Predicting Long-Term Recovery of Consciousness in Prolonged Disorders of Consciousness Based on Coma Recovery Scale-Revised Subscores: Validation of a Machine Learning-Based Prognostic Index

Alfonso Magliacano, Piergiuseppe Liuzzi, Rita Formisano, Antonello Grippo, Efthymios Angelakis, Aurore Thibaut, Olivia Gosseries, Gianfranco Lamberti, Enrique Noé, Sergio Bagnato, Brian L Edlow, Nicolas Lejeune, Vigneswaran Veeramuthu, Luigi Trojano, Nathan Zasler, Caroline Schnakers, Michelangelo Bartolo, Andrea Mannini, Anna Estraneo, IBIA DoC-SIG, Alfonso Magliacano, Piergiuseppe Liuzzi, Rita Formisano, Antonello Grippo, Efthymios Angelakis, Aurore Thibaut, Olivia Gosseries, Gianfranco Lamberti, Enrique Noé, Sergio Bagnato, Brian L Edlow, Nicolas Lejeune, Vigneswaran Veeramuthu, Luigi Trojano, Nathan Zasler, Caroline Schnakers, Michelangelo Bartolo, Andrea Mannini, Anna Estraneo, IBIA DoC-SIG

Abstract

Prognosis of prolonged Disorders of Consciousness (pDoC) is influenced by patients' clinical diagnosis and Coma Recovery Scale-Revised (CRS-R) total score. We compared the prognostic accuracy of a novel Consciousness Domain Index (CDI) with that of clinical diagnosis and CRS-R total score, for recovery of full consciousness at 6-, 12-, and 24-months post-injury. The CDI was obtained by a combination of the six CRS-R subscales via an unsupervised machine learning technique. We retrospectively analyzed data on 143 patients with pDoC (75 in Minimally Conscious State; 102 males; median age = 53 years; IQR = 35; time post-injury = 1-3 months) due to different etiologies enrolled in an International Brain Injury Association Disorders of Consciousness Special Interest Group (IBIA DoC-SIG) multicenter longitudinal study. Univariate and multivariate analyses were utilized to assess the association between outcomes and the CDI, compared to clinical diagnosis and CRS-R. The CDI, the clinical diagnosis, and the CRS-R total score were significantly associated with a good outcome at 6, 12 and 24 months. The CDI showed the highest univariate prediction accuracy and sensitivity, and regression models including the CDI provided the highest values of explained variance. A combined scoring system of the CRS-R subscales by unsupervised machine learning may improve clinical ability to predict recovery of consciousness in patients with pDoC.

Keywords: coma recovery scale-revised; disorders of consciousness; machine learning; prognosis; rehabilitation.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Contingency tables between CDI, clinical diagnosis at study entry, CRS-R8, CRS-R10 (columns left to right) with respectively the outcome at 6 months (top row), at 12 months (middle row), and at 24 months (bottom row). Each contingency table has on the x-axis the outcome set as presence/absence of a pDoC at the different outcome timing, and on the y-axis patients with CDI = 1 or CDI = 0 (first column), patients in VS or in MCS (second column), and patients with CRS-R smaller than (<) or greater/equal to (>=) the indicated threshold (third and fourth columns). Colors indicate the relative amount of patients within each cell; the color gradient is reported within the color bar on the right of each table. Abbreviations: CD, clinical diagnosis; CDI, Consciousness Domain Index; CRS-R, Coma Recovery Scale-Revised; eMCS, emergence from the minimally conscious state; pDoC, prolonged disorder of consciousness; VS, vegetative state.

