Effects of Dynamic Suit Orthoses on the Spatio-Temporal Gait Parameters in Children with Cerebral Palsy: A Systematic Review

Natalia Belizón-Bravo, Rita Pilar Romero-Galisteo, Fatima Cano-Bravo, Gloria Gonzalez-Medina, Elena Pinero-Pinto, Carlos Luque-Moreno, Natalia Belizón-Bravo, Rita Pilar Romero-Galisteo, Fatima Cano-Bravo, Gloria Gonzalez-Medina, Elena Pinero-Pinto, Carlos Luque-Moreno

Abstract

Dynamic suit orthoses (DSO) are currently used as a complementary treatment method in children with Cerebral Palsy (cwCP). The aim of this review was to assess the effects of interventions with DSO on the altered spatio-temporal gait parameters (STGPs) in cwCP. An electronic search was conducted in the Web of Science, Scopus, PEDro, Cochrane Library, MEDLINE/PubMed, and CINAHL databases up to July 2021. We included a total of 12 studies, which showed great heterogeneity in terms of design type, sample size, and intervention performed (two employed a Therasuit, three employed the Adeli suit, three employed Theratogs, one employed elastomeric tissue dynamic orthosis, one employed a full-body suit, one employed external belt orthosis, and one employed dynamic orthosis composed of trousers and T-shirt). The Cochrane collaboration's tool and the Checklist for Measuring Study Quality were used to assess the risk of bias and the methodological quality of the studies. It was variable according to the Checklist for Measuring Study Quality, and it oscillated between eight and 23. The studies of higher methodological quality showed significant post-intervention changes in walking speed (which is the most widely evaluated parameter), cadence, stride length, and step length symmetry. Although the evidence is limited, the intervention with DSO combined with a programme of training/physical therapy seems to have positive effects on the STGPs in cwCP, with the functional improvements that it entails. Despite the immediate effect after one session, a number of sessions between 18 and 60 is recommended to obtain optimum results. Future studies should measure all STGPs, and not only the main ones, such as gait speed, in order to draw more accurate conclusions on the functional improvement of gait after the use of this type of intervention.

Keywords: cerebral palsy; gait disorders; neurologic; physical therapy modalities; space suits; walking speed.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flow diagram of the article selection process according to the PRISMA standards. (CP) Cerebral palsy; (DSO) Dynamic suit orthosis.
Figure 2
Figure 2
Risk of bias of the studies included in the systematic review. In green: low risk of bias; yellow: unclear risk of bias; in red: high risk of bias.
Figure 3
Figure 3
Overall risk of bias. The results are presented by percentages.

References

    1. Rosenbaum P., Paneth N., Leviton A., Goldstein M., Bax M. A report: The definition and classification of cerebral palsy April 2006. Dev. Med. Child. Neurol. 2007;49:8–14.
    1. Reddihough D.S., Collins K.J. The epidemiology and causes of cerebral palsy. Aust. J. Physiother. 2003;49:7–12. doi: 10.1016/S0004-9514(14)60183-5.
    1. Pascual J.M., Koenigsberger M.R. Cerebral palsy: Prenatal risk factors. Rev. Neurol. 2003;37:275–280. doi: 10.33588/rn.3703.2003133.
    1. Bugler K.E., Gaston M.S., Robb J.E. Distribution and motor ability of children with cerebral palsy in Scotland: A registry analysis. Scott. Med. J. 2019;64:16–21. doi: 10.1177/0036933018805897.
    1. Oskoui M., Coutinho F., Dykeman J., Jetté N., Pringsheim T. An update on the prevalence of cerebral palsy: A systematic review and meta-analysis. Dev. Med. Child. Neurol. 2013;55:509–519. doi: 10.1111/dmcn.12080.
    1. Granild-Jensen J.B., Rackauskaite G., Flachs E.M., Uldall P. Predictors for early diagnosis of cerebral palsy from national registry data. Dev. Med. Child. Neurol. 2015;57:931–935. doi: 10.1111/dmcn.12760.
    1. Smithers-Sheedy H., Badawi N., Blair E., Cans C., Himmelmann K., Krägeloh-Mann I., McIntyre S., Slee J., Uldall P., Watson L., et al. What constitutes cerebral palsy in the twenty-first century? Dev. Med. Child. Neurol. 2014;56:323–328. doi: 10.1111/dmcn.12262.
