Improving Treatment Options for Primary Hyperoxaluria

Bernd Hoppe, Cristina Martin-Higueras, Bernd Hoppe, Cristina Martin-Higueras

Abstract

The primary hyperoxalurias are three rare inborn errors of the glyoxylate metabolism in the liver, which lead to massively increased endogenous oxalate production, thus elevating urinary oxalate excretion and, based on that, recurrent urolithiasis and/or progressive nephrocalcinosis. Frequently, especially in type 1 primary hyperoxaluria, early end-stage renal failure occurs. Treatment possibilities are scare, namely, hyperhydration and alkaline citrate medication. In type 1 primary hyperoxaluria, vitamin B6, though, is helpful in patients with specific missense or mistargeting mutations. In those vitamin B6 responsive, urinary oxalate excretion and concomitantly urinary glycolate is significantly decreased, or even normalized. In patients non-responsive to vitamin B6, RNA interference medication is now available. Lumasiran® is already available on prescription and targets the messenger RNA of glycolate oxidase, thus blocking the conversion of glycolate into glyoxylate, hence decreasing oxalate, but increasing glycolate production. Nedosiran blocks liver-specific lactate dehydrogenase A and thus the final step of oxalate production. Similar to vitamin B6 treatment, where both RNA interference urinary oxalate excretion can be (near) normalized and plasma oxalate decreases, however, urinary and plasma glycolate increases with lumasiran treatment. Future treatment possibilities are on the horizon, for example, substrate reduction therapy with small molecules or gene editing, induced pluripotent stem cell-derived autologous hepatocyte-like cell transplantation, or gene therapy with newly developed vector technologies. This review provides an overview of current and especially new and future treatment options.

Conflict of interest statement

Bernd Hoppe is an employee of Dicerna/Novo Nordisk. Cristina Martin-Higueras is a consultant of Dicerna/Novo Nordisk. There are no additional conflicts of interest.

© 2022. The Author(s).

Figures

Fig. 1
Fig. 1
Glyoxylate metabolic pathway in the liver (modified from Martin-Higueras et al. [7]). The enzymatic deficits responsible for the three known types of primary hyperoxaluria are shown (I, II, and III). Oxalate is then secreted out of the liver, to be excreted by the kidneys. High levels of oxalate in the kidneys and urine lead to formation of calcium oxalate (CaOx) in the renal tissue and tubular system, causing urolithiasis (upper image) and/or nephrocalcinosis (lower image), which can be detected by ultrasound imaging procedures. 1P5CDH Δ1-pyrroline-5-carboxylate dehydrogenase, AGT alanine:glyoxylate aminotransferase, AspAT aspartate aminotransferase, DAO D-aminoacid oxidase, GO glycolate oxidase, GRHPR glyoxylate reductase/hydropyruvate reductase, HOGA 4-hydroxy-2- oxoglutarate aldolase 1, HYPDH hydroxyproline dehydrogenase, LDH L-lactate dehydrogenase
Fig. 2
Fig. 2
Schematic of treatment for patients with primary hyperoxaluria (PH). If diagnosis is suspected, all patients with PH must be given the standard treatment of care by means of hyperhydration and citrate medication. In addition, patients with PH type 1 (PH1) should receive vitamin B6 (Vit B6) until a genetic diagnosis is available. With a genetic diagnosis in hand, the therapeutical processes are depicted in the figure. AKF acute kidney failure, ESKD end-stage kidney failure, PH2 PH type 2, PH3 PH type 3, RNAi RNA interference, Tx transplantation. *Missense mutations that respond to VitB6: p.G170R, p.G41R, p.F152I
Fig. 3
Fig. 3
Strategies for molecular therapy in primary hyperoxaluria (updated from Martin-Higueras et al. [7]): gene therapy with single-stranded adeno-associated virus (ssAAV) carrying one copy of AGXT cDNA (here also applicable SV40 as a vehicle); cell therapy by hepatocyte transplantation, including the potential autologous transplantation of human induced pluripotent stem cell-derived hepatocytes; proteostasis regulation therapy targeting molecular chaperones (Hsp60 and Hsp90) such as dequalinium chloride, monesin, and emetine, or directly stabilizing the (AGT) enzyme with the cofactor pyridoxine (B6); enzyme replacement therapy (ERT) by delivery of polymer-conjugated AGT proteins into the peroxisomal compartment; and substrate reduction therapy (SRT) through inhibition of glycolate oxidase (GO) in the peroxisome and/or lactate dehydrogenase A (LDHA) in the cytosol either by RNA interference or by small molecules, or by editing the corresponding gene. AGT alanine:glyoxylate aminotransferase, responsible for PH1, AGT-Mi AGT in the minor haplotype, DAO D-amino acid oxidase, GRHPR glyoxylate reductase/hydroxypyruvate reductase, enzyme deficient in PH2, HOGA1 4-hydroxy-2-oxoglutarate aldolase 1, involved in PH3, LDH L-lactate dehydrogenase

