Endpoints in Heart Failure Drug Development

Aliza Hussain, Arunima Misra, Biykem Bozkurt, Aliza Hussain, Arunima Misra, Biykem Bozkurt

Abstract

Heart failure (HF) is a major health problem worldwide. The development of effective drug and/or device therapy is crucial to mitigate the significant morbidity, mortality and healthcare costs associated with HF. The choice of endpoint in clinical trials has important practical and clinical implications. Outcomes of interest including mortality and HF hospitalisations provide robust evidence for regulatory approval granted there is sufficiency of safety data. At the same time, it is important to recognise that HF patients experience significant impairments in functional capacity and quality of life, underscoring the need to incorporate parameters of symptoms and patient-reported outcomes in clinical trials. In this review, the authors summarise the evolution and definition of cardiovascular endpoints used in clinical trials, discuss approaches to study design to allow the incorporation of mortality, morbidity and functional endpoints and, finally, examine the current challenges and suggest steps for the development of cardiovascular endpoints that are effective, meaningful and meet the needs of all relevant stakeholders, including patients, physicians regulators and sponsors.

Keywords: Endpoints; clinical trials; heart failure.

Conflict of interest statement

Disclosure: BB has received consulting fees from Bristol Myers Squibb, scPharmaceuticals, Baxter Healthcare, Sanofi-Aventis and Relypsa, and serves on the Clinical Event Committee for the GUIDE HF trial sponsored by Abbott Vascular and the Data Safety Monitoring Committee of the ANTHEM trial sponsored by Liva Nova. All other authors have no conflicts of interest to disclose.

Copyright © 2022, Radcliffe Cardiology.

Figures

Figure 1:. Development and Implementation Steps to…
Figure 1:. Development and Implementation Steps to Bring New Developments to Patients

