Neuromonitoring of delirium with quantitative pupillometry in sedated mechanically ventilated critically ill patients

Eva Favre, Adriano Bernini, Paola Morelli, Jerôme Pasquier, John-Paul Miroz, Samia Abed-Maillard, Nawfel Ben-Hamouda, Mauro Oddo, Eva Favre, Adriano Bernini, Paola Morelli, Jerôme Pasquier, John-Paul Miroz, Samia Abed-Maillard, Nawfel Ben-Hamouda, Mauro Oddo

Abstract

Background: Intensive care unit (ICU) delirium is a frequent secondary neurological complication in critically ill patients undergoing prolonged mechanical ventilation. Quantitative pupillometry is an emerging modality for the neuromonitoring of primary acute brain injury, but its potential utility in patients at risk of ICU delirium is unknown.

Methods: This was an observational cohort study of medical-surgical ICU patients, without acute or known primary brain injury, who underwent sedation and mechanical ventilation for at least 48 h. Starting at day 3, automated infrared pupillometry-blinded to ICU caregivers-was used for repeated measurement of the pupillary function, including quantitative pupillary light reflex (q-PLR, expressed as % pupil constriction to a standardized light stimulus) and constriction velocity (CV, mm/s). The relationship between delirium, using the CAM-ICU score, and quantitative pupillary variables was examined.

Results: A total of 59/100 patients had ICU delirium, diagnosed at a median 8 (5-13) days from admission. Compared to non-delirious patients, subjects with ICU delirium had lower values of q-PLR (25 [19-31] vs. 20 [15-28] %) and CV (2.5 [1.7-2.8] vs. 1.7 [1.4-2.4] mm/s) at day 3, and at all additional time-points tested (p < 0.05). After adjusting for the SOFA score and the cumulative dose of analgesia and sedation, lower q-PLR was associated with an increased risk of ICU delirium (OR 1.057 [1.007-1.113] at day 3; p = 0.03).

Conclusions: Sustained abnormalities of quantitative pupillary variables at the early ICU phase correlate with delirium and precede clinical diagnosis by a median 5 days. These findings suggest a potential utility of quantitative pupillometry in sedated mechanically ventilated ICU patients at high risk of delirium.

Keywords: Cholinergic; Delirium; Mechanical ventilation; Pupillary reactivity; Pupillometry.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Trends over time of quantitative pupillary light reflex (PLR) and constriction velocity in patients with and without delirium. ** p < 0.05 for comparison between groups. a Quantitative PLR (% pupillary constriction). b Constriction velocity (mm/s)

