Bisphenol A exposure and type 2 diabetes mellitus risk: a meta-analysis

Semi Hwang, Jung-Eun Lim, Yoonjeong Choi, Sun Ha Jee, Semi Hwang, Jung-Eun Lim, Yoonjeong Choi, Sun Ha Jee

Abstract

Background: This meta-analytic study explored the relationship between the risk of type 2 diabetes mellitus (T2DM) and bisphenol A concentrations.

Methods: The Embase and Medline (PubMed) databases were searched, using relevant keywords, for studies published between 1980 and 2018. A total of 16 studies, twelve cross-sectional, two case-control and one prospective, were included in the meta-analysis. The odds ratio (OR) and its 95% confidence interval (CI) were determined across the sixteen studies. The OR and its 95% CI of diabetes associated with bisphenol A were estimated using both fixed-effects and random-effects models.

Results: A total of 41,320 subjects were included. Fourteen of the sixteen studies included in the analysis provided measurements of urine bisphenol A levels and two study provided serum bisphenol A levels. Bisphenol A concentrations in human bio-specimens showed positive associations with T2DM risk (OR 1.28, 95% CI 1.14, 1.44). A sensitivity analysis indicated that urine bisphenol A concentrations were positively associated with T2DM risk (OR 1.20, 95% CI 1.09, 1.31).

Conclusions: This meta-analysis indicated that Bisphenol A exposure is positively associated with T2DM risk in humans.

Keywords: Bisphenol a (BPA); Diabetes mellitus (DM); Endocrine disrupting chemicals (EDCs); Fasting plasma glucose; Hemoglobin A1c (HbA1c); Meta-analysis; Obesity; Type 2 diabetes mellitus (T2DM).

Conflict of interest statement

Ethics approval and consent to participate

Not applicable

Consent for publication

Not applicable

Competing interests

The authors declare that they have no competing interests.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Figures

Fig. 1
Fig. 1
A PRISMA flow diagram
Fig. 2
Fig. 2
Forest plot according to sample type
Fig. 3
Fig. 3
Forest plot after exclusion of studies with serum BPA levels and high heterogeneity
Fig. 4
Fig. 4
Funnel plot according to sample type

