Bone mineral density changes among HIV-uninfected young adults in a randomised trial of pre-exposure prophylaxis with tenofovir-emtricitabine or placebo in Botswana

Michael Kasonde, Richard W Niska, Charles Rose, Faith L Henderson, Tebogo M Segolodi, Kyle Turner, Dawn K Smith, Michael C Thigpen, Lynn A Paxton, Michael Kasonde, Richard W Niska, Charles Rose, Faith L Henderson, Tebogo M Segolodi, Kyle Turner, Dawn K Smith, Michael C Thigpen, Lynn A Paxton

Abstract

Background: Tenofovir-emtricitabine (TDF-FTC) pre-exposure prophylaxis (PrEP) has been found to be effective for prevention of HIV infection in several clinical trials. Two studies of TDF PrEP among men who have sex with men showed slight bone mineral density (BMD) loss. We investigated the effect of TDF and the interaction of TDF and hormonal contraception on BMD among HIV-uninfected African men and women.

Method: We evaluated the effects on BMD of using daily oral TDF-FTC compared to placebo among heterosexual men and women aged 18-29 years enrolled in the Botswana TDF2 PrEP study. Participants had BMD measurements at baseline and thereafter at 6-month intervals with dual-energy X-ray absorptiometry (DXA) scans at the hip, spine, and forearm.

Results: A total of 220 participants (108 TDF-FTC, 112 placebo) had baseline DXA BMD measurements at three anatomic sites. Fifteen (6.8%) participants had low baseline BMD (z-score of <-2.0 at any anatomic site), including 3/114 women (2.6%) and 12/106 men (11.3%) (p = 0.02). Low baseline BMD was associated with being underweight (p = 0.02), having high blood urea nitrogen (p = 0.02) or high alkaline phosphatase (p = 0.03), and low creatinine clearance (p = 0.04). BMD losses of >3.0% at any anatomic site at any time after baseline were significantly greater for the TDF-FTC treatment group [34/68 (50.0%) TDF-FTC vs. 26/79 (32.9%) placebo; p = 0.04]. There was a small but significant difference in the mean percent change in BMD from baseline for TDF-FTC versus placebo at all three sites at month 30 [forearm -0.84% (p = 0.01), spine -1.62% (p = 0.0002), hip -1.51% (p = 0.003)].

Conclusion: Use of TDF-FTC was associated with a small but statistically significant decrease in BMD at the forearm, hip and lumbar spine. A high percentage (6.8%) of healthy Batswana young adults had abnormal baseline BMD Further evaluation is needed of the longer-term use of TDF in HIV-uninfected persons.

Trial registration: ClinicalTrials.gov NCT00448669.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Study design and participant flow…
Figure 1. Study design and participant flow diagram.
Figure 2. Mean percent bone mineral density…
Figure 2. Mean percent bone mineral density (BMD) change (with 95% confidence intervals) from baseline to subsequent months by treatment group (TDF-FTC versus placebo).