References

    1. Cochat P, Rumsby G. Primary hyperoxaluria. N Engl J Med. 2013;369:649–658. doi: 10.1056/NEJMra1301564.
    1. Hoppe B. An update on primary hyperoxaluria. Nat Rev Nephrol. 2012;8:467–475. doi: 10.1038/nrneph.2012.113.
    1. Danpure CJ. Peroxisomal alanine:glyoxylate aminotransferase and prenatal diagnosis of primary hyperoxaluria type 1. Lancet. 1986;2:1168. doi: 10.1016/S0140-6736(86)90584-2.
    1. Cramer SD, Ferree PM, Lin K, Milliner DS, Holmes RP. The gene encoding hydroxypyruvate reductase (GRHPR) is mutated in patients with primary hyperoxaluria type II. Hum Mol Genet. 1999;8:2063–2069. doi: 10.1093/hmg/8.11.2063.
    1. Belostotsky R, et al. Mutations in DHDPSL are responsible for primary hyperoxaluria type III. Am J Hum Genet. 2010;87:392–399. doi: 10.1016/j.ajhg.2010.07.023.
    1. Monico CG, et al. Primary hyperoxaluria type III gene HOGA1 (formerly DHDPSL) as a possible risk factor for idiopathic calcium oxalate urolithiasis. Clin J Am Soc Nephrol. 2011;6:2289–2295. doi: 10.2215/CJN.02760311.
    1. Martin-Higueras C, Torres A, Salido E. Molecular therapy of primary hyperoxaluria. J Inherit Metab Dis. 2017;40:481–489. doi: 10.1007/s10545-017-0045-3.
    1. Garrelfs SF, et al. Patients with primary hyperoxaluria type 2 have significant morbidity and require careful follow-up. Kidney Int. 2019;96:1389–1399. doi: 10.1016/j.kint.2019.08.018.
    1. Singh P, et al. Clinical characterization of primary hyperoxaluria type 3 in comparison with types 1 and 2. Nephrol Dial Transplant. 2022;37(5):869–875. doi: 10.1093/ndt/gfab027.
    1. Martin-Higueras C, et al. A report from the European Hyperoxaluria Consortium (OxalEurope) Registry on a large cohort of patients with primary hyperoxaluria type 3. Kidney Int. 2021;100:621–635. doi: 10.1016/j.kint.2021.03.031.
    1. Singh P, et al. Primary hyperoxaluria type 3 can also result in kidney failure: a case report. Am J Kidney Dis. 2021 doi: 10.1053/j.ajkd.2021.05.016.
    1. Mandrile G, et al. Data from a large European study indicate that the outcome of primary hyperoxaluria type 1 correlates with the AGXT mutation type. Kidney Int. 2014;86:1197–1204. doi: 10.1038/ki.2014.222.
    1. Siener R, Hoppe B, Löhr P, Müller SC, Latz S. Metabolic profile and impact of diet in patients with primary hyperoxaluria. Int Urol Nephrol. 2018;50:1583–1589. doi: 10.1007/s11255-018-1939-1.
    1. Vervaet BA, Verhulst A, de Broe ME, D’Haese PC. The tubular epithelium in the initiation and course of intratubular nephrocalcinosis. Urol Res. 2010;38:249–256. doi: 10.1007/s00240-010-0290-5.
    1. Mulay SR, et al. Calcium oxalate crystals induce renal inflammation by NLRP3-mediated IL-1β secretion. J Clin Invest. 2013;123:236–246. doi: 10.1172/JCI63679.
