Evaluation of a ketogenic diet for improvement of neurological recovery in individuals with acute spinal cord injury: study protocol for a randomized controlled trial

Aynur Demirel, Jia Li, Casey Morrow, Stephen Barnes, Jan Jansen, Barbara Gower, Keneshia Kirksey, David Redden, Ceren Yarar-Fisher, Aynur Demirel, Jia Li, Casey Morrow, Stephen Barnes, Jan Jansen, Barbara Gower, Keneshia Kirksey, David Redden, Ceren Yarar-Fisher

Abstract

Background: Therapies that significantly improve the neurological and functional recovery of individuals with spinal cord injury (SCI) are still urgently needed. The ketogenic diet (KD) has been shown to improve forelimb motor function in an SCI rat model, likely by reducing inflammation and cell death in the spinal cord. Furthermore, our recent pilot study in patients with SCI showed that, compared with a standard hospital diet (SD), 5 weeks of KD started during acute care improved upper extremity motor function and reduced serum levels of a neuroinflammatory blood protein. The primary goals of the current study are to: 1) show the safety and feasibility of administering a KD during acute care for SCI; 2) determine if consuming 5 weeks of a KD significantly improves motor and sensory functions, functional independence and glycemic control; and 3) quantify serum biomarkers that are linked to improvements in neurological recovery and functional independence via targeted proteomics.

Methods/design: In a single-masked, longitudinal, randomized, parallel-controlled study, a total of 60 eligible, acutely traumatic spinal cord injured (cervical 5 to thoracic 12) participants ranging in age from 18 to 60 years with American Spinal Injury Association impairment scale (AIS) grades A-C (AIS-A, sensorimotor complete; AIS-B, sensory incomplete/motor complete; and AIS-C, nonfunctional motor incomplete) are being enrolled. Neurological and functional examinations, resting energy expenditure, blood, urine, and stool collections, and protein analyses related to neurological recovery will be performed within 72 h of injury (baseline measure) and repeated after 5 weeks of KD or SD (discharge measure). We anticipate a completion rate of 80% with a total of 48 participants.

Discussion: Intervention with a more neuroprotective diet during acute care of SCI can be implemented anywhere in the world at low cost and without major regulatory hurdles. Better functional recovery will lead to a better quality of life and long-term health outcomes in individuals with SCI. While this study targets SCI, if successful it has the potential to improve neurological outcomes for individuals with various traumatic injuries.

Trial registration: NCT03509571 Registered on April 28, 2018.

Keywords: Diet; High-protein diet; Ketogenic; Low-carbohydrate diet; Nutrition therapy; Proteomics; Spinal cord injury.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Effects of the ketogenic diet (KETO) versus standard diet (SD) on motor and sensory scores in patients with spinal cord injury. (a) American Spinal Injury Association Impairment Scale (AIS) upper extremity motor scores (UEMS) and lower extremity motor scores (LEMS). (b) AIS light touch (LT) and pin-prick (PP) sensory scores
Fig. 2
Fig. 2
Standard Protocol Items: Recommendations for Interventional Trials (SPIRIT) schedule. *Allocation and baseline testing occur within 72 h of injury; postintervention assessments are performed prior to each patient’s discharge. ¥Including cholesterol, triglycerides, high-density lipoprotein cholesterol and calculated low-density lipoprotein cholesterol. &As reflected by liver enzymes, alanine aminotransferase, aspartate transaminase, alkaline phosphatase, albumin, bilirubin and total protein. $Serum fibrinogen, extracellular signal-regulated kinase 1/2, CD11b/CD18 integrin receptor, epidermal growth factor and receptor levels. AIS American Spinal Injury Association Impairment Scale, Wk week
Fig. 3
Fig. 3
Flow diagram for the overall study design. KD ketogenic diet, SCI spinal cord injury, SCIM Spinal Cord Independence Measure, SD standard hospital diet, UAB University of Alabama at Birmingham