References

    1. Grant RM, Lama JR, Anderson PL, McMahan V, Liu AY, et al. (2010) Pre-exposure chemoprophylaxis for HIV prevention in men who have sex with men. N Engl J Med 363: 2587–2599.
    1. Baeten JM, Donnell D, Ndase P, Mugo NR, Campbell JD, et al. (2012) Antiretroviral prophylaxis for HIV prevention in heterosexual men and women. N Engl J Med 367 (5) 399–410.
    1. Thigpen MC, Kebaabetswe PM, Paxton LA, Smith DK, Rose CE, et al. (2012) Antiretroviral pre-exposure prophylaxis for heterosexual HIV transmission in Botswana. N Engl J Med 367 (5) 423–344.
    1. Choopanya K, Martin M, Sangkum U, Mock PA, Leethochawalit M, et al. (2013) Antiretroviral prophylaxis for HIV infection in injecting drug users in Bangkok, Thailand (the Bangkok Tenofovir Study): a randomised, double-blind, placebo-controlled phase 3 trial
    1. Gallant JE, DeJesus E, Arribas JR, Pozniak AL, Gazzard B, et al. (2006) Tenofovir-DF, emtricitabine, and efavirenz vs. zidovudine, lamivudine and efavirenz for HIV. N Engl J Med 354: 251–260.
    1. Dumond JB, Yeh RF, Patterson KB, Corbet AH, Jung BH, et al. (2007) Antiretroviral drug exposure in the female genital tract: implications for oral pre-and post-exposure prophylaxis. AIDS 21: 1899–1907.
    1. Hawkins T, Veiled W, St Claire RL, Guyer B, Clark N, et al. (2005) Intracellular pharmacokinetics of tenofovir diphosphate, carbovir triphosphate and lamivudine triphosphate in patients receiving triple-nucleoside regimens. JAIDS 39: 406–411.
    1. Gallant JE, Staszewski S, Pozniak AL, Gazzard B, Suleiman JM, et al. (2004) Efficacy and safety of tenofovir-DF vs. stavudine in combination therapy in antiretroviral-naive patients: a 3-year randomized trial. JAMA 292: 191–201.
    1. Martin A, Block M, Amin J, Baker D, Cooper DA, et al. (2009) Simplification of antiretroviral therapy with tenofovir-emtricitabine or abacavir-lamivudine: a randomized, 96-week trial. Clin Infect Dis 49: 1591–1601.
    1. Perrot S, Aslangul E, Szwebel T, Caillat-Vigneron N, Le Jeunne C (2009) Bone pain due to fractures revealing osteomalacia related to tenofovir- induced proximal renal tubular dysfunction in a human immunodeficiency virus-infected patient. J Clin Infect Dis 51: 963–972.
    1. Liu AY, Vittinghoff E, Sellmeyer DE, Irvin R, Mulligan K, et al. (2011) Bone mineral density in HIV-negative men participating in a tenofovir pre-exposure prophylaxis randomized clinical trial in San Francisco. PLoS ONE 6 (8) e23688.
    1. Bileckot R, Audran M, Masson C, Ntsiba H, Simon P, et al. (1991) Bone density in 20 black African young adults of the Bantu race is identical to that in subjects of white race. Rev Mal Osteoartic 58 (11) 787–789.
    1. Bell NH, Gordon L, Stevens J, Shary JR (1995) Demonstration that bone mineral density of the lumbar spine, trochanter, and femoral neck is higher in black than in white young men. Calcif Tissue Int 56 (1) 11–13.
    1. Gong G, Haynatzki G, Haynatzka V, Kosoko-Lasaki S, Howell R, et al. (2006) Bone mineral density of recent African immigrants in the United States. JNMA 98 (5) 746–752.
    1. World Health Organization (1994) Assessment of fracture risk and its application to screening for postmenopausal osteoporosis. Available at: . Accessed on December, 02, 2011.
    1. International Society for Clinical Densitometry (ISCD) (2007) Position Statement on BMD reporting in men younger than age 50. Available at . Accessed: 20 Nov 2013.
    1. Ferrari S, Bianchi ML, Eisman JA, Foldes AJ, Adami S, et al. (2012) Osteoporosis in young adults: pathophysiology, diagnosis, and management. Osteoporos Int [Epub ahead of print].
    1. Nordstrom P, Neovius M, Nordstrom A (2007) Early and rapid bone mineral density loss of the proximal femur in men. J Clin Endocrinol Metab 92: 1902–1908.
    1. Lee EY, Kim D, Kim JM, Kim KJ, Choi HS, et al. (2012) Age-related bone mineral densit patterns in Koreans KNS IV). J Clin Endocrinol Metab 97: 3310–3318.
    1. Riggs BL, Melton LJ, Robb RA, Camp JJ, Atkinson EJ, et al. (2008) A population-based assessment of rates of bone loss at multiple skeletal sites: evidence for substantial trabecular bone loss in young adult women and men. J Bone Miner Res 23: 205–214.
    1. Womack JA, Goulet JL, Gibert C, Brandt C, Chang CC, et al. (2011) Increased risk of fragility fractures among HIV infected compared to uninfected male veterans. PLoS ONE 6 (2) e17217.
    1. McComsey GA, Kitch D, Daar ES, Tierney C, Jahed NC, et al. (2011) Bone mineral density and fractures in antiretroviral-naive persons randomized to receive abacavir-lamivudine or tenofovir disoproxil fumarate-emtricitabine along with efavirenz or atazanavir-ritonavir. J Infect Dis 203: 1791–1801.
    1. Berenson AB, Breitkopf CR, Glady JJ, Rickert VI, Thomas A (2004) Effects of hormonal contraceptives on bone mineral density after 24 months. Obstet Gynecol 103 (5pt1) 899–906.
    1. Cromer BA (1999) Effects of hormonal contraceptives on bone mineral density. Drug Saf 20 (3) 213–222.
    1. Winzenberg T, Shaw K, Fryer J, Jones G (2006) Effects of calcium supplementation on bone density in healthy children: meta-analysis of randomised controlled trials. BMJ doi:
    1. Lloyd T, Andon MB, Rollings N, Martel JK, Landis JR, et al. (1993) Calcium supplementation and bone mineral density in adolescent girls. JAMA 270 (7) 841–844.
    1. Johnson CC, Miller JZ, Slemenda CW, Reister TK, Hui S, et al. (1992) Calcium supplementation and increases in bone mineral density in children. N Engl J Med 327: 82–87.

Source: PubMed

3
Sottoscrivi