References

    1. Lund LH, Rich MW, Hauptman PJ. Complexities of the global heart failure epidemic. J Card Fail. 2018;24:813–4. doi: 10.1016/j.cardfail.2018.11.010.
    1. Virani SS, Alonso A, Aparicio HJ et al. Heart disease and stroke statistics – 2021 update: a report from the American Heart Association. Circulation. 2021;143:e254–743. doi: 10.1161/CIR.0000000000000950.
    1. Heidenreich PA, Trogdon JG, Khavjou OA et al. Forecasting the future of cardiovascular disease in the United States: a policy statement from the American Heart Association. Circulation. 2011;123:933–44. doi: 10.1161/CIR.0b013e31820a55f5.
    1. Roger VL. Epidemiology of heart failure: a contemporary perspective. Circ Res. 2021;128:1421–34. doi: 10.1161/CIRCRESAHA.121.318172.
    1. Cohn JN, Archibald DG, Ziesche S et al. Effect of vasodilator therapy on mortality in chronic congestive heart failure. Results of a Veterans Administration Cooperative Study. N Engl J Med. 1986;314:1547–52. doi: 10.1056/NEJM198606123142404.
    1. Cohn JN, Johnson G, Ziesche S et al. A comparison of enalapril with hydralazine-isosorbide dinitrate in the treatment of chronic congestive heart failure. N Engl J Med. 1991;325:303–10. doi: 10.1056/NEJM199108013250502.
    1. Yusuf S, Pitt B, Davis CE et al. Effect of enalapril on mortality and the development of heart failure in asymptomatic patients with reduced left ventricular ejection fractions. N Engl J Med. 1992;327:685–91. doi: 10.1056/NEJM199209033271003.
    1. Yusuf S, Pitt B, Davis CE et al. Effect of enalapril on survival in patients with reduced left ventricular ejection fractions and congestive heart failure. N Engl J Med. 1991;325:293–302. doi: 10.1056/NEJM199108013250501.
    1. MERIT-HF Study Group. Effect of metoprolol CR/XL in chronic heart failure: Metoprolol CR/XL randomised intervention trial in congestive heart failure (MERIT-HF). Lancet. 1999;353:2001–7. doi: 10.1016/S0140-6736(99)04440-2.
    1. Packer M, Bristow MR, Cohn JN et al. The effect of carvedilol on morbidity and mortality in patients with chronic heart failure. N Engl J Med. 1996;334:1349–55. doi: 10.1056/NEJM199605233342101.
    1. Pitt B, Zannad F, Remme WJ et al. The effect of spironolactone on morbidity and mortality in patients with severe heart failure. N Engl J Med. 1999;341:709–17. doi: 10.1056/NEJM199909023411001.
    1. McMurray JJ, Packer M, Desai AS et al. Angiotensin–neprilysin inhibition versus enalapril in heart failure. N Engl J Med. 2014;371:993–1004. doi: 10.1056/NEJMoa1409077.
    1. Packer M, Anker SD, Butler J et al. Cardiovascular and renal outcomes with empagliflozin in heart failure. N Engl J Med. 2020;383:1413–24. doi: 10.1056/NEJMoa2022190.
    1. McMurray JJV, Solomon SD, Inzucchi SE et al. Dapagliflozin in patients with heart failure and reduced ejection fraction. N Engl J Med. 2019;381:1995–2008. doi: 10.1056/NEJMoa1911303.
    1. Packer M, Carver JR, Rodeheffer RJ et al. Effect of oral milrinone on mortality in severe chronic heart failure. N Engl J Med. 1991;325:1468–75. doi: 10.1056/NEJM199111213252103.
    1. Feldman AM, Bristow MR, Parmley WW et al. Effects of vesnarinone on morbidity and mortality in patients with heart failure. N Engl J Med. 1993;329:149–55. doi: 10.1056/NEJM199307153290301.
    1. Food and Drug Administration. Guidance for industry. Treatment for heart failure: endpoints for drug development. (accessed 20 October 2021)
    1. Swedberg K, Komajda M, Bohm M et al. Ivabradine and outcomes in chronic heart failure (SHIFT): a randomised placebo-controlled study. Lancet. 2010;376:875–85. doi: 10.1016/S0140-6736(10)61198-1.
    1. Teerlink JR, Diaz R, Felker GM et al. Omecamtiv mecarbil in chronic heart failure with reduced ejection fraction: rationale and design of GALACTIC-HF. JACC Heart Fail. 2020;8:329–40. doi: 10.1016/j.jchf.2019.12.001.