References

    1. Bauman WA, Spungen AM. Disorders of carbohydrate and lipid metabolism in veterans with paraplegia or quadriplegia: a model of premature aging. Metab Clin Exp. 1994;43(6):749–756.
    1. Bauman WA, Spungen AM. Invited review carbohydrate and lipid metabolism in chronic spinal cord injury. J Spinal Cord Med. 2001;24(4):266–277.
    1. Jensen M, Molton I, Groah S, Campbell M, Charlifue S, Chiodo A, et al. Secondary health conditions in individuals aging with SCI: terminology, concepts and analytic approaches. Spinal Cord. 2012;50(5):373.
    1. Strauss DJ, DeVivo MJ, Paculdo DR, Shavelle RM. Trends in life expectancy after spinal cord injury. Arch Phys Med Rehabil. 2006;87(8):1079–1085.
    1. Michael J, Krause JS, Lammertse DP. Recent trends in mortality and causes of death among persons with spinal cord injury. Arch Phys Med Rehabil. 1999;80(11):1411–1419.
    1. Shavelle RM, DeVivo MJ, Paculdo DR, Vogel LC, Strauss DJ. Long-term survival after childhood spinal cord injury. J Spinal Cord Med. 2007;30(suppl1):S48–S54.
    1. Silva NA, Sousa N, Reis RL, Salgado AJ. From basics to clinical: a comprehensive review on spinal cord injury. Prog Neurobiol. 2014;114:25–57.
    1. Park E, Velumian AA, Fehlings MG. The role of excitotoxicity in secondary mechanisms of spinal cord injury: a review with an emphasis on the implications for white matter degeneration. J Neurotrauma. 2004;21(6):754–774.
    1. Badhiwala JH, Wilson JR, Kwon BK, Casha S, Fehlings MG. A review of clinical trials in spinal cord injury including biomarkers. J Neurotrauma. 2018;35(16):1906–1917.
    1. Kobayakawa K, Kumamaru H, Saiwai H, Kubota K, Ohkawa Y, Kishimoto J, et al. Acute hyperglycemia impairs functional improvement after spinal cord injury in mice and humans. Sci Transl Med. 2014;6(256):256ra137.
    1. Sala F, Menna G, Bricolo A, Young W. Role of glycemia in acute spinal cord injury: data from a rat experimental model and clinical experience. Ann N Y Acad Sci. 1999;890(1):133–154.
    1. Freeman JM, Vining EP, Pillas DJ, Pyzik PL, Casey JC. The efficacy of the ketogenic diet—1998: a prospective evaluation of intervention in 150 children. Pediatrics. 1998;102(6):1358–1363.
    1. VanItallie TB, Nonas C, Di Rocco A, Boyar K, Hyams K, Heymsfield S. Treatment of Parkinson disease with diet-induced hyperketonemia: a feasibility study. Neurology. 2005;64(4):728–730.
    1. Gasior M, Rogawski MA, Hartman AL. Neuroprotective and disease-modifying effects of the ketogenic diet. Behav Pharmacol. 2006;17(5–6):431.
    1. Prins ML, Matsumoto JH. The collective therapeutic potential of cerebral ketone metabolism in traumatic brain injury. J Lipid Res. 2014;55(12):2450–2457.
    1. Reger MA, Henderson ST, Hale C, Cholerton B, Baker LD, Watson G, et al. Effects of β-hydroxybutyrate on cognition in memory-impaired adults. Neurobiol Aging. 2004;25(3):311–314.
    1. Hussain TA, Mathew TC, Dashti AA, Asfar S, Al-Zaid N, Dashti HM. Effect of low-calorie versus low-carbohydrate ketogenic diet in type 2 diabetes. Nutrition. 2012;28(10):1016–1021.
    1. Feinman RD, Pogozelski WK, Astrup A, Bernstein RK, Fine EJ, Westman EC, et al. Dietary carbohydrate restriction as the first approach in diabetes management: critical review and evidence base. Nutrition. 2015;31(1):1–13.
    1. Streijger F, Plunet WT, Lee JH, Liu J, Lam CK, Park S, et al. Ketogenic diet improves forelimb motor function after spinal cord injury in rodents. PLoS One. 2013;8(11):e78765.