References

    1. Hayhurst CJ, Pandharipande PP, Hughes CG. Intensive care unit delirium: a review of diagnosis, prevention, and treatment. Anesthesiology. 2016;125(6):1229–1241. doi: 10.1097/ALN.0000000000001378.
    1. Maldonado JR. Acute brain failure: pathophysiology, diagnosis, management, and sequelae of delirium. Crit Care Clin. 2017;33(3):461–519. doi: 10.1016/j.ccc.2017.03.013.
    1. Lehner KR, Silverman HA, Addorisio ME, Roy A, Al-Onaizi MA, Levine Y, Olofsson PS, Chavan SS, Gros R, Nathanson NM et al: Forebrain cholinergic signaling regulates innate immune responses and inflammation. Front Immunol 2019, 10(585).
    1. Pavlov VA, Chavan SS, Tracey KJ. Molecular and functional neuroscience in immunity. Annu Rev Immunol. 2018;36:783–812. doi: 10.1146/annurev-immunol-042617-053158.
    1. Chavan SS, Tracey KJ. Essential Neuroscience in Immunology. J Immunol. 2017;198(9):3389–3397. doi: 10.4049/jimmunol.1601613.
    1. Rosas-Ballina M, Olofsson PS, Ochani M, Valdés-Ferrer SI, Levine YA, Reardon C, Tusche MW, Pavlov VA, Andersson U, Chavan S, et al. Acetylcholine-synthesizing T cells relay neural signals in a vagus nerve circuit. Science. 2011;334(6052):98–101. doi: 10.1126/science.1209985.
    1. Andersson U, Tracey KJ. Reflex principles of immunological homeostasis. Annual Reviews. 2012;30(1):313–335.
    1. Zaghloul N, Addorisio ME, Silverman HA, Patel HL, Valdés-Ferrer SI, Ayasolla KR, Lehner KR, Olofsson PS, Nasim M, Metz CN et al: Forebrain cholinergic dysfunction and systemic and brain inflammation in murine sepsis survivors. Front Immunol 2017, 8(1673).
    1. Huffman WJ, Subramaniyan S, Rodriguiz RM, Wetsel WC, Grill WM, Terrando N. Modulation of neuroinflammation and memory dysfunction using percutaneous vagus nerve stimulation in mice. Brain Stimulation. 2019;12(1):19–29. doi: 10.1016/j.brs.2018.10.005.
    1. Frasch MG, Szynkaruk M, Prout AP, Nygard K, Cao M, Veldhuizen R, Hammond R, Richardson BS. Decreased neuroinflammation correlates to higher vagus nerve activity fluctuations in near-term ovine fetuses: a case for the afferent cholinergic anti-inflammatory pathway? J Neuroinflammation. 2016;13(1):103. doi: 10.1186/s12974-016-0567-x.
    1. Cai PY, Bodhit A, Derequito R, Ansari S, Abukhalil F, Thenkabail S, Ganji S, Saravanapavan P, Shekar CC, Bidari S et al: Vagus nerve stimulation in ischemic stroke: old wine in a new bottle. Front Neurol 2014, 5(107).
    1. Schweighöfer H, Rummel C, Roth J, Rosengarten B. Modulatory effects of vagal stimulation on neurophysiological parameters and the cellular immune response in the rat brain during systemic inflammation. Intensive Care Med Exp. 2016;4(1):19. doi: 10.1186/s40635-016-0091-4.
    1. Fernandez R, Nardocci G, Navarro C, Reyes EP, Acuña-Castillo C, Cortes PP: Neural reflex regulation of systemic inflammation: potential new targets for sepsis therapy. Front Neurol 2014, 5(489).
    1. Wang Y, Zekveld AA, Naylor G, Ohlenforst B, Jansma EP, Lorens A, Lunner T, Kramer SE. Parasympathetic nervous system dysfunction, as identified by pupil light reflex, and its possible connection to hearing impairment. PLoS One. 2016;11(4):e0153566. doi: 10.1371/journal.pone.0153566.
    1. Milioni ALV, Nagy BV, Moura ALA, Zachi EC, Barboni MTS, Ventura DF. Neurotoxic impact of mercury on the central nervous system evaluated by neuropsychological tests and on the autonomic nervous system evaluated by dynamic pupillometry. NeuroToxicology. 2017;59:263–269. doi: 10.1016/j.neuro.2016.04.010.