    1. Sadowska M., Sarecka-Hujar B., Kopyta I. Cerebral palsy: Current opinions on definition, epidemiology, risk factors, classification and treatment options. Neuropsychiatr. Dis. Treat. 2020;16:1505–1518. doi: 10.2147/NDT.S235165.
    1. Dimakopoulos R., Syrogiannopoulos G., Grivea I., Dailiana Z., Youroukos S., Spinou A. Kinematic and temporospatial changes in children with cerebral palsy during the initial stages of gait development. Dev. Neurorehabil. 2021:1–9. doi: 10.1080/17518423.2021.1914763.
    1. Chakraborty S., Nandy A., Kesar T.M. Gait deficits and dynamic stability in children and adolescents with cerebral palsy: A systematic review and meta-analysis. Clin. Biomech. 2020;71:11–23. doi: 10.1016/j.clinbiomech.2019.09.005.
    1. Rethwilm R., Böhm H., Haase M., Perchthaler D., Dussa C.U., Federolf P. Dynamic stability in cerebral palsy during walking and running: Predictors and regulation strategies. Gait Posture. 2021;84:329–334. doi: 10.1016/j.gaitpost.2020.12.031.
    1. Kurz M.J., Arpin D.J., Corr B. Differences in the dynamic gait stability of children with cerebral palsy and typically developing children. Gait Posture. 2012;36:600–604. doi: 10.1016/j.gaitpost.2012.05.029.
    1. Santorelli F.M., Maris S., Cioni G., Merete Braendvik S., Goihl T., Braaten R.S., Vereijken B. The effect of increased gait speed on asymmetry and variability in children with cerebral palsy. Front. Neurol. 2020;1:1399. doi: 10.3389/fneur.2019.01399.
    1. Kim Y., Bulea T.C., Damiano D.L. Greater reliance on cerebral palsy-specific muscle synergies during gait relates to poorer temporal-spatial performance measures. Front. Physiol. 2021;12:630627. doi: 10.3389/fphys.2021.630627.
    1. Kimoto M., Okada K., Sakamoto H., Kondou T. The association between the maximum step length test and the walking efficiency in children with cerebral palsy. J. Phys. Ther. Sci. 2017;29:822–827. doi: 10.1589/jpts.2017.822.
    1. Kim C.J., Son S.M. Comparison of spatiotemporal gait parameters between children with normal development and children with diplegic cerebral palsy. J. Phys. Ther. Sci. 2014;26:1317. doi: 10.1589/jpts.26.1317.
    1. Õunpuu S., Gorton G., Bagley A., Sison-Williamson M., Hassani S., Johnson B., Oeffinger D. Variation in kinematic and spatiotemporal gait parameters by Gross Motor Function Classification System level in children and adolescents with cerebral palsy. Dev. Med. Child. Neurol. 2015;57:955–962. doi: 10.1111/dmcn.12766.
    1. Morgan P., Murphy A., Opheim A., McGinley J. Gait characteristics, balance performance and falls in ambulant adults with cerebral palsy: An observational study. Gait Posture. 2016;48:243–248. doi: 10.1016/j.gaitpost.2016.06.015.
    1. Iosa M., Marro T., Paolucci S., Morelli D. Stability and harmony of gait in children with cerebral palsy. Res. Dev. Disabil. 2012;33:129–135. doi: 10.1016/j.ridd.2011.08.031.
    1. Calderón González R., Calderón Sepúlveda R.F. Tratamiento de la espasticidad en parálisis cerebral con toxina botulínica. Rev. Neurol. 2002;34:52. doi: 10.33588/rn.3401.2001297.
    1. Booth A.T.C., Buizer A.I., Meyns P., Oude Lansink I.L.B., Steenbrink F., van der Krogt M.M. The efficacy of functional gait training in children and young adults with cerebral palsy: A systematic review and meta-analysis. Dev. Med. Child. Neurol. 2018;60:866–883. doi: 10.1111/dmcn.13708.
    1. Ryan J.M., Cassidy E.E., Noorduyn S.G., O’Connell N.E. Exercise interventions for cerebral palsy. Cochrane Database Syst. Rev. 2017;6:CD011660. doi: 10.1002/14651858.CD011660.pub2.
    1. Moreau N.G., Bodkin A.W., Bjornson K., Hobbs A., Soileau M., Lahasky K. Effectiveness of rehabilitation interventions to improve gait speed in children with cerebral palsy: Systematic review and meta-analysis. Phys. Ther. 2016;96:1938–1954. doi: 10.2522/ptj.20150401.
