: MnPO, median preoptic nucleus; ac, anterior commissure; PVA, paraventricular thalamic nucleus; D3V, dorsal 3rd ventricle; PVN, paraventricular hypothalamic nucleus; 3rdV, 3rd ventricle; SC, superior colliculus; Aq, aqueduct; PAG, periaqueductal gray; Aq, aqueduct; LC, locus coeruleus; 4V, 4th ventricle; AP, area postrema; NTS, nucleus of solitary tract; CC, central canal; D3V, dorsal 3rd ventricle; CA3, the field CA3 of hippocampus; Me, medial amygdala nucleus; Ce, central amygdala nucleus; BMA, basomedial amygdala nucleus; BLA, basolateral amygdala nucleus; Pirl, piriform cortex.
Figure 6
Figure 6
Comparison of the known peripheral pathway (black full line) with central pathway proposed in this study (blue dotted line) through which SGLT-2i regulates cardiovascular processes. The list of mechanisms through which SGLT-2 inhibitors improve cardiac function both via peripheral and central pathways. SGLT-2 inhibitors inhibit peripheral reabsorption of sodium and glucose in proximal convoluted tubules (upper left corner) leading to natriuresis and glucosuria. Natriuresis can deplete the plasma volume and increase tubuloglomerular feedback. Reduced glucose reabsorption may result in a decrease in body weight, glyco-toxicity and inflammation accompanied by uricosuria. In terms of central mechanism, SGLT-2 inhibitors may act on cardiovascular regulation related nuclei, such as PVN, NTS, PAG and other nuclei. SGLT-2 inhibitors may eventually act on RVLM to influence the sympathetic flow to IML with sympathetic preganglionic neurons. Eventually, this promotes the parasympathetic nervous activity thereby decreases blood pressure and heart rate. Abbreviations: PVN, paraventricular nucleus of hypothalamus; NTS, nucleus of solitary tract; PAG, periaqueductal gray; RVLM, rostral ventrolateral medulla; IML, intermediolateral nucleus of spinal cord; BP, blood pressure.

References

    1. Sobel BE, Schneider DJ. Cardiovascular complications in diabetes mellitus. Curr Opin Pharmacol. 2005;5:143–148. doi:10.1016/j.coph.2005.01.002
    1. Valensi P, Prevost G. CVOTs: what did the endocrinologist learn? Diabetes Res Clin Pract. 2019;107947. doi:10.1016/j.diabres.2019.107947
    1. Dewan P, Solomon SD, Jhund PS, et al. Efficacy and safety of sodium–glucose co-transporter2 inhibition according to left ventricular ejection fraction in DAPA-HF. Eur J Heart Fail. 2020. doi:10.1002/ejhf.1867
    1. Salman IM. Major autonomic neuroregulatory pathways underlying short- and long-term control of cardiovascular function. Curr Hypertens Rep. 2016;18(18). doi:10.1007/s11906-016-0625-x
    1. de Kloet AD, Liu M, Rodriguez V, Krause EG, Sumners C. Role of neurons and glia in the CNS actions of the renin-angiotensin system in cardiovascular control. Am J Physiol Regul Integr Comp Physiol. 2015;309:R444–458. doi:10.1152/ajpregu.00078.2015
    1. Benarroch EE. The central autonomic network: functional organization, dysfunction, and perspective. Mayo Clinic Proceedings. 1993;68:988–1001. doi:10.1016/s0025-6196(12)62272-1
    1. Heerspink HJ, Perkins BA, Fitchett DH, Husain M, Cherney DZ. Sodium glucose cotransporter 2 inhibitors in the treatment of diabetes mellitus: cardiovascular and kidney effects, potential mechanisms, and clinical applications. Circulation. 2016;134:752–772. doi:10.1161/CIRCULATIONAHA.116.021887
    1. Wright EM, Loo DD, Hirayama BA. Biology of human sodium glucose transporters. Physiol Rev. 2011;91:733–794. doi:10.1152/physrev.00055.2009
    1. Baker WL, Smyth LR, Riche DM, et al. Effects of sodium-glucose co-transporter 2 inhibitors on blood pressure: a systematic review and meta-analysis. J Am Soc Hypertens. 2014;8:262–275 e269. doi:10.1016/j.jash.2014.01.007