    1. Moog P, Eren O, Kossegg S, Valda K, Straube A, Grünke M, Schulze-Koops H, Witt MJCAR. Pupillary autonomic dysfunction in patients with ANCA-associated vasculitis. Clin Auton Res. 2017;27(6):385–392. doi: 10.1007/s10286-017-0463-1.
    1. Muppidi S, Adams-Huet B, Tajzoy E, Scribner M, Blazek P, Spaeth EB, Frohman E, Davis S, Vernino SJCAR. Dynamic pupillometry as an autonomic testing tool. Clin Auton Res. 2013;23(6):297–303. doi: 10.1007/s10286-013-0209-7.
    1. Kaltsatou A, Fotiou D, Tsiptsios D, Orologas A. Cognitive impairment as a central cholinergic deficit in patients with myasthenia gravis. BBA Clinical. 2015;3:299–303. doi: 10.1016/j.bbacli.2015.04.003.
    1. Chougule PS, Najjar RP, Finkelstein MT, Kandiah N, Milea D: Light-induced pupillary responses in Alzheimer's disease. Front Neurol 2019, 10(360).
    1. Mukherjee S, Vernino S. Dysfunction of the pupillary light reflex in experimental autoimmune autonomic ganglionopathy. Auton Neurosci. 2007;137(1):19–26. doi: 10.1016/j.autneu.2007.05.005.
    1. Fotiou DF, Stergiou V, Tsiptsios D, Lithari C, Nakou M, Karlovasitou A. Cholinergic deficiency in Alzheimer's and Parkinson's disease: evaluation with pupillometry. Int J Psychophysiol. 2009;73(2):143–149. doi: 10.1016/j.ijpsycho.2009.01.011.
    1. Wassenaar A, van den Boogaard M, van Achterberg T, Slooter AJC, Kuiper MA, Hoogendoorn ME, Simons KS, Maseda E, Pinto N, Jones C, et al. Multinational development and validation of an early prediction model for delirium in ICU patients. Intensive Care Med. 2015;41(6):1048–1056. doi: 10.1007/s00134-015-3777-2.
    1. van den Boogaard M, Schoonhoven L, Evers AW, van der Hoeven JG, van Achterberg T, Pickkers P. Delirium in critically ill patients: impact on long-term health-related quality of life and cognitive functioning. Crit Care Med. 2012;40(1):112–118. doi: 10.1097/CCM.0b013e31822e9fc9.
    1. Pandharipande PP, Ely EW, Arora RC, Balas MC, Boustani MA, La Calle GH, Cunningham C, Devlin JW, Elefante J, Han JH, et al. The intensive care delirium research agenda: a multinational, interprofessional perspective. Intensive Care Med. 2017;43(9):1329–1339. doi: 10.1007/s00134-017-4860-7.
    1. Devlin JW, Skrobik Y, Gelinas C, Needham DM, Slooter AJC, Pandharipande PP, Watson PL, Weinhouse GL, Nunnally ME, Rochwerg B, et al. Clinical practice guidelines for the prevention and management of pain, agitation/sedation, delirium, immobility, and sleep disruption in adult patients in the ICU. Crit Care Med. 2018;46(9):e825–e873. doi: 10.1097/CCM.0000000000003299.
    1. Mehta S, Cook D, Devlin JW, Skrobik Y, Meade M, Fergusson D, Herridge M, Steinberg M, Granton J, Ferguson N, et al. Prevalence, risk factors, and outcomes of delirium in mechanically ventilated adults. Crit Care Med. 2015;43(3):557–566. doi: 10.1097/CCM.0000000000000727.
    1. Sauder P, Andreoletti M, Cambonie G, Capellier G, Feissel M, Gall O, Goldran-Toledano D, Kierzek G, Mateo J, Mentec H, et al. Sedation and analgesia in intensive care (with the exception of new-born babies). French Society of Anesthesia and Resuscitation. French-speaking resuscitation society. Annales francaises d’anesthesie et de reanimation. 2008;27(7–8):541–551. doi: 10.1016/j.annfar.2008.04.021.
    1. Ely EW, Truman B, Shintani A, Thomason JW, Wheeler AP, Gordon S, Francis J, Speroff T, Gautam S, Margolin R, et al. Monitoring sedation status over time in ICU patients: reliability and validity of the Richmond Agitation-Sedation Scale (RASS) Jama. 2003;289(22):2983–2991. doi: 10.1001/jama.289.22.2983.