References

    1. Giacino J.T., Katz D.I., Schiff N.D., Whyte J., Ashman E.J., Ashwal S., Barbano R., Hammond F.M., Laureys S., Ling G.S.F., et al. Practice guideline update recommendations summary: Disorders of consciousness: Report of the Guideline Development, Dissemination, and Implementation Subcommittee of the American Academy of Neurology; the American Congress of Rehabilitation Medicine; and the National Institute on Disability, Independent Living, and Rehabilitation Research. Neurology. 2018;91:450–460. doi: 10.1212/wnl.0000000000005926.
    1. Kondziella D., Bender A., Diserens K., van Erp W., Estraneo A., Formisano R., Laureys S., Naccache L., Ozturk S., Rohaut B., et al. European Academy of Neurology guideline on the diagnosis of coma and other disorders of consciousness. Eur. J. Neurol. 2020;27:741–756. doi: 10.1111/ene.14151.
    1. Laureys S., Celesia G.G., Cohadon F., Lavrijsen J., León-Carrión J., Sannita W.G., Sazbon L., Schmutzhard E., Von Wild K.R., Zeman A., et al. Unresponsive wakefulness syndrome: A new name for the vegetative state or apallic syndrome. BMC Med. 2010;8:68. doi: 10.1186/1741-7015-8-68.
    1. Giacino J.T., Ashwal S., Childs N., Cranford R., Jennett B., Katz D.I., Kelly J.P., Rosenberg J.H., Whyte J., Zafonte R.D., et al. The minimally conscious state: Definition and diagnostic criteria. Neurology. 2002;58:349–353. doi: 10.1212/WNL.58.3.349.
    1. Sattin D., Morganti L., De Torres L., Dolce G., Arcuri F., Estraneo A., Cardinale V., Piperno R., Zavatta E., Formisano R., et al. Care pathways models and clinical outcomes in Disorders of consciousness. Brain Behav. 2017;7:e00740. doi: 10.1002/brb3.740.
    1. Estraneo A., Masotta O., Bartolo M., Pistoia F., Perin C., Marino S., Lucca L., Pingue V., Casanova E., Romoli A., et al. Multi-center study on overall clinical complexity of patients with prolonged disorders of consciousness of different etiologies. Brain Inj. 2021;35:1–7. doi: 10.1080/02699052.2020.1861652.
    1. Fins J.J., Bernat J.L. Ethical, palliative, and policy considerations in disorders of consciousness. Neurology. 2018;91:471–475. doi: 10.1212/WNL.0000000000005927.
    1. Estraneo A., Moretta P., Loreto V., Lanzillo B., Cozzolino A., Saltalamacchia A., Lullo F., Santoro L., Trojano L. Predictors of recovery of responsiveness in prolonged anoxic vegetative state. Neurology. 2013;80:464–470. doi: 10.1212/WNL.0b013e31827f0f31.
    1. Estraneo A., Trojano L. Prognosis in disorders of consciousness. In: Schnakers C., editor. Coma and Disorders of Consciousness. Springer; Cham, Switzerland: 2018. pp. 17–36.
    1. Thibaut A., Schiff N., Giacino J., Laureys S., Gosseries O. Therapeutic interventions in patients with prolonged disorders of consciousness. Lancet Neurol. 2019;18:600–614. doi: 10.1016/S1474-4422(19)30031-6.
    1. Feng Y., Zhang J., Zhou Y., Bai Z., Yin Y. Noninvasive brain stimulation for patients with a disorder of consciousness: A systematic review and meta-analysis. Rev. Neurosci. 2020;31:905–914. doi: 10.1515/revneuro-2020-0033.
    1. Giacino J.T., Kalmar K., Whyte J. The JFK Coma Recovery Scale-Revised: Measurement characteristics and diagnostic utility. Arch. Phys. Med. Rehabil. 2004;85:2020–2029. doi: 10.1016/j.apmr.2004.02.033.
    1. Estraneo A., De Bellis F., Masotta O., Loreto V., Fiorenza S., Sapio M.L., Trojano L. Demographical and clinical indices for long-term evolution of patients in vegetative or in minimally conscious state. Brain Inj. 2019;33:1633–1639. doi: 10.1080/02699052.2019.1658220.
    1. Estraneo A., Fiorenza S., Magliacano A., Formisano R., Mattia D., Grippo A., Romoli A.M., Angelakis E., Cassol H., Thibaut A., et al. Multicenter prospective study on predictors of short-term outcome in disorders of consciousness. Neurology. 2020;95:e1488–e1499. doi: 10.1212/WNL.0000000000010254.
    1. Estraneo A., Magliacano A., Fiorenza S., Formisano R., Grippo A., Angelakis E., Cassol H., Thibaut A., Gosseries O., Lamberti G., et al. Risk factors for 2-year mortality in patients with prolonged disorders of consciousness: An international multicentre study. Eur. J. Neurol. 2022;29:390–399. doi: 10.1111/ene.15143.
    1. Portaccio E., Morrocchesi A., Romoli A.M., Hakiki B., Taglioli M.P., Lippi E., Di Renzone M., Grippo A., Macchi C. Score on Coma Recovery Scale-Revised at admission predicts outcome at discharge in intensive rehabilitation after severe brain injury. Brain Inj. 2018;32:730–734. doi: 10.1080/02699052.2018.1440420.
    1. Seel R.T., Sherer M., Whyte J., Katz D.I., Giacino J.T., Rosenbaum A.M., Hammond F.M., Kalmar K., Pape T.L.-B., Zafonte R., et al. Assessment Scales for Disorders of Consciousness: Evidence-Based Recommendations for Clinical Practice and Research. Arch. Phys. Med. Rehabil. 2010;91:1795–1813. doi: 10.1016/j.apmr.2010.07.218.
