Phenolic Compounds in Organic and Aqueous Extracts from Acacia farnesiana Pods Analyzed by ULPS-ESI-Q-oa/TOF-MS. In Vitro Antioxidant Activity and Anti-Inflammatory Response in CD-1 Mice

Delgadillo Puga Claudia, Cuchillo-Hilario Mario, Navarro Ocaña Arturo, Medina-Campos Omar Noel, Nieto Camacho Antonio, Ramírez Apan Teresa, López-Tecpoyotl Zenón Gerardo, Díaz Martínez Margarita, Álvarez-Izazaga Marsela Alejandra, Cruz Martínez Yessica Rosalina, Sánchez-Quezada Vanessa, Gómez Francisco Enrique, Torre-Villalvazo Iván, Furuzawa Carballeda Janette, Camacho-Corona María Del Rayo, Pedraza-Chaverri José, Delgadillo Puga Claudia, Cuchillo-Hilario Mario, Navarro Ocaña Arturo, Medina-Campos Omar Noel, Nieto Camacho Antonio, Ramírez Apan Teresa, López-Tecpoyotl Zenón Gerardo, Díaz Martínez Margarita, Álvarez-Izazaga Marsela Alejandra, Cruz Martínez Yessica Rosalina, Sánchez-Quezada Vanessa, Gómez Francisco Enrique, Torre-Villalvazo Iván, Furuzawa Carballeda Janette, Camacho-Corona María Del Rayo, Pedraza-Chaverri José

Abstract

Background: Acacia farnesiana (AF) pods have been traditionally used to treat dyspepsia, diarrhea and topically for dermal inflammation. Main objectives: (1) investigate the antioxidant activity and protection against oxidative-induced damage of six extracts from AF pods and (2) their capacity to curb the inflammation process as well as to down-regulate the pro-inflammatory mediators.

Methods: Five organic extracts (chloroformic, hexanic, ketonic, methanolic, methanolic:aqueous and one aqueous extract) were obtained and analyzed by UPLC-ESI-Q-oa/TOF-MS. Antioxidant activity (DPPH•, ORAC and FRAP assays) and lipid peroxidation (TBARS assay) were performed. Assessment of anti-inflammatory properties was made by the ear edema induced model in CD-1 mice and MPO activity assay. Likewise, histological analysis, IL-1β, IL-6, IL-10, TNF-α, COX measurements plus nitrite and immunohistochemistry analysis were carried out.

Results: Methyl gallate, gallic acid, galloyl glucose isomer 1, galloyl glucose isomer 2, galloyl glucose isomer 3, digalloyl glucose isomer 1, digalloyl glucose isomer 2, digalloyl glucose isomer 3, digalloyl glucose isomer 4, hydroxytyrosol acetate, quinic acid, and caffeoylmalic acid were identified. Both organic and aqueous extracts displayed antioxidant activity. All extracts exhibited a positive effect on the interleukins, COX and immunohistochemistry assays.

Conclusion: All AF pod extracts can be effective as antioxidant and topical anti-inflammatory agents.