    1. Sano M. A new class of drugs for heart failure: SGLT2 inhibitors reduce sympathetic overactivity. J Cardiol. 2018;71:471–476. doi:10.1016/j.jjcc.2017.12.004
    1. Sawada Y, Izumida Y, Takeuchi Y, et al. Effect of sodium-glucose cotransporter 2 (SGLT2) inhibition on weight loss is partly mediated by liver-brain-adipose neurocircuitry. Biochem Biophys Res Commun. 2017;493:40–45. doi:10.1016/j.bbrc.2017.09.081
    1. Chiba Y, Yamada T, Tsukita S, et al. Dapagliflozin, a sodium-glucose co-transporter 2 inhibitor, acutely reduces energy expenditure in BAT via neural signals in mice. PLoS One. 2016;11:e0150756. doi:10.1371/journal.pone.0150756
    1. Szablewski L. Glucose transporters in brain: in health and in Alzheimer’s disease. J Alzheimers Dis. 2017;55:1307–1320. doi:10.3233/JAD-160841
    1. Koekkoek LL, Mul JD, la Fleur SE. Glucose-sensing in the reward system. Front Neurosci. 2017;11:716. doi:10.3389/fnins.2017.00716
    1. Chen LQ, Cheung LS, Feng L, Tanner W, Frommer WB. Transport of sugars. Annu Rev Biochem. 2015;84:865–894. doi:10.1146/annurev-biochem-060614-033904
    1. Milde-Langosch K. The Fos family of transcription factors and their role in tumourigenesis. Eur J Cancer. 2005;41:2449–2461. doi:10.1016/j.ejca.2005.08.008
    1. Sagar SM, Sharp FR, Curran T. Expression of c-fos protein in brain: metabolic mapping at the cellular level. Science. 1988;240:1328–1331. doi:10.1126/science.3131879
    1. Morgan JI, Curran T. Stimulus-transcription coupling in neurons: role of cellular immediate-early genes. Trends Neurosci. 1989;12:459–462. doi:10.1016/0166-2236(89)90096-9
    1. Patel DK, Strong J. The Pleiotropic effects of sodium-glucose cotransporter-2 inhibitors: beyond the glycemic benefit. Diabetes Ther. 2019;10:1771–1792. doi:10.1007/s13300-019-00686-z
    1. Chilton RJ. Effects of sodium-glucose cotransporter-2 inhibitors on the cardiovascular and renal complications of type 2 diabetes. Diabetes Obes Metab. 2020;22:16–29. doi:10.1111/dom.13854
    1. Matthews VB, Elliot RH, Rudnicka C, et al. Role of the sympathetic nervous system in regulation of the sodium glucose cotransporter 2. J Hypertens. 2017;35:2059–2068. doi:10.1097/HJH.0000000000001434
    1. Jordan J, Tank J, Heusser K, et al. The effect of empagliflozin on muscle sympathetic nerve activity in patients with type II diabetes mellitus. J Am Soc Hypertens. 2017;11:604–612. doi:10.1016/j.jash.2017.07.005
    1. Komoroski B, Vachharajani N, Boulton D, et al. Dapagliflozin, a novel SGLT2 inhibitor, induces dose-dependent glucosuria in healthy subjects. Clin Pharmacol Ther. 2009;85(5):520–526. doi:10.1038/clpt.2008.251
    1. Kasichayanula S, Liu X, Lacreta F, Griffen SC, Boulton DW. Clinical pharmacokinetics and pharmacodynamics of dapagliflozin, a selective inhibitor of sodium-glucose co-transporter type 2. Clin Pharmacokinet. 2014;53:17–27. doi:10.1007/s40262-013-0104-3
    1. Sabolic I, Vrhovac I, Eror DB, et al. Expression of Na+-D-glucose cotransporter SGLT2 in rodents is kidney-specific and exhibits sex and species differences. Am J Physiol Cell Physiol. 2012;302:C1174–C1188. doi:10.1152/ajpcell.00450.2011
    1. Yu AS, Hirayama BA, Timbol G, et al. Regional distribution of SGLT activity in rat brain in vivo. Am J Physiol Cell Physiol. 2013;304:C240–C247. doi:10.1152/ajpcell.00317.2012
    1. Vemula S, Roder KE, Yang T, et al. A functional role for sodium-dependent glucose transport across the blood-brain barrier during oxygen glucose deprivation. J Pharmacol Exp Ther. 2009;328:487–495. doi:10.1124/jpet.108.146589
    1. Erdogan MA, Yusuf D, Christy J, et al. Highly selective SGLT2 inhibitor dapagliflozin reduces seizure activity in pentylenetetrazol-induced murine model of epilepsy. BMC Neurol. 2018;18:81. doi:10.1186/s12883-018-1086-4