    1. Armstrong PW, Pieske B, Anstrom KJ et al. Vericiguat in patients with heart failure and reduced ejection fraction. N Engl J Med. 2020;382:1883–93. doi: 10.1056/NEJMoa1915928.
    1. Digitalis Investigation Group. The effect of digoxin on mortality and morbidity in patients with heart failure. N Engl J Med. 1997;336:525–33. doi: 10.1056/NEJM199702203360801.
    1. Yancy CW, Jessup M, Bozkurt B et al. ACC/AHA/HFSA focused update of the 2013 ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Practice Guidelines. Circulation. 2017;2017;136:e137–61. doi: 10.1161/CIR.0000000000000509.
    1. Yancy CW, Jessup M, Bozkurt B et al. ACCF/AHA guideline for the management of heart failure: a report of the American College of Cardiology Foundation/American Heart Association Task Force on Practice Guidelines. Circulation. 2013;2013;128:e240–327. doi: 10.1161/CIR.0b013e31829e8776.
    1. Zinman B, Wanner C, Lachin JM et al. Empagliflozin, cardiovascular outcomes, and mortality in type 2 diabetes. N Engl J Med. 2015;373:2117–28. doi: 10.1056/NEJMoa1504720.
    1. Radholm K, Figtree G, Perkovic V et al. Canagliflozin and heart failure in type 2 diabetes mellitus: results from the CANVAS program. Circulation. 2018;138:458–68. doi: 10.1161/CIRCULATIONAHA.118.034222.
    1. Wiviott SD, Raz I, Bonaca MP et al. Dapagliflozin and cardiovascular outcomes in type 2 diabetes. N Engl J Med. 2019;380:347–57. doi: 10.1056/NEJMoa1812389.
    1. Food and Drug Administration. Guidance for industry. Diabetes mellitus – evaluating cardiovascular risk in new antidiabetic therapies to treat type 2 diabetes. 2008. (accessed 28 October 2021)
    1. Gilbert RE, Krum H. Heart failure in diabetes: effects of anti-hyperglycaemic drug therapy. Lancet. 2015;385:2107–17. doi: 10.1016/S0140-6736(14)61402-1.
    1. Bart BA. Treatment of congestion in congestive heart failure: ultrafiltration is the only rational initial treatment of volume overload in decompensated heart failure. Circ Heart Fail. 2009;2:499–504. doi: 10.1161/CIRCHEARTFAILURE.109.863381.
    1. Bart BA, Goldsmith SR, Lee KL et al. Ultrafiltration in decompensated heart failure with cardiorenal syndrome. N Engl J Med. 2012;367:2296–304. doi: 10.1056/NEJMoa1210357.
    1. Ronco C, Cicoira M, McCullough PA. Cardiorenal syndrome type 1: pathophysiological crosstalk leading to combined heart and kidney dysfunction in the setting of acutely decompensated heart failure. J Am Coll Cardiol. 2012;60:1031–42. doi: 10.1016/j.jacc.2012.01.077.
    1. Food and Drug Administration. Guidance for industry. Patient-reported outcome measures: use in medical product development to support labeling claims. 2009. (accessed 20 October 2021)
    1. Hoppe UC, Vanderheyden M, Sievert H et al. Chronic monitoring of pulmonary artery pressure in patients with severe heart failure: multicentre experience of the monitoring Pulmonary Artery Pressure by Implantable device Responding to Ultrasonic Signal (PAPIRUS) II study. Heart. 2009;95:1091–7. doi: 10.1136/hrt.2008.153486.
    1. Verdejo HE, Castro PF, Concepción R et al. Comparison of a radiofrequency-based wireless pressure sensor to Swan-Ganz catheter and echocardiography for ambulatory assessment of pulmonary artery pressure in heart failure. J Am Coll Cardiol. 2007;50:2375–82. doi: 10.1016/j.jacc.2007.06.061.
    1. Abraham WT, Adamson PB, Bourge RC et al. Wireless pulmonary artery haemodynamic monitoring in chronic heart failure: a randomised controlled trial. Lancet. 2011;377:658–66. doi: 10.1016/S0140-6736(11)60101-3.
    1. Bourge RC, Abraham WT, Adamson PB et al. Randomized controlled trial of an implantable continuous hemodynamic monitor in patients with advanced heart failure: the COMPASS-HF study. J Am Coll Cardiol. 2008;51:1073–9. doi: 10.1016/j.jacc.2007.10.061.
    1. Stone GW, Lindenfeld J, Abraham WT et al. Transcatheter mitral-valve repair in patients with heart failure. N Engl J Med. 2018;379:2307–18. doi: 10.1056/NEJMoa1806640.