    1. Taylor WR, Chen JW, Meltzer H, Gennarelli TA, Kelbch C, Knowlton S, Richardson J, Lutch MJ, Farin A, Hults KN, et al. Quantitative pupillometry, a new technology: normative data and preliminary observations in patients with acute head injury. J Neurosurg. 2003;98(1):205. doi: 10.3171/jns.2003.98.1.0205.
    1. Singer M, Deutschman CS, Seymour CW, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche J-D, Coopersmith CM, et al. The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3) Jama. 2016;315(8):801–810. doi: 10.1001/jama.2016.0287.
    1. Rohaut B, Porcher R, Hissem T, Heming N, Chillet P, Djedaini K, Moneger G, Kandelman S, Allary J, Cariou A, et al. Brainstem response patterns in deeply-sedated critically-ill patients predict 28-day mortality. PLoS One. 2017;12(4):e0176012. doi: 10.1371/journal.pone.0176012.
    1. Phillips SS, Mueller CM, Nogueira RG, Khalifa YMJNC. A systematic review assessing the current state of automated pupillometry in the NeuroICU. Neurocrit Care. 2019;31(1):142–161. doi: 10.1007/s12028-018-0645-2.
    1. Hall CA, Chilcott RP. Eyeing up the Future of the Pupillary Light Reflex in Neurodiagnostics. Diagnostics (Basel, Switzerland) 2018;8(1):19.
    1. Ely EW, Shintani A, Truman B, Speroff T, Gordon SM, Harrell J, Frank E, Inouye SK, Bernard GR, Dittus RS. Delirium as a predictor of mortality in mechanically ventilated patients in the intensive care unit. Jama. 2004;291(14):1753–1762. doi: 10.1001/jama.291.14.1753.
    1. Pandharipande P, Cotton BA, Shintani A, Thompson J, Pun BT, Morris JA, Jr, Dittus R, Ely EW. Prevalence and risk factors for development of delirium in surgical and trauma intensive care unit patients. J Trauma. 2008;65(1):34–41. doi: 10.1097/TA.0b013e31814b2c4d.
    1. Reade MC, Finfer S. Sedation and delirium in the intensive care unit. N Engl J Med. 2014;370(5):444–454. doi: 10.1056/NEJMra1208705.
    1. Mattar I, Chan MF, Childs C. Factors causing acute delirium in critically ill adult patients: a systematic review. JBI Library of Systematic Review. 2012;10(3):187–231. doi: 10.11124/jbisrir-2012-3.
    1. Zaal IJ, Devlin JW, Peelen LM, Slooter AJ. A systematic review of risk factors for delirium in the ICU. Crit Care Med. 2015;43(1):40–47. doi: 10.1097/CCM.0000000000000625.
    1. Patel SB, Poston JT, Pohlman A, Hall JB, Kress JP: Rapidly reversible, sedation-related delirium versus persistent delirium in the intensive care unit. Am J Respir Crit Care Med. 2014;189(6):658–665.
    1. Morelli P, Oddo M, Ben-Hamouda N. Role of automated pupillometry in critically ill patients. Minerva Anestesiology. 2019;85:995–1002.
    1. Larson MD, Behrends M. Portable infrared pupillometry: a review. Anesth Analg. 2015;120(6):1242–1253. doi: 10.1213/ANE.0000000000000314.
    1. Solari D, Rossetti AO, Carteron L, Miroz JP, Novy J, Eckert P, Oddo M. Early prediction of coma recovery after cardiac arrest with blinded pupillometry. Ann Neurol. 2017;81(6):804–810. doi: 10.1002/ana.24943.
    1. Jahns F-P, Miroz JP, Messerer M, Daniel RT, Taccone FS, Eckert P, Oddo MJCC: Quantitative pupillometry for the monitoring of intracranial hypertension in patients with severe traumatic brain injury 2019, 23(1):155.
    1. Ong C, Hutch M, Smirnakis SJNC. The effect of ambient light conditions on quantitative pupillometry. Neurocrit Care. 2019;30(2):316–321. doi: 10.1007/s12028-018-0607-8.
    1. Couret D, Boumaza D, Grisotto C, Triglia T, Pellegrini L, Ocquidant P, Bruder NJ, Velly LJ. Reliability of standard pupillometry practice in neurocritical care: an observational, double-blinded study. Crit Care. 2016;20(1):99. doi: 10.1186/s13054-016-1239-z.

Source: PubMed

3
Sottoscrivi