    1. Gong M, Wen S, Nguyen T, et al. Converging relationships of obesity and hyperuricemia with special reference to metabolic disorders and plausible therapeutic implications. Diabetes Metab Syndr Obes. 2020;13:943–962. doi:10.2147/dmso.s232377
    1. Naznin F, Sakoda H, Okada T, et al. Canagliflozin, a sodium glucose cotransporter 2 inhibitor, attenuates obesity-induced inflammation in the nodose ganglion, hypothalamus, and skeletal muscle of mice. Eur J Pharmacol. 2017;794:37–44. doi:10.1016/j.ejphar.2016.11.028
    1. Sa-Nguanmoo P, Tanajak P, Kerdphoo S, et al. SGLT2-inhibitor and DPP-4 inhibitor improve brain function via attenuating mitochondrial dysfunction, insulin resistance, inflammation, and apoptosis in HFD-induced obese rats. Toxicol Appl Pharmacol. 2017;333:43–50. doi:10.1016/j.taap.2017.08.005
    1. Dampney RAL, Horiuchi J. Functional organisation of central cardiovascular pathways: studies using c-fos gene expression. Prog Neurobiol. 2003;71:359–384. doi:10.1016/j.pneurobio.2003.11.001
    1. Hoffman GE, Smith MS, Verbalis JG. c-Fos and related immediate early gene products as markers of activity in neuroendocrine systems. Front Neuroendocrinol. 1993;14:173–213. doi:10.1006/frne.1993.1006
    1. Dragunow M, Faull R. The use of c-fos as a metabolic marker in neuronal pathway tracing. J Neurosci Methods. 1989;29:261–265. doi:10.1016/0165-0270(89)90150-7
    1. Kovacs KJ. Measurement of immediate-early gene activation- c-fos and beyond. J Neuroendocrinol. 2008;20:665–672. doi:10.1111/j.1365-2826.2008.01734.x
    1. Galosy RA, Clarke LK, Vasko MR, Crawford IL. Neurophysiology and neuropharmacology of cardiovascular regulation and stress. Neurosci Biobehav Rev. 1981;5:137–175. doi:10.1016/0149-7634(81)90040-3
    1. Zhou L, Podolsky N, Sang Z, et al. The medial amygdalar nucleus: a novel glucose-sensing region that modulates the counterregulatory response to hypoglycemia. Diabetes. 2010;59(10):2646–2652. doi:10.2337/db09-0995
    1. Meng W, Ellsworth BA, Nirschl AA, et al. Discovery of dapagliflozin: a potent, selective renal sodium-dependent glucose cotransporter 2 (SGLT2) inhibitor for the treatment of type 2 diabetes. J Med Chem. 2008;51(5):1145–1149. doi:10.1021/jm701272q
    1. Ems R, Garg A, Ostergard TA, Miller JP. Potential deep brain stimulation targets for the management of refractory hypertension. Front Neurosci. 2019;13:93. doi:10.3389/fnins.2019.00093
    1. Kasher N, Wittbrodt MT, Alam ZS, et al. Sex differences in brain activation patterns with mental stress in patients with coronary artery disease. Biol Sex Differ. 2019;10:35. doi:10.1186/s13293-019-0248-4
    1. Valenza G, Sclocco R, Duggento A, et al. The central autonomic network at rest: uncovering functional MRI correlates of time-varying autonomic outflow. NeuroImage. 2019;197:383–390. doi:10.1016/j.neuroimage.2019.04.075
    1. Bremner JD, Campanella C, Khan Z, et al. Brain correlates of mental stress-induced myocardial ischemia. Psychosom Med. 2018;80:515–525. doi:10.1097/PSY.0000000000000597
    1. Shoemaker JK, Norton KN, Baker J, Luchyshyn T. Forebrain organization for autonomic cardiovascular control. Auton Neurosci. 2015;188:5–9. doi:10.1016/j.autneu.2014.10.022
    1. Templin C, Hänggi J, Klein C, et al. Altered limbic and autonomic processing supports brain-heart axis in Takotsubo syndrome. Eur Heart J. 2019;40(15):1183–1187. doi:10.1093/eurheartj/ehz068
    1. Wen S, Wang C, Gong M, Zhou L. An overview of energy and metabolic regulation. Sci China Life Sci. 2019;62:771–790. doi:10.1007/s11427-018-9371-4
    1. Morrison SF, Nakamura K. Central mechanisms for thermoregulation. Annu Rev Physiol. 2019;81:285–308. doi:10.1146/annurev-physiol-020518-114546