    1. Obadia JF, Messika-Zeitoun D, Leurent G et al. Percutaneous repair or medical treatment for secondary mitral regurgitation. N Engl J Med. 2018;379:2297–306. doi: 10.1056/NEJMoa1805374.
    1. Nickenig G, Estevez-Loureiro R, Franzen O et al. Percutaneous mitral valve edge-to-edge repair: in-hospital results and 1-year follow-up of 628 patients of the 2011–12 Pilot European Sentinel Registry. J Am Coll Cardiol. 2014;64:875–84. doi: 10.1016/j.jacc.2014.06.1166.
    1. Maisano F, Franzen O, Baldus S et al. Percutaneous mitral valve interventions in the real world: early and 1-year results from the ACCESS-EU, a prospective, multicenter, nonrandomized post-approval study of the MitraClip therapy in Europe. J Am Coll Cardiol. 2013;62:1052–61. doi: 10.1016/j.jacc.2013.02.094.
    1. Hicks KA, Tcheng JE, Bozkurt B et al. ACC/AHA key data elements and definitions for cardiovascular endpoint events in clinical trials: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Data Standards. J Am Coll Cardiol. 2014;2015;66:403–69. doi: 10.1016/j.jacc.2014.12.018.
    1. Hicks KA, Mahaffey KW, Mehran R et al. 2017 cardiovascular and stroke endpoint definitions for clinical trials. Circulation. 2018;137:961–72. doi: 10.1161/circulationaha.117.033502.
    1. Bozkurt B, Coats AJ, Tsutsui H et al. Universal definition and classification of heart failure: a report of the Heart Failure Society of America, Heart Failure Association of the European Society of Cardiology, Japanese Heart Failure Society and Writing Committee of the Universal Definition of Heart Failure. Eur J Card Fail. 2021;23:352–80. doi: 10.1002/ejhf.2115.
    1. Bozkurt B, Hershberger RE, Butler J et al. 2021 ACC/AHA key data elements and definitions for heart failure: a report of the American College of Cardiology/American Heart Association Task Force on Clinical Data Standards. J Am Coll Cardiol. 2021;77:2053–150. doi: 10.1016/j.jacc.2020.11.012.
    1. Meah MN, Denvir MA, Mills NL et al. Clinical endpoint adjudication. Lancet. 2020;395:1878–82. doi: 10.1016/S0140-6736(20)30635-8.
    1. Tyl B, Lopez SJ, Borer JS et al. Comparison of outcome adjudication by investigators and by a central end point committee in heart failure trials: experience of the SHIFT heart failure study. Circ Heart Fail. 2020;13:e006720. doi: 10.1161/CIRCHEARTFAILURE.119.006720.
    1. Fiuzat M, Lowy N, Stockbridge N et al. Endpoints in heart failure drug development: history and future. JACC Heart Fail. 2020;8:429–40. doi: 10.1016/j.jchf.2019.12.011.
    1. O’Neill WW, Kleiman NS, Moses J et al. A prospective, randomized clinical trial of hemodynamic support with Impella 2.5 versus intra-aortic balloon pump in patients undergoing high-risk percutaneous coronary intervention: the PROTECT II study. Circulation. 2012;126:1717–27. doi: 10.1161/CIRCULATIONAHA.112.098194.
    1. Burkhoff D, Cohen H, Brunckhorst C, O’Neill WW. A randomized multicenter clinical study to evaluate the safety and efficacy of the TandemHeart percutaneous ventricular assist device versus conventional therapy with intraaortic balloon pumping for treatment of cardiogenic shock. Am Heart J. 2006;152:469. doi: 10.1016/j.ahj.2006.05.031.
    1. Thiele H, Sick P, Boudriot E et al. Randomized comparison of intra-aortic balloon support with a percutaneous left ventricular assist device in patients with revascularized acute myocardial infarction complicated by cardiogenic shock. Eur Heart J. 2005;26:1276–83. doi: 10.1093/eurheartj/ehi161.
    1. Cheng JM, den Uil CA, Hoeks SE et al. Percutaneous left ventricular assist devices vs. intra-aortic balloon pump counterpulsation for treatment of cardiogenic shock: a meta-analysis of controlled trials. Eur Heart J. 2009;30:2102–8. doi: 10.1093/eurheartj/ehp292.