Keywords: Acacia farnesiana pods; antioxidant and anti-inflammatory activities; bioactive compounds; polyphenols.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Scavenging capacity of the DPPH• radical (AG) and inhibitory concentration 50% (IC50) values (H) of different extracts from Acacia farnesiana pods. The data are the mean with the standard deviation of three independent repetitions. CE = chloroformic extract; HE = hexanic extract; KE = ketonic extract; ME = methanolic extract; MEAE = methanolic:aqueous extract and AE = aqueous extract; Q = quercetin. a,b,c,d,e Different letters showed significant difference (p < 0.05) in the same extract at different concentrations (Kruskal–Wallis test).
Figure 1
Figure 1
Scavenging capacity of the DPPH• radical (AG) and inhibitory concentration 50% (IC50) values (H) of different extracts from Acacia farnesiana pods. The data are the mean with the standard deviation of three independent repetitions. CE = chloroformic extract; HE = hexanic extract; KE = ketonic extract; ME = methanolic extract; MEAE = methanolic:aqueous extract and AE = aqueous extract; Q = quercetin. a,b,c,d,e Different letters showed significant difference (p < 0.05) in the same extract at different concentrations (Kruskal–Wallis test).
Figure 2
Figure 2
Total antioxidant activity of the extracts from Acacia farnesiana pods by oxygen radical absorbance capacity (ORAC) and ferric-reducing antioxidant power (FRAP) assays. Q = quercetin; CE = chloroformic extract; HE = hexanic extract; KE = ketonic extract; ME = methanolic extract; MEAE = methanolic:aqueous extract and AE = aqueous extract. a,b,c,d,e,f Different letters showed significant difference (p < 0.05) in the same extract at different concentrations (Kruskal–Wallis test).
Figure 3
Figure 3
Representative images of reactive oxygen species (ROS) produced on porcine kidney cells exposed to H2O2 and to 200 ppm of extracts of Acacia farnesiana pods (A) and ROS quantification using 50, 100 and 200 ppm of extracts (B). H2O2 = hydrogen peroxide; Q = quercetin; CE = chloroformic extract; HE = hexanic extract; KE = ketonic extract; ME = methanolic extract; MEAE = methanolic:aqueous extract; AE = aqueous extract. a,b,c,d Different letters showed significant difference (p < 0.05) among extracts and queretin at the same concentration (Kruskal–Wallis test).
Figure 3
Figure 3
Representative images of reactive oxygen species (ROS) produced on porcine kidney cells exposed to H2O2 and to 200 ppm of extracts of Acacia farnesiana pods (A) and ROS quantification using 50, 100 and 200 ppm of extracts (B). H2O2 = hydrogen peroxide; Q = quercetin; CE = chloroformic extract; HE = hexanic extract; KE = ketonic extract; ME = methanolic extract; MEAE = methanolic:aqueous extract; AE = aqueous extract. a,b,c,d Different letters showed significant difference (p < 0.05) among extracts and queretin at the same concentration (Kruskal–Wallis test).
Figure 4
Figure 4
Inhibition of lipid peroxidation (AG) and inhibitory concentration 50% (IC50) values (H) of the extracts from AF pods and standard quercetin, quantified by lipid peroxidation (TBARS) production. CE = chloroformic extract; HE = hexanic extract; KE = ketonic extract; ME = methanolic extract; MEAE = methanolic:aqueous extract and AE = aqueous extract. Q = quercetin. The data are the mean with the standard error of three independent repetitions. * p < 0.05 and ** p < 0.01 vs. control group.
Figure 5
Figure 5
Effect of different extracts from Acacia farnesiana pods and the anti-inflammatory indomethacin (1 mg) on TPA-induced ear edema model. (A) ear edema measured at 4 h after TPA treatment and (B) oxidative enzyme myeloperoxidase (MPO) activity in supernatants of homogenates from TPA-treated ears. Levels of (C) interleukin-1β (D), interleukin-6 (E), interleukin-10 and (F) TNF-α in supernatants of homogenates from ears after treatment with different extracts from AF pods. TPA = 12-O-tetradecanoylphorbol acetate; In = indomethacin; CE = chloroformic extract; HE = hexanic extract; KE = ketonic extract; ME = methanolic extract; MEAE = methanolic:aqueous extract and AE = aqueous extract. Each bar represents the mean ± standard deviation (n = 6). * p < 0.05 and ** p < 0.001 with respect to TPA group.
Figure 6
Figure 6
Histological features of mice ear tissue (A) stained with hematoxylin-eosin (200× magnification) on mice ear tissue thickness by the effect of different extracts of Acacia farnesiana pods on the TPA-induced ear edema model (B). TPA = 12-O-tetradecanoylphorbol acetate; In = indomethacin; CE = chloroformic extract; HE = hexanic extract; KE = ketonic extract; ME = methanolic extract; MEAE = methanolic:aqueous extract and AE = aqueous extract. Each bar represents the mean ± standard deviation (n = 6). ** p < 0.001 with respect to TPA group.
Figure 7
Figure 7
TNF-α expression (golden yellow color) in the mice ear cells due to the effect of different extracts of Acacia farnesiana (AF) pods (3 mg/ear) on the TPA-induced ear edema model (100× magnification). CE = chloroformic extract; HE = hexanic extract; KE = ketonic extract; ME = methanolic extract; MEAE = methanolic:aqueous extract and AE = aqueous extract.
Figure 8
Figure 8
Effect of different Acacia farnesiana extracts on prostaglandin production. Cx = Celecoxib; CE = chloroformic extract; HE = hexanic extract; KE = ketonic extract; ME = methanolic extract; MEAE = methanolic:aqueous extract and AE = aqueous extract. The data are the mean with the standard deviation of three independent repetitions. Statistical difference was calculated in relation to COX at 30 and 100 ppm. * p < 0.05. ** p < 0.001.
Figure 9
Figure 9
(A) Viability of RAW 264.7 cells treated with of lipopolysaccharides (LPS) of E. coli (1 µg/mL), oleanolic acid or different extracts (25 µg/mL) from Acacia farnesiana pods. (B) Nitrite concentration in supernatants of RAW 264.7 cells treated with LPS of E. coli (1 µg/mL), oleanolic acid (Ole) different extracts (25 µg/mL) from Acacia farnesiana (AF) pods. CE = chloroformic extract; HE = hexanic extract; KE = ketonic extract; ME = methanolic extract; MEAE = methanolic:aqueous extract and AE = aqueous extract. Each bar represents mean ± standard deviation (n = 6). * p < 0.05 between extracts respect to LPS.