    1. Walker WH, Walton JC, DeVries AC, Nelson RJ. Circadian rhythm disruption and mental health. Transl Psychiatry. 2020;10:28. doi:10.1038/s41398-020-0694-0
    1. Abreu AP, Toro CA, Song YB, et al. MKRN3 inhibits the reproductive axis through actions in kisspeptin-expressing neurons. J Clin Invest. 2020. doi:10.1172/JCI136564
    1. Carmichael CY, Wainford RD. Hypothalamic signaling mechanisms in hypertension. Curr Hypertens Rep. 2015;17:39. doi:10.1007/s11906-015-0550-4
    1. Coote JH, Yang Z, Pyner S, Deering J. Control of sympathetic outflows by the hypothalamic paraventricular nucleus. Clin Exp Pharmacol Physiol. 1998;25:461–463. doi:10.1111/j.1440-1681.1998.tb02235.x
    1. Alon T, Zhou L, Pérez CA, et al. Transgenic mice expressing green fluorescent protein under the control of the corticotropin-releasing hormone promoter. Endocrinology. 2009;150(12):5626–5632. doi:10.1210/en.2009-0881
    1. McKinley MJ, Yao ST, Uschakov A, et al. The median preoptic nucleus: front and centre for the regulation of body fluid, sodium, temperature, sleep and cardiovascular homeostasis. Acta Physiologica. 2015;214(8–32):8–32. doi:10.1111/apha.12487
    1. Zhou L, Sutton GM, Rochford JJ, et al. Serotonin 2C receptor agonists improve type 2 diabetes via melanocortin-4 receptor signaling pathways. Cell Metab. 2007;6(5):398–405. doi:10.1016/j.cmet.2007.10.008
    1. Rossi F, Maione S, Berrino L. Periaqueductal gray area and cardiovascular function. Pharmacol Res. 1994;29:27–36. doi:10.1016/1043-6618(94)80095-2
    1. Potts JT, Spyer KM, Paton JF. Somatosympathetic reflex in a working heart-brainstem preparation of the rat. Brain Res Bull. 2000;53:59–67. doi:10.1016/s0361-9230(00)00309-9
    1. Owens NC, Verberne AJ. Medial prefrontal depressor response: involvement of the rostral and caudal ventrolateral medulla in the rat. J Auton Nerv Syst. 2000;78:86–93. doi:10.1016/s0165-1838(99)00062-4
    1. Howe PR. Blood pressure control by neurotransmitters in the medulla oblongata and spinal cord. J Auton Nerv Syst. 1985;12(2–3):95–115. doi:10.1016/0165-1838(85)90054-2
    1. Ito S, Sved AF. Influence of GABA in the nucleus of the solitary tract on blood pressure in baroreceptor-denervated rats. Am J Physiol. 1997;273:R1657–R1662. doi:10.1152/ajpregu.1997.273.5.R1657
    1. Park JH, Gorky J, Ogunnaike B, Vadigepalli R, Schwaber JS. Investigating the effects of brainstem neuronal adaptation on cardiovascular homeostasis. Front Neurosci. 2020;14:470. doi:10.3389/fnins.2020.00470
    1. Grassi G, Dell’Oro R, Quarti-Trevano F, et al. Neuroadrenergic and reflex abnormalities in patients with metabolic syndrome. Diabetologia. 2005;48:1359–1365. doi:10.1007/s00125-005-1798-z
    1. Elliott RH, Matthews VB, Rudnicka C, Schlaich MP. Is it time to think about the sodium glucose co-transporter 2 sympathetically? Nephrology. 2016;21:286–294. doi:10.1111/nep.12620
    1. Joca HC, Santos‐Miranda A, Joviano-Santos JV, et al. Chronic sympathetic hyperactivity triggers electrophysiological remodeling and disrupts excitation-contraction coupling in heart. Sci Rep. 2020;10(1):8001. doi:10.1038/s41598-020-64949-7
    1. Gronda E, Vanoli E, Sacchi S, et al. Risk of heart failure progression in patients with reduced ejection fraction: mechanisms and therapeutic options. Heart Fail Rev. 2020;25(2):295–303. doi:10.1007/s10741-019-09823-z
    1. Hallow KM, Helmlinger G, Greasley PJ, McMurray JJV, Boulton DW. Why do SGLT2 inhibitors reduce heart failure hospitalization? A differential volume regulation hypothesis. Diabetes Obes Metab. 2018;20:479–487. doi:10.1111/dom.13126
    1. Scheen AJ. Reappraisal of the diuretic effect of empagliflozin in the EMPA-REG OUTCOME trial: comparison with classic diuretics. Diabetes Metab. 2016;42:224–233. doi:10.1016/j.diabet.2016.05.006

Source: PubMed

3
Sottoscrivi