    1. Annen J., Filippini M.M., Bonin E., Cassol H., Aubinet C., Carrière M., Gosseries O., Thibaut A., Barra A., Wolff A., et al. Diagnostic accuracy of the CRS-R index in patients with disorders of consciousness. Brain Inj. 2019;33:1409–1412. doi: 10.1080/02699052.2019.1644376.
    1. Liuzzi P., De Bellis F., Magliacano A., Estraneo A., Mannini A. Consciousness-Domain Index: A data-driven clustering-based consciousness labeling. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2022;2022:1062–1065. doi: 10.1109/embc48229.2022.9871151.
    1. Sinaga K.P., Yang M.-S. Unsupervised K-Means Clustering Algorithm. IEEE Access. 2020;8:80716–80727. doi: 10.1109/ACCESS.2020.2988796.
    1. Halkidi M., Batistakis Y., Vazirgiannis M. On Clustering Validation Techniques. J. Intell. Inf. Syst. 2001;17:107–145. doi: 10.1023/A:1012801612483.
    1. Bodien Y.G., Carlowicz C.A., Chatelle C., Giacino J.T. Sensitivity and Specificity of the Coma Recovery Scale–Revised Total Score in Detection of Conscious Awareness. Arch. Phys. Med. Rehabil. 2016;97:490–492. doi: 10.1016/j.apmr.2015.08.422.
    1. Estraneo A., Moretta P., De Tanti A., Gatta G., Giacino J.T., Trojano L. An Italian multicentre validation study of the coma recovery scale-revised. Eur. J. Phys. Rehabil. Med. 2015;51:627–634.
    1. Ramspek C.L., Jager K.J., Dekker F.W., Zoccali C., van Diepen M. External validation of prognostic models: What, why, how, when and where? Clin. Kidney J. 2020;14:49–58. doi: 10.1093/ckj/sfaa188.
    1. Cabitza F., Campagner A., Soares F., de Guadiana-Romualdo L.G., Challa F., Sulejmani A., Seghezzi M., Carobene A. The importance of being external. methodological insights for the external validation of machine learning models in medicine. Comput. Methods Programs Biomed. 2021;208:106288. doi: 10.1016/j.cmpb.2021.106288.
    1. Baricich A. Recovery from vegetative state of patients with a severe brain injury: A 4-year real-practice prospective cohort study. Funct. Neurol. 2017;32:131–136. doi: 10.11138/FNeur/2017.32.3.131.
    1. Mosenthal A.C., Lavery R.F., Addis M., Kaul S., Ross S., Marburger R., Deitch E.A., Livingston D.H. Isolated Traumatic Brain Injury: Age Is an Independent Predictor of Mortality and Early Outcome. J. Trauma. 2002;52:907–911. doi: 10.1097/00005373-200205000-00015.
    1. Gutchess A. Plasticity of the aging brain: New directions in cognitive neuroscience. Science. 2014;346:579–582. doi: 10.1126/science.1254604.
    1. Chen H., Epstein J., Stern E. Neural Plasticity After Acquired Brain Injury: Evidence from Functional Neuroimaging. PMR. 2010;2:S306–S312. doi: 10.1016/j.pmrj.2010.10.006.
    1. Mikolic A., Groeniger J.O., Zeldovich M., Wilson L., van Lennep J.E.R., van Klaveren D., Polinder S., Åkerlund C., Amrein K., Andreassen L., et al. Explaining Outcome Differences between Men and Women following Mild Traumatic Brain Injury. J. Neurotrauma. 2021;38:3315–3331. doi: 10.1089/neu.2021.0116.
    1. Moretta P., Estraneo A., De Lucia L., Cardinale V., Loreto V., Trojano L. A study of the psychological distress in family caregivers of patients with prolonged disorders of consciousness during in-hospital rehabilitation. Clin. Rehabil. 2014;28:717–725. doi: 10.1177/0269215514521826.
    1. D’Ippolito M., Aloisi M., Azicnuda E., Silvestro D., Giustini M., Verni F., Formisano R., Bivona U. Changes in Caregivers Lifestyle after Severe Acquired Brain Injury: A Preliminary Investigation. BioMed Res. Int. 2018;2018:2824081. doi: 10.1155/2018/2824081.
    1. Formisano R., Azicnuda E., Sefid M.K., Zampolini M., Scarponi F., Avesani R. Early rehabilitation: Benefits in patients with severe acquired brain injury. Neurol. Sci. 2017;38:181–184. doi: 10.1007/s10072-016-2724-5.
    1. Formisano R., Contrada M., Aloisi M., Buzzi M.G., Cicinelli P., Della Vedova C., Laurenza L., Matteis M., Spanedda F., Vinicola V., et al. Improvement rate of patients with severe brain injury during post-acute intensive rehabilitation. Neurol. Sci. 2018;39:753–755. doi: 10.1007/s10072-017-3203-3.
    1. Schnakers C., Hirsch M., Noé E., Llorens R., Lejeune N., Veeramuthu V., De Marco S., Demertzi A., Duclos C., Morrissey A.-M., et al. Covert Cognition in Disorders of Consciousness: A Meta-Analysis. Brain Sci. 2020;10:930. doi: 10.3390/brainsci10120930.
    1. Estraneo A., Loreto V., Masotta P.O., Pascarella A., Trojano L. Do Medical Complications Impact Long-Term Outcomes in Prolonged Disorders of Consciousness? Arch. Phys. Med. Rehabil. 2018;99:2523–2531.e3. doi: 10.1016/j.apmr.2018.04.024.
    1. Liuzzi P., Magliacano A., De Bellis F., Mannini A., Estraneo A. Predicting outcome of patients with prolonged disorders of consciousness using machine learning models based on medical complexity. Sci. Rep. 2022;12:13471. doi: 10.1038/s41598-022-17561-w.

Source: PubMed

3
Sottoscrivi