References

    1. Chamberlain JJ, Rhinehart AS, Shaefer CF, Jr, Neuman A. Diagnosis and Management of Diabetes: synopsis of the 2016 American Diabetes Association standards of medical Care in Diabetes. Ann Intern Med. 2016;164(8):542–552. doi: 10.7326/M15-3016.
    1. American Diabetes Association Classification and diagnosis of diabetes. In: 2016 Standards of Medical Care in Diabetes. Diabetes Care. 2016;39:S13–S22. doi: 10.2337/dc16-er09.
    1. Ogurtsova K, da Rocha Fernandes JD, Huang Y, Linnenkamp U, Guariguata L, Cho NH, Cavan D, Shaw JE, Makaroff LE. IDF diabetes atlas: global estimates for the prevalence of diabetes for 2015 and 2040. Diabetes Res Clin Pract. 2017;128:40–50. doi: 10.1016/j.diabres.2017.03.024.
    1. Arenholt-Bindslev D, Breinholt V, Preiss A, Schmalz G. Time-related bisphenol-a content and estrogenic activity in saliva samples collected in relation to placement of fissure sealants. Clin Oral Investig. 1999;3(3):120–125. doi: 10.1007/s007840050089.
    1. Sajiki J, Yonekubo J. Leaching of bisphenol a (BPA) to seawater from polycarbonate plastic and its degradation by reactive oxygen species. Chemosphere. 2003;51(1):55–62. doi: 10.1016/S0045-6535(02)00789-0.
    1. Calafat AM, Kuklenyik Z, Reidy JA, Caudill SP, Ekong J, Needham LL. Urinary concentrations of bisphenol a and 4-nonylphenol in a human reference population. Environ Health Perspect. 2005;113(4):391–395. doi: 10.1289/ehp.7534.
    1. Stojanoska MM, Milosevic N, Milic N, Abenavoli L. The influence of phthalates and bisphenol a on the obesity development and glucose metabolism disorders. Endocrine. 2017;55(3):666–681. doi: 10.1007/s12020-016-1158-4.
    1. Hu Y, Wen S, Yuan D, Peng L, Zeng R, Yang Z, Liu Q, Xu L, Kang D. The association between the environmental endocrine disruptor bisphenol a and polycystic ovary syndrome: a systematic review and meta-analysis. Gynecol Endocrinol. 2018;34(5):370–377. doi: 10.1080/09513590.2017.1405931.
    1. Lang IA, Galloway TS, Scarlett A, Henley WE, Depledge M, Wallace RB, Melzer D. Association of urinary bisphenol a concentration with medical disorders and laboratory abnormalities in adults. JAMA. 2008;300(11):1303–1310. doi: 10.1001/jama.300.11.1303.
    1. Melzer D, Rice NE, Lewis C, Henley WE, Galloway TS. Association of urinary bisphenol a concentration with heart disease: evidence from NHANES 2003/06. PLoS One. 2010;5:e8673. doi: 10.1371/journal.pone.0008673.
    1. Silver MK, O’Neill MS, Sowers MR, Park SK. Urinary bisphenol a and type-2 diabetes in US adults: data fromNHANES 2003-2008. PLoS One. 2011;6:e26868. doi: 10.1371/journal.pone.0026868.
    1. Ning G, et al. Relationship of urinary bisphenol a concentration to risk for prevalent type 2 diabetes in Chinese adults: a cross-sectional analysis. Ann Intern Med. 2011;155:368–374. doi: 10.7326/0003-4819-155-6-201109200-00005.
    1. Shankar A, Teppala S. Relationship between urinary bisphenol a levels and diabetes mellitus. J Clin Endocrinol Metab. 2011;96(12):3822–3826. doi: 10.1210/jc.2011-1682.
    1. Wang T, Li M, Chen B, Xu M, Xu Y, Huang Y, Lu J, Chen Y, Wang W, Li X, Liu Y, Bi Y, Lai S, Ning G. Urinary bisphenol a (BPA) concentration associates with obesity and insulin resistance. J Clin Endocrinol Metab. 2012;97(2):E223–E227. doi: 10.1210/jc.2011-1989.
    1. LaKind JS, Goodman M, Naiman DQ. Use of NHANES data to link chemical exposures to chronic diseases: a cautionary tale. PLoS One. 2012;7(12):e51086. doi: 10.1371/journal.pone.0051086.
    1. Kim K, Park H. Association between urinary concentrations of bisphenol a and type 2 diabetes in Korean adults: a population-based cross-sectional study. Int J Hyg Environ Health. 2013;216(4):467–471. doi: 10.1016/j.ijheh.2012.07.007.
    1. Sabanayagam C, Teppala S, Shankar A. Relationship between urinary bisphenol a levelsand prediabetes among subjects free of diabetes. Acta Diabetol. 2013;50:625–631. doi: 10.1007/s00592-013-0472-z.
    1. Casey MF. Disconcordance in statistical models of bisphenol a and chronic disease outcomes in NHANES 2003-08. PLoS One. 2013;8(11):e79944. doi: 10.1371/journal.pone.0079944.
    1. Sun Q, et al. Association of urinary concentrations of bisphenol a and phthalate metabolites with risk of type 2 diabetes: a prospective investigation in the nurses’ health study (NHS) and NHSII cohorts. Environ Health Perspect. 2014;122:616–623. doi: 10.1289/ehp.1307201.
    1. Ahmadkhaniha R, Mansouri M, Yunesian M, Omidfar K, Jeddi MZ, Larijani B, Mesdaghinia A, Rastkari N. Association of urinary bisphenol a concentration with type-2 diabetes mellitus. J Environ Health Sci Eng. 2014;12(1):64. doi: 10.1186/2052-336X-12-64.