References

    1. Halliwell B. Free radicals and antioxidants: Updating a personal view. Nutr. Rev. 2012;70:257–265. doi: 10.1111/j.1753-4887.2012.00476.x.
    1. Stevenson D.E., Hurst R.D. Polyphenolic phytochemicals–just antioxidants or much more? Cell. Mol. Life Sci. 2007;64:2900–2916. doi: 10.1007/s00018-007-7237-1.
    1. Correa L.B., Pádua T.A., Seito L.N., Costa T.E.M.M., Silva M.A., Candéa A.L.P., Rosas E.C., Henriques M.G. Anti-inflammatory effect of methyl gallate on experimental arthritis: Inhibition of neutrophil recruitment, production of inflammatory mediators, and activation of macrophages. J. Nat. Prod. 2016;79:1554–1566. doi: 10.1021/acs.jnatprod.5b01115.
    1. Hernández-Valle E., Herrera-Ruiz M., Salgado G., Zamilpa A., Ocampo M., Aparicio A., Tortoriello J., Jiménez-Ferrer E. Anti-inflammatory effect of 3-O-[(6′-O-Palmitoyl)-β-d-glucopyranosyl sitosterol] from Agave angustifolia on ear edema in mice. Molecules. 2014;19:15624–15637. doi: 10.3390/molecules191015624.
    1. Hou X.L., Tong Q., Wang W.Q., Shi C.Y., Xiong W., Chen J., Liu X., Fang J.G. Suppression of inflammatory responses by dihydromyricetin, a flavonoid from Ampelopsis grossedentata, via inhibiting the activation of NF-κB and MAPK signaling pathways. J. Nat. Prod. 2015;78:1689–1696. doi: 10.1021/acs.jnatprod.5b00275.
    1. Gasparrini M., Giampieri F., Forbes-Hernandez T.Y., Afrin S., Cianciosi D., Reboredo-Rodriguez P., Valera-Lopez A., Zhang J.J., Quiles L.J., Mezzetti B., et al. Strawberry extracts efficiently counteract inflammatory stress induced by the endotoxin lipopolysaccharide in Human Dermal Fibroblast. Food Chem. Toxicol. 2018;114:28–40. doi: 10.1016/j.fct.2018.02.038.
    1. Domínguez M., Nieto A., Marin J.C., Keck A.S., Jeffery E., Céspedes C.L. Antioxidant activities of extracts from Barkleyanthus salicifolius (Asteraceae) and Penstemon gentianoides (Scrophulariaceae) J. Agri. Food Chem. 2005;53:5889–5895. doi: 10.1021/jf0504972.
    1. Oliveira A.S., Cercato L.M., de Santana Souza M.T., Melo A.J.O., Lima B.D.S., Duarte M.C., Araujo A.A.S., de Oliveira e Silva A.M., Camargo E.A. The ethanol extract of Leonurus sibiricus L. induces antioxidant, antinociceptive and topical anti-inflammatory effects. J. Ethnopharmacol. 2017;206:144–151. doi: 10.1016/j.jep.2017.05.029.
    1. Rauh L.K., Horinouchi C.D.S., Loddi A.M.V., Pietrovski E.F., Neris R., Souza-Fonseca-Guimarães F., Buchi D.F., Biavatti M.W., Otuki M.F., Cabrini D.A. Effectiveness of Vernonia scorpioides ethanolic extract against skin inflammatory processes. J. Ethnopharmacol. 2011;138:390–397. doi: 10.1016/j.jep.2011.09.012.
    1. Abdallah H.M., Esmat A. Antioxidant and anti-inflammatory activities of the major phenolics from Zygophyllum simplex L. J. Ethnopharmacol. 2017;205:51–56. doi: 10.1016/j.jep.2017.04.022.
    1. Fortunato L.R., Alves C.D.F., Teixeira M.M., Rogerio A.P. Quercetin: A flavonoid with the potential to treat asthma. Braz. J. Pharm. Sci. 2012;48:589–599. doi: 10.1590/S1984-82502012000400002.
    1. Sathya A., Siddhuraju P. Protective effect of bark and empty pod extracts from Acacia auriculiformis against paracetamol intoxicated liver injury and alloxan induced type II diabetes. Food Chem. Toxicol. 2013;56:162–170. doi: 10.1016/j.fct.2013.02.031.