    1. Corsi C., Santos M.M., Moreira R.F.C., Dos Santos A.N., de Campos A.C., Galli M., Rocha N.A.C.F. Effect of physical therapy interventions on spatiotemporal gait parameters in children with cerebral palsy: A systematic review. Disabil. Rehabil. 2021;43:1507–1516. doi: 10.1080/09638288.2019.1671500.
    1. Liang X., Tan Z., Yun G., Cao J., Wang J., Liu Q., Chen T. Effectiveness of exercise interventions for children with cerebral palsy: A systematic review and meta-analysis of randomized controlled trials. J. Rehabil. Med. 2021;53:jrm00176. doi: 10.2340/16501977-2772.
    1. Carvalho I., Pinto S.M., das Virgens Chagas D., Praxedes Dos Santos J.L., de Sousa Oliveira T., Batista L.A. Robotic gait training for individuals with cerebral palsy: A systematic review and meta-analysis. Arch. Phys. Med. Rehabil. 2017;98:2332–2344. doi: 10.1016/j.apmr.2017.06.018.
    1. Bahrami F., Noorizadeh Dehkordi S., Dadgoo M. The efficacy of treadmill training on walking and quality of life of adults with spastic cerebral palsy: A randomized controlled trial. Iran. J. Child Neurol. 2019;13:121–133.
    1. Han Y.-G., Yun C.-K. Effectiveness of treadmill training on gait function in children with cerebral palsy: Meta-analysis. J. Exerc. Rehabil. 2020;16:10–19. doi: 10.12965/jer.1938748.374.
    1. Gómez-Pérez C., Font-Llagunes J.M., Martori J.C., Vidal Samsó J. Gait parameters in children with bilateral spastic cerebral palsy: A systematic review of randomized controlled trials. Dev. Med. Child. Neurol. 2019;61:770–782. doi: 10.1111/dmcn.14108.
    1. Flett P.J. Rehabilitation of spasticity and related problems in childhood cerebral palsy. J. Paediatr. Child. Health. 2003;39:6–14. doi: 10.1046/j.1440-1754.2003.00082.x.
    1. Flanagan A., Krzak J., Peer M., Johnson P., Urban M. Evaluation of short-term intensive orthotic garment use in children who have cerebral palsy. Pediatr. Phys. Ther. 2009;21:201–204. doi: 10.1097/PEP.0b013e3181a347ab.
    1. Matthews M.J., Watson M., Richardson B. Effects of dynamic elastomeric fabric orthoses on children with cerebral palsy. Prosthet. Orthot. Int. 2009;33:339–347. doi: 10.3109/03093640903150287.
    1. Degelaen M., De Borre L., Buyl R., Kerckhofs E., De Meirleir L., Dan B. Effect of supporting 3D-garment on gait postural stability in children with bilateral spastic cerebral palsy. NeuroRehabilitation. 2016;39:175–181. doi: 10.3233/NRE-161349.
    1. Bailes A.F., Greve K., Schmitt L.C. Changes in two children with cerebral palsy after intensive suit therapy: A case report. Pediatr. Phys. Ther. 2010;22:76–85. doi: 10.1097/PEP.0b013e3181cbf224.
    1. Christy J.B., Chapman C.G., Murphy P. The effect of intense physical therapy for children with cerebral palsy. J. Pediatr. Rehabil. Med. 2012;5:159–170. doi: 10.3233/PRM-2012-0208.
    1. Karadağ-Saygı E. The clinical aspects and effectiveness of suit therapies for cerebral palsy: A systematic review. Turk. J. Phys. Med. Rehabil. 2019;65:93–110. doi: 10.5606/tftrd.2019.3431.
    1. Glowinski S., Blazejewski A. Spider as a rehabilitation tool for patients with neurological disabilities: The preliminary research. J. Pers. Med. 2020;10:33. doi: 10.3390/jpm10020033.
    1. World Health Organization International Classification of Functioning, Disability and Health: ICF. World Health Organization; Geneva, Switzerland: 2001.
    1. World Health Organization . International Classification of Functioning, Disabiity and Health. Children & Youth Version (ICF-CY) World Health Organization; Geneva, Switzerland: 2007.