    1. Andra SS, Kalyvas H, Andrianou XD, Charisiadis P, Christophi CA, Makris KC. Preliminary evidence of the association between monochlorinated bisphenol a exposure and type II diabetes mellitus: a pilot study. J Environ Sci Health A Tox Hazard Subst Environ Eng. 2015;50(3):243–259. doi: 10.1080/10934529.2015.981111.
    1. Aekplakorn W, Chailurkit LO, Ongphiphadhanakul B. Association of serum bisphenol a with hypertension in thai population. Int J Hypertens. 2015:594189.
    1. Bi Y, Wang W, Xu M, Wang T, Lu J, Xu Y, Dai M, Chen Y, Zhang D, Sun W, Ding L, Chen Y, Huang X, Lin L, Qi L, Lai S, Ning G. Diabetes genetic risk score modifies effect of bisphenol a exposure on deterioration in glucose metabolism. J Clin Endocrinol Metab. 2016;101(1):143–150. doi: 10.1210/jc.2015-3039.
    1. Shu X, Tang S, Peng C, Gao R, Yang S, Luo T, Cheng Q, Wang Y, Wang Z, Zhen Q, Hu J, Li Q. Bisphenol a is not associated with a 5-year incidence of type 2 diabetes: a prospective nested case-control study. Acta Diabetol. 2018;55(4):369–375. doi: 10.1007/s00592-018-1104-4.
    1. Dowans and Black. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions . J Epidemiol Community Health. 1998;52:377–384.
    1. Borenstein M, Hedges LV, Higgins JPT, Rothstein HR. Introduction to Meta-Analysis. Wiley; 2009.
    1. Begg CB, Mazumdar M. Operating characteristics of a rank correlation test for publication bias. Biometrics. 1994;50(4):1088–1101. doi: 10.2307/2533446.
    1. Shim SR, Shin IS, Yoon BH, Bae JM. Dose-response meta-analysis using STATA software. J Health Info Stat. 2016;41(3):351–358. doi: 10.21032/jhis.2016.41.3.351.
    1. Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097. doi: 10.1371/journal.pmed.1000097.
    1. Takeuchi T, Tsutsumi O, Ikezuki Y, et al. Positive relationship between androgen and the endocrine disruptor, bisphenol a, in normal women and women with ovarian dysfunction. Endocr J. 2004;21:165–169. doi: 10.1507/endocrj.51.165.
    1. Alonso-Magdalena P, Morimoto S, Ripoll C, Fuentes E, Nadal A. The estrogenic effect of bisphenol a disrupts pancreatic beta-cell function in vivo and induces insulin resistance. Environ Health Perspect. 2006;114(1):106–112. doi: 10.1289/ehp.8451.
    1. Ariemma F, D'Esposito V, Liguoro D, Oriente F, Cabaro S, Liotti A, et al. Low-dose bisphenol-a impairs Adipogenesis and generates dysfunctional 3T3-L1 adipocytes. PLoS One. 2016;11(3):e0150762. doi: 10.1371/journal.pone.0150762.
    1. Moon MK, Jeong IK, Jung OT, Ahn HY, Kim HH, Park YJ, et al. Long-term oral exposure to bisphenol a induces glucose intolerance and insulin resistance. J Endocrinol. 2015;226:35–42. doi: 10.1530/JOE-14-0714.
    1. Yadav A, Kataria MA, Saini V, Yadav A. Role of leptin and adiponectin in insulin resistance. Clin Chim Acta. 2013;417:80–84. doi: 10.1016/j.cca.2012.12.007.
    1. Trujillo ME, Scherer PE. Adiponectin–journey from an adipocyte secretory protein to biomarker of the metabolic syndrome. J Intern Med. 2005;257:167–175. doi: 10.1111/j.1365-2796.2004.01426.x.
    1. Veiga-Lopez A, Moeller J, Sreedharan R, Singer K, Lumeng CN, Ye W, et al. Developmental programming: interaction between prenatal BPA exposure and postnatal adiposity on metabolic variables in female sheep. Am J Physiol Endocrinol Metab. 2015;310:E238–E247. doi: 10.1152/ajpendo.00425.2015.
    1. Menale Ciro, Piccolo Maria Teresa, Cirillo Grazia, Calogero Raffaele A, Papparella Alfonso, Mita Luigi, Giudice Emanuele Miraglia Del, Diano Nadia, Crispi Stefania, Mita Damiano Gustavo. Bisphenol A effects on gene expression in adipocytes from children: association with metabolic disorders. Journal of Molecular Endocrinology. 2015;54(3):289–303. doi: 10.1530/JME-14-0282.
    1. Chou WC, Chen JL, Lin CF, Chen YC, Shih FC, Chuang CY. Biomonitoring of bisphenol a concentrations in maternal and umbilical cord blood in regard to birth outcomes and adipokine expression:a birth cohort study in Taiwan. Environ Health A Glob Access Sci Source. 2011;10:94.
    1. Mahalingaiah S, Meeker JD, Pearson KR, Calafat AM, Ye X, Petrozza J, Hauser R. Temporal variability and predictors of urinary bisphenol a concentrations in men and women. Environ Health Perspect. 2008;116(2):173–178. doi: 10.1289/ehp.10605.
    1. Lin CY, Shen FY, Lian GW, Chien KL, Sung FC, Chen PC, Su TC. Association between levels of serum bisphenol a, a potentially harmful chemical in plastic containers, and carotid artery intima-media thickness in adolescents and young adults. Atherosclerosis. 2015;241(2):657–663. doi: 10.1016/j.atherosclerosis.2015.06.038.

Source: PubMed

3
Sottoscrivi