    1. Hernández G.E. Master’s Thesis. Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León; San Nicolás de los Garza, Mexico: 2017. Aislamiento, caracterización estructural y determinación de las propiedades antibacterianas de los constituyentes de los frutos de Acacia farnesiana.
    1. Fernandez P.M.S., Villano D., Troncoso A.M., Garcia P.M.C. Antioxidant activity of phenolic compounds: From in vitro results to in vivo evidence. Crit. Rev. Food Sci. Nutr. 2008;48:649–671. doi: 10.1080/10408390701761845.
    1. Cuchillo H.M., Puga D.C., Wrage-Mönning N., Espinosa M.J.G., Montaño B.S., Navarro-Ocaña A., Ledesma J.A., Diaz M.M., Pérez-Gil R.F. Chemical composition, antioxidant activity and bioactive compounds of vegetation species ingested by goats on semiarid rangelands. J. Anim. Feed Sci. 2013;22:106–115. doi: 10.22358/jafs/66000/2013.
    1. Delgadillo P.C., Cuchillo H.M., Espinosa M.J.G., Medina C.O., Molina J.E., Díaz M.M., Álvarez I.M.A., Ledesma S.J.A., Pedraza-Chaverri J. Antioxidant activity and protection against oxidative-induced damage of Acacia shaffneri and Acacia farnesiana pods extracts: In vitro and in vivo assays. BMC Complement. Altern. Med. 2015;15:1–8. doi: 10.1186/s12906-015-0959-y.
    1. Akdis M., Burgler S., Crameri R., Eiwegger T., Fujita H., Gomez E., Klunker S., Meyer N., O’Mahony L., Palomares O., et al. Interleukins, from 1 to 37, and interferon-γ: Receptors, functions, and roles in diseases. J. Allergy Clin. Immunol. 2011;127:701–721. doi: 10.1016/j.jaci.2010.11.050.
    1. García J.S.A., Verde M.J.S., Heredia L.N. Traditional uses and scientific knowledge of medicinal plants from Mexico and Central America. J. Herbs Spices Med. Plants. 2001;8:37–89. doi: 10.1300/J044v08n02_02.
    1. Bae S., Kim S.Y., Do M.H., Lee C.H., Song Y.J. 1,2,3,4,6-Penta-O-galloyl-ß-d-glucose, a bioactive compound in Elaeocarpus sylvestris extract, inhibits varicella-zoster virus replication. Antivir. Res. 2017;144:266–272. doi: 10.1016/j.antiviral.2017.06.018.
    1. Ambigaipalan P., de Camargo A.C., Shahidi F. Identification of phenolic antioxidants and bioactives of pomegranate seeds following juice extraction using HPLC-DAD-ESI-MSn. Food Chem. 2017;221:1883–1894. doi: 10.1016/j.foodchem.2016.10.058.
    1. Ma C., Zhao X., Wang P., Jia P., Zhao X., Xiao C., Zheng X. Metabolite characterization of Penta-O-galloyl-beta-d-glucose in rat biofluids by HPLC-QTOF-MS. Chin. Herb. Med. 2018;10:73–79. doi: 10.1016/j.chmed.2018.01.002.
    1. Li J., Kuang G., Chen X., Zeng R. Identification of chemical composition of leaves and flowers from Paeonia rockii by UHPLC-Q-Exactive Orbitrap HRMS. Molecules. 2016;21:947. doi: 10.3390/molecules21070947.
    1. Slatnar A., Mikulic-Petkovsek M., Stampar F., Veberic R., Solar A. Identification and quantification of phenolic compounds in kernels, oil and bagasse pellets of common walnut (Juglans regia L.) Food Res. Int. 2015;67:255–263. doi: 10.1016/j.foodres.2014.11.016.
    1. Tasioula-Margari M., Tsabolatidou E. Extraction, separation, and identification of phenolic ompounds in virgin olive oil by HPLC-DAD and HPLC-MS. Antioxidants. 2015;4:548–562. doi: 10.3390/antiox4030548.
    1. Llorent-Martínez E.J., Spínola V., Castilho P.C. Phenolic profiles of Lauraceae plant species endemic to Laurisilva forest: A chemotaxonomic survey. Ind. Crops Prod. 2017;107:1–12. doi: 10.1016/j.indcrop.2017.05.023.