    1. Ather S, Chan W, Bozkurt B et al. Impact of noncardiac comorbidities on morbidity and mortality in a predominantly male population with heart failure and preserved versus reduced ejection fraction. J Am Coll Cardiol. 2012;59:998–1005. doi: 10.1016/j.jacc.2011.11.040.
    1. Rogers JK, Pocock SJ, McMurray JJ et al. Analysing recurrent hospitalizations in heart failure: a review of statistical methodology, with application to CHARM-Preserved. Eur J Heart Fail. 2014;16:33–40. doi: 10.1002/ejhf.29.
    1. Blumer V, Mentz RJ, Sun JL et al. Prognostic role of prior heart failure hospitalization among patients hospitalized for worsening chronic heart failure. Circ Heart Fail. 2021;14:e007871. doi: 10.1161/CIRCHEARTFAILURE.120.007871.
    1. Setoguchi S, Stevenson LW, Schneeweiss S. Repeated hospitalizations predict mortality in the community population with heart failure. Am Heart J. 2007;154:260–6. doi: 10.1016/j.ahj.2007.01.041.
    1. Packer M. Development and evolution of a hierarchical clinical composite end point for the evaluation of drugs and devices for acute and chronic heart failure: a 20-year perspective. Circulation. 2016;134:1664–78. doi: 10.1161/CIRCULATIONAHA.116.023538.
    1. Felker GM, Maisel AS. A global rank end point for clinical trials in acute heart failure. Circ Heart Fail. 2010;3:643–6. doi: 10.1161/CIRCHEARTFAILURE.109.926030.
    1. O’Brien PC. Procedures for comparing samples with multiple endpoints. Biometrics. 1984;40:1079–87. doi: 10.2307/2531158.
    1. Margulies KB, Hernandez AF, Redfield MM et al. Effects of liraglutide on clinical stability among patients with advanced heart failure and reduced ejection fraction: a randomized clinical trial. JAMA. 2016;316:500–8. doi: 10.1001/jama.2016.10260.
    1. Pocock SJ, Ariti CA, Collier TJ, Wang D. The win ratio: a new approach to the analysis of composite endpoints in clinical trials based on clinical priorities. Eur Heart J. 2012;33:176–82. doi: 10.1093/eurheartj/ehr352.
    1. Anker SD, Schroeder S, Atar D et al. Traditional and new composite endpoints in heart failure clinical trials: facilitating comprehensive efficacy assessments and improving trial efficiency. Eur J Heart Fail. 2016;18:482–9. doi: 10.1002/ejhf.516.
    1. Cleland JG. How to assess new treatments for the management of heart failure: composite scoring systems to assess the patients’ clinical journey. Eur J Heart Fail. 2002;4:243–7. doi: 10.1016/S1388-9842(02)00039-9.
    1. Dev S, Clare RM, Felker GM et al. Link between decisions regarding resuscitation and preferences for quality over length of life with heart failure. Eur J Heart Fail. 2012;14:45–53. doi: 10.1093/eurjhf/hfr142.
    1. Stevenson LW, Hellkamp AS, Leier CV et al. Changing preferences for survival after hospitalization with advanced heart failure. J Am Coll Cardiol. 2008;52:1702–8. doi: 10.1016/j.jacc.2008.08.028.
    1. Packer M. Proposal for a new clinical end point to evaluate the efficacy of drugs and devices in the treatment of chronic heart failure. J Card Fail. 2001;7:176–82. doi: 10.1054/jcaf.2001.25652.
    1. Brown PM, Ezekowitz JA. Composite end points in clinical trials of heart failure therapy: how do we measure the effect size? Circ Heart Fail. 2017;10:e003222. doi: 10.1161/CIRCHEARTFAILURE.116.003222.
    1. Metra M, Teerlink JR, Cotter G et al. Effects of serelaxin in patients with acute heart failure. N Engl J Med. 2019;381:716–26. doi: 10.1056/NEJMoa1801291.
    1. Anker SD, Agewall S, Borggrefe M et al. The importance of patient-reported outcomes: a call for their comprehensive integration in cardiovascular clinical trials. Eur Heart J. 2014;35:2001–9. doi: 10.1093/eurheartj/ehu205.
    1. Stevenson LW, Hellkamp AS, Leier CV et al. Changing preferences for survival after hospitalization with advanced heart failure. J Am Coll Cardiol. 2008;52:1702–8. doi: 10.1016/j.jacc.2008.08.028.

Source: PubMed

3
Sottoscrivi