    1. Novak I., Mcintyre S., Morgan C., Campbell L., Dark L., Morton N., Stumbles E., Wilson S.A., Goldsmith S. A systematic review of interventions for children with cerebral palsy: State of the evidence. Dev. Med. Child. Neurol. 2013;55:885–910. doi: 10.1111/dmcn.12246.
    1. Novak I., Morgan C., Fahey M., Finch-Edmondson M., Galea C., Hines A., Langdon K., Namara M., Paton M., Popat H., et al. State of the evidence traffic lights 2019: Systematic review of interventions for preventing and treating children with cerebral palsy. Curr. Neurol. Neurosci. Rep. 2020;20:3. doi: 10.1007/s11910-020-1022-z.
    1. Lee K., Park J., Lee H., Nam K., Park T., Kim H., Kwon B. Efficacy of intensive neurodevelopmental treatment for children with developmental delay, with or without cerebral palsy. Ann. Rehabil. Med. 2017;41:90–96. doi: 10.5535/arm.2017.41.1.90.
    1. Yalcinkaya E.Y., Caglar N.S., Tugcu B., Tonbaklar A. Rehabilitation outcomes of children with cerebral palsy. J. Phys. Ther. Sci. 2014;26:285–289. doi: 10.1589/jpts.26.285.
    1. Jackman M., Lannin N., Galea C., Sakzewski L., Miller L., Novak I. What is the threshold dose of upper limb training for children with cerebral palsy to improve function? A systematic review. Aust. Occup. Ther. J. 2020;67:269–280. doi: 10.1111/1440-1630.12666.
    1. Almeida K.M., Fonseca S.T., Figueiredo P.R.P., Aquino A.A., Mancini M.C. Effects of interventions with therapeutic suits (clothing) on impairments and functional limitations of children with cerebral palsy: A systematic review. Braz. J. Phys. Ther. 2017;21:307–320. doi: 10.1016/j.bjpt.2017.06.009.
    1. Martins E., Cordovil R., Oliveira R., Letras S., Lourenço S., Pereira I., Ferro A., Lopes I., Silva C.R., Marques M. Efficacy of suit therapy on functioning in children and adolescents with cerebral palsy: A systematic review and meta-analysis. Dev. Med. Child. Neurol. 2016;58:348–360. doi: 10.1111/dmcn.12988.
    1. Wells H., Marquez J., Wakely L. Garment therapy does not improve function in children with cerebral palsy: A Systematic review. Phys. Occup. Ther. Pediatr. 2018;38:395–416. doi: 10.1080/01942638.2017.1365323.
    1. Zhou J.Y., Lowe E., Cahill-Rowley K., Mahtani G.B., Young J.L., Rose J. Influence of impaired selective motor control on gait in children with cerebral palsy. J. Child. Orthop. 2019;13:73–81. doi: 10.1302/1863-2548.13.180013.
    1. Page M.J., McKenzie J.E., Bossuyt P.M., Boutron I., Hoffmann T.C., Mulrow C.D., Shamseer L., Tetzlaff J.M., Akl E.A., Brennan S.E., et al. The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. BMJ. 2021;372:n71. doi: 10.1136/bmj.n71.
    1. da Costa Santos C.M., de Mattos Pimenta C.A., Cuce Nobre M.R. The PICO strategy for the research question construction and evidence search. Rev. Lat. Am. Enferm. 2007;15:508–511. doi: 10.1590/S0104-11692007000300023.
    1. Downs S.H., Black N. The feasibility of creating a checklist for the assessment of the methodological quality both of randomised and non-randomised studies of health care interventions. J. Epidemiol. Community Health. 1998;52:377–384. doi: 10.1136/jech.52.6.377.
    1. Brown P.A., Harniss M.K., Schomer K.G., Feinberg M., Cullen N.K., Johnson K.L. Conducting systematic evidence reviews: Core concepts and lessons learned. Arch. Phys. Med. Rehabil. 2012;93:S177–S184. doi: 10.1016/j.apmr.2011.11.038.
    1. Howick J., Chalmers I., Glasziou P., Greenhalgh T., Heneghan C., Liberati A., Moschetti I., Phillips B., Thornton H., Goddard O., et al. OCEBM Levels of Evidence Working Group: The Oxford 2011 Levels of Evidence. Oxford Centre for Evidence-Based Medicine. [(accessed on 10 October 2021)]. Available online: .
    1. Manterola C., Asenjo-Lobos C., Otzen T. Hierarchy of evidence. Levels of evidence and grades of recommendation from current use. Rev. Chil. Infectol. 2014;31:705–718. doi: 10.4067/S0716-10182014000600011.