    1. Spínola V., Pinto J., Castilho P.C. Identification and quantification of phenolic compounds of selected fruits from Madeira Island by HPLC-DAD–ESI-MSn and screening for their antioxidant activity. Food Chem. 2015;173:14–30. doi: 10.1016/j.foodchem.2014.09.163.
    1. Salem M.M., Davidorf H.F., Abdel-Rahman H.M. In vitro anti-uveal melanoma activity pf phenols compounds fron the Egyptian medicianla plant Acacia nilotica. Fitoterapia. 2011;82:1279–1284. doi: 10.1016/j.fitote.2011.08.020.
    1. Lin A.S., Lin C.R., Du Y.C., Lübken T., Chiang M.Y., Chen I.H., Wu C.C., Hwang T.L., Chen S.L., Yen M.H., et al. Acasiane A and B and farnesirane A and B, diterpene derivatives from the roots of Acacia farnesiana. Planta Med. 2009;75:256–261. doi: 10.1055/s-0028-1112201.
    1. Yi J., Zhu R., Wu J., Wu J., Xia W., Zhu L., Jiang W., Xiang S., Tan Z. In vivo protective effect of betulinic acid on dexamethasone induced thymocyte apoptosis by reducing oxidative stress. Pharmacol. Rep. 2016;68:95–100. doi: 10.1016/j.pharep.2015.07.003.
    1. Karoune S., Falleh H., Kechebar M.S.A., Halis Y., Mkadmini K., Belhamra M., Rahmoune C., Ksouri R. Evaluation of antioxidant activities of the edible and medicinal Acacia albida organs related to phenolic compounds. Nat. Prod. Res. 2015;29:452–454. doi: 10.1080/14786419.2014.947497.
    1. Fernández M.A., de las Heras B., Garcia M.D., Sáenz M.T., Villar A. New insights into the mechanism of action of the anti-inflammatory triterpene lupeol. J. Pharm. Pharmacol. 2001;53:1533–1539. doi: 10.1211/0022357011777909.
    1. Adkins Y., Kelley D.S. Mechanisms underlying the cardioprotective effects of omega-3 polyunsaturated fatty acids. J. Nutr. Biochem. 2010;21:781–792. doi: 10.1016/j.jnutbio.2009.12.004.
    1. Endo J., Arita M. Cardioprotective mechanism of omega-3 polyunsaturated fatty acids. J. Cardiol. 2016;67:22–27. doi: 10.1016/j.jjcc.2015.08.002.
    1. Romero E.A., Maldonado M.A., González C.J., Bahena S.M., Garduño R.M.L., Rodríguez L.V., Alvarez L. Anti-inflammatory and antioxidative effects of six pentacyclic triterpenes isolated from the Mexican copal resin of Bursera copallifera. BMC Complement. Altern. Med. 2016;16:422. doi: 10.1186/s12906-016-1397-1.
    1. Horinouchi C.D., Mendes D.A., Soley Bda S., Pietrovski E.F., Facundo V.A., Santos A.R.S., Cabrini D.A., Otuki M.F. Combretum leprosum Mart. (Combretaceae): Potential as an antiproliferative and anti-inflammatory agent. J. Ethnopharmacol. 2013;145:311–319. doi: 10.1016/j.jep.2012.10.064.
    1. Sánchez E., Heredia N., Camacho C.M.R., García S. Isolation, characterization and mode of antimicrobial action against Vibrio cholerae of methyl gallate isolated from Acacia farnesiana. J. App. Microbiol. 2013;115:1307–1316. doi: 10.1111/jam.12328.
    1. Crispo J.A.G., Piché M., Ansell D.R., Eibl J.K., Tai I.T., Kumar A., Ross G.M., Tai T.C. Protective effects of methyl gallate on H2O2-induced apoptosis in PC12 cells. Biochem. Biophys. Res. Commun. 2010;393:773–778. doi: 10.1016/j.bbrc.2010.02.079.
    1. Ou B., Huang D., Hampsch-Woodill M., Flanagan J.A., Deemer E.K. Analysis of antioxidant activities of common vegetables employing oxygen radical absorbance capacity (ORAC) and ferric reducing antioxidant power (FRAP) assays: A comparative study. J. Agric. Food Chem. 2002;50:3122–3128. doi: 10.1021/jf0116606.