    1. Yarar-Fisher C, Kulkarni A, Li J, Farley P, Renfro C, Aslam H, et al. Evaluation of a ketogenic diet for improvement of neurological recovery in individuals with acute spinal cord injury: a pilot, randomized safety and feasibility trial. Spinal Cord Ser Cases. 2018;4(1):88.
    1. Bough KJ, Wetherington J, Hassel B, Pare JF, Gawryluk JW, Greene JG, et al. Mitochondrial biogenesis in the anticonvulsant mechanism of the ketogenic diet. Ann Neurol. 2006;60(2):223–235.
    1. Veech RL, Chance B, Kashiwaya Y, Lardy HA, Cahill GF., Jr Ketone bodies, potential therapeutic uses. IUBMB Life. 2001;51(4):241–247.
    1. Kramer JK, Taylor P, Steeves JD, Curt A. Dermatomal somatosensory evoked potentials and electrical perception thresholds during recovery from cervical spinal cord injury. Neurorehabil Neural Repair. 2010;24(4):309–317.
    1. Catz A, Itzkovich M. Spinal Cord Independence Measure: comprehensive ability rating scale for the spinal cord lesion patient. J Rehabil Res Dev. 2007;44(1):65.
    1. Catz MI, Steinberg F, Philo O, Ring H, Ronen J, Spasser R, Gepstein R, Tamir A, Amiram. The Catz-Itzkovich SCIM: a revised version of the spinal cord independence measure. Disabil Rehabil. 2001;23(6):263–8.
    1. Pouw M, Van Middendorp J, van Kampen A, Curt A, van de Meent H, Hosman A. Diagnostic criteria of traumatic central cord syndrome. Part 3: descriptive analyses of neurological and functional outcomes in a prospective cohort of traumatic motor incomplete tetraplegics. Spinal Cord. 2011;49(5):614.
    1. National Spinal Cord Injury Statistical Center. Spinal Cord Injury Facts and Figures at a Glance. 2019 SCI Data Sheet. . Accessed 3 Mar 2020.
    1. DeVivo M, Biering-Sørensen F, New P, Chen Y. Standardization of data analysis and reporting of results from the international spinal cord injury core data set. Spinal Cord. 2011;49(5):596.
    1. Ditunno J, Young W, Donovan W, Creasey G. The international standards booklet for neurological and functional classification of spinal cord injury. Spinal Cord. 1994;32(2):70.
    1. Maynard FM, Jr, Bracken MB, Creasey G, Ditunno JF, Jr, Donovan WH, Ducker TB, et al. International standards for neurological and functional classification of spinal cord injury. Spinal Cord. 1997;35(5):266.
    1. Waters RL, Adkins RH, Yakura JS, Sie I. Motor and sensory recovery following complete tetraplegia. Arch Phys Med Rehabil. 1993;74(3):242–247.
    1. Björhall K, Miliotis T, Davidsson P. Comparison of different depletion strategies for improved resolution in proteomic analysis of human serum samples. Proteomics. 2005;5(1):307–317.
    1. Sharma V, Eckels J, Schilling B, Ludwig C, Jaffe JD, MacCoss MJ, et al. Panorama Public: a public repository for quantitative data sets processed in Skyline. Mol Cell Proteomics. 2018;17(6):1239–1244.
    1. LeBlanc A, Michaud SA, Percy AJ, Hardie DB, Yang J, Sinclair NJ, et al. Multiplexed MRM-based protein quantitation using two different stable isotope-labeled peptide isotopologues for calibration. J Proteome Res. 2017;16(7):2527–2536.
    1. Sajic T, Liu Y, Aebersold R. Using data-independent, high-resolution mass spectrometry in protein biomarker research: perspectives and clinical applications. Proteomics Clin Appl. 2015;9(3–4):307–321.
    1. Kramer JL, Lammertse DP, Schubert M, Curt A, Steeves JD. Relationship between motor recovery and independence after sensorimotor-complete cervical spinal cord injury. Neurorehabil Neural Repair. 2012;26(9):1064–1071.

Source: PubMed

3
Sottoscrivi