    1. Mella Sousa M., Zamora Navas P., Mella Laborde M., Ballester Alfaro J.J., Uceda Carrascosa P. Niveles de evidencia clínica y grados de recomendación Niveles de Evidencia Clínica y Grados de Recomendación. Rev. S And. Traum. Ort. 2012;29:59–72.
    1. Higgins J.P.T., Altman D.G., Gøtzsche P.C., Jüni P., Moher D., Oxman A.D., Savović J., Schulz K.F., Weeks L., Sterne J.A.C. The Cochrane Collaboration’s tool for assessing risk of bias in randomised trials. BMJ. 2011;343:1–9. doi: 10.1136/bmj.d5928.
    1. Jung J., Cho H., Lee G. Immediate effects of orthotic garment and strapping system on balance and gait in children with spastic diplegia. Neurol. Asia. 2021;26:355–360.
    1. Skublewska-Paszkowska M., Lukasik E., Milosz M., Smolka J., Napiorkowski J., Taczala J., Zdzienicka-Chyla A., Napiorkowski J., Kosiecz A. Motion capture technology as a tool for quantitative assessment of the rehabilitation progress of gait by using soft orthoses; Proceedings of the 11th International Conference on Human System Ineteraction, HIS; Gdansk, Poland. 4–6 July 2018; pp. 384–390.
    1. Kim M.-R., Lee B.-H., Park D.-S. Effects of combined Adeli suit and neurodevelopmental treatment in children with spastic cerebral palsy with gross motor function classification system levels I and II. Hong Kong Physiother. J. Off. Publ. Hong Kong Physiother. Assoc. Ltd. 2016;34:10–18. doi: 10.1016/j.hkpj.2015.09.036.
    1. Lee B.-H. Clinical usefulness of Adeli suit therapy for improving gait function in children with spastic cerebral palsy: A case study. J. Phys. Ther. Sci. 2016;28:1949–1952. doi: 10.1589/jpts.28.1949.
    1. Chang W.D., Chang N.J., Lin H.Y., Lai P.T. Changes of plantar pressure and gait parameters in children with mild cerebral palsy who used a customized external strap orthosis: A crossover study. Biomed. Res. Int. 2015;2015:813942. doi: 10.1155/2015/813942.
    1. Abd El-Kafy E.M. The clinical impact of orthotic correction of lower limb rotational deformities in children with cerebral palsy: A randomized controlled trial. Clin. Rehabil. 2014;28:1004–1014. doi: 10.1177/0269215514533710.
    1. Ko M.-S., Lee J.-A., Kang S.-Y., Jeon H.-S. Effect of Adeli suit treatment on gait in a child with cerebral palsy: A single-subject report. Physiother. Theory Pract. 2015;31:275–282. doi: 10.3109/09593985.2014.996307.
    1. Cámara Tobalina J. Gait analysis: Phases and spatio-temporal variables. Entramado. 2011;7:160–173.
    1. Grieve D.W., Gear R.J. The relationships between length of stride, step frequency, time of swing and speed of walking for children and adults. Ergonomics. 1966;9:379–399. doi: 10.1080/00140136608964399.
    1. Wert D.M., Brach J., Perera S., VanSwearingen J.M. Gait biomechanics, spatial and temporal characteristics, and the energy cost of walking in older adults with impaired mobility. Phys. Ther. 2010;90:977–985. doi: 10.2522/ptj.20090316.
    1. Saether R., Helbostad J.L., Adde L., Brændvik S., Lydersen S., Vik T. Gait characteristics in children and adolescents with cerebral palsy assessed with a trunk-worn accelerometer. Res. Dev. Disabil. 2014;35:1773–1781. doi: 10.1016/j.ridd.2014.02.011.
    1. Kim H., Park I., On L. Reliability and Validity of Gait Speed Test. J. Exerc. Nutr. Biochem. 2016;20:46–50. doi: 10.20463/jenb.2016.09.20.3.7.
    1. De Mattos C., Patrick Do K., Pierce R., Feng J., Aiona M., Sussman M. Comparison of hamstring transfer with hamstring lengthening in ambulatory children with cerebral palsy: Further follow-up. J. Child. Orthop. 2014;8:513–520. doi: 10.1007/s11832-014-0626-8.

Source: PubMed

3
Sottoscrivi