    1. Liang N., Kitts D.D. Antioxidant property of coffee components: Assessment of methods that define mechanisms of action. Molecules. 2014;19:19180–19208. doi: 10.3390/molecules191119180.
    1. Singleton V.L., Orthofer R., Lamuela-Raventós R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-ciocalteu reagent. Methods Enzymol. 1999;299:152–178. doi: 10.1016/S0076-6879(99)99017-1.
    1. Koren E., Kohen R., Ginsburg I. Polyphenols enhance total oxidant-scavenging capacities of human blood by binding to red blood cells. Exp. Biol. Med. 2010;235:689–699. doi: 10.1258/ebm.2010.009370.
    1. Huang D., Ou B., Hampsch-Woodill M., Flanagan J.A., Prior R.L. High-throughput assay of oxygen radical absorbance capacity (ORAC) using a multichannel liquid handling system coupled with a microplate fluorescence reader in 96-well format. J. Agric. Food Chem. 2002;50:4437–4444. doi: 10.1021/jf0201529.
    1. Benzie I.F.F., Strain J.J. The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: The FRAP assay. Anal. Biochem. 1996;239:70–76. doi: 10.1006/abio.1996.0292.
    1. Hernández F.K., Cárdenas R.N., Pedraza C.J., Massieu L. Calcium-dependent production of reactive oxygen species is involved in neuronal damage induced during glycolysis inhibition in cultured hippocampal neurons. J. Neurosci. Res. 2008;86:1768–1780. doi: 10.1002/jnr.21634.
    1. Lowry O.H., Rosebrough N.J., Farr A.L., Randall R.J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951;193:265–275.
    1. Ohkawa H., Ohishi N., Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal. Biochem. 1979;95:351–358. doi: 10.1016/0003-2697(79)90738-3.
    1. Esterbauer H., Cheeseman K.H. Determination of aldehydic lipid peroxidation products: Malonaldehyde and 4-hydroxynonenal. Methods Enzymol. 1990;186:407–421. doi: 10.1016/0076-6879(90)86134-H.
    1. Del-Ángel M., Nieto A., Ramírez-Apan T., Delgado G. Anti-inflammatory effect of natural and semi-synthetic phthalides. Eur. J. Pharmacol. 2015;752:40–48. doi: 10.1016/j.ejphar.2015.01.026.
    1. Suzuki K., Ota H., Sasagawa S., Sakatani T., Fujikura T. Assay method for myeloperoxidase in human polymorphonuclear leukocytes. Anal. Biochem. 1983;132:345–352. doi: 10.1016/0003-2697(83)90019-2.
    1. Bradley P.P., Priebat D.A., Christensen R.D., Rothstein G. Measurement of cutaneous inflammation: Estimation of neutrophil content with an enzyme marker. J. Investig. Dermatol. 1982;78:206–209. doi: 10.1111/1523-1747.ep12506462.
    1. Leal-Díaz A.M., Noriega L.G., Torre-Villalvazo I., Torres N., Alemán-Escondrillas G., López-Romero P., Sánchez-Tapia M., Aguilar-López M., Furuzawa-Carballeda J., Velázquez-Villegas L.A., et al. Aguamiel concentrate from Agave salmiana and its extracted saponins attenuated obesity and hepatic steatosis and increased Akkermansia muciniphila in C57BL/6 mice. Sci. Rep. 2016;6:34242. doi: 10.1038/srep34242.
    1. Méndez-Flores S., Hernandez-Molina G., Enriquez A.B., Faz-Muñoz D., Esquivel Y., Pacheco-Molina C., Furuzawa-Carballeda J. Cytokines and effector/regulatory cells characterization in the physiopathology of cutaneous lupus erythematous: A cross-sectional study. Mediat. Inflamm. 2016;15 doi: 10.1155/2016/7074829.

Source: PubMed

3
Sottoscrivi