    1. Knauf F, et al. NALP3-mediated inflammation is a principal cause of progressive renal failure in oxalate nephropathy. Kidney Int. 2013;84:895–901. doi: 10.1038/ki.2013.207.
    1. Hoppe B, et al. Plasma calcium oxalate super saturation in children with primary hyperoxaluria and end-stage renal failure. Kidney Int. 1999;56:268–274. doi: 10.1046/j.1523-1755.1999.00546.x.
    1. Marangella M, et al. Plasma profiles and dialysis kinetics of oxalate in patients receiving hemodialysis. Nephron. 1992;60:74–80. doi: 10.1159/000186708.
    1. Birtel J, et al. The ocular phenotype in primary hyperoxaluria type 1. Am J Ophthalmol. 2019;206:184–191. doi: 10.1016/j.ajo.2019.04.036.
    1. Hoppe B, Birtel J, Herberg U, Martin-Higueras C. Systemic oxalate deposition in patients with primary hyperoxaluria type 3 (PO1997). American Society of Nephrology Kidney Week; San Diego, Nov 2-7, 2021; p. 614.
    1. Ventzke A, et al. Systematic assessment of urinary hydroxy-oxo-glutarate for diagnosis and follow-up of primary hyperoxaluria type III. Pediatr Nephrol. 2017;32:2263–2271. doi: 10.1007/s00467-017-3731-3.
    1. Pitt JJ, Willis F, Tzanakos N, Belostotsky R, Frishberg Y. 4-Hydroxyglutamate is a biomarker for primary hyperoxaluria type 3. JIMD Rep. 2015;15:1–6. doi: 10.21009/jimd.v15i1.9108.
    1. Greed L, et al. Metabolite diagnosis of primary hyperoxaluria type 3. Pediatr Nephrol. 2018;33:1443–1446. doi: 10.1007/s00467-018-3967-6.
    1. Hulton S-A. The primary hyperoxalurias: a practical approach to diagnosis and treatment. Int J Surg. 2016;36:649–654. doi: 10.1016/j.ijsu.2016.10.039.
    1. Zhao F, et al. Predictors of incident ESRD among patients with primary hyperoxaluria presenting prior to kidney failure. Clin J Am Soc Nephrol. 2016;11:119–126. doi: 10.2215/CJN.02810315.
    1. Weigert A, Hoppe B. Nephrolithiasis and nephrocalcinosis in childhood-risk factor-related current and future treatment options. Front Pediatr. 2018;6:98. doi: 10.3389/fped.2018.00098.
    1. Weigert A, Martin-Higueras C, Hoppe B. Novel therapeutic approaches in primary hyperoxaluria. Expert Opin Emerg Drugs. 2018;23:349–357. doi: 10.1080/14728214.2018.1552940.
    1. Leumann E, Hoppe B, Neuhaus T. Management of primary hyperoxaluria: efficacy of oral citrate administration. Pediatr Nephrol. 1883;7:207–211. doi: 10.1007/BF00864405.
    1. Hamm LL. Renal handling of citrate. Kidney Int. 1990;38:728–735. doi: 10.1038/ki.1990.265.
    1. Bergstralh EJ, et al. Transplantation outcomes in primary hyperoxaluria. Am J Transplant. 2010;10:2493–2501. doi: 10.1111/j.1600-6143.2010.03271.x.
    1. Illies F, Bonzel K-E, Wingen A-M, Latta K, Hoyer PF. Clearance and removal of oxalate in children on intensified dialysis for primary hyperoxaluria type 1. Kidney Int. 2006;70:1642–1648. doi: 10.1038/sj.ki.5001806.
    1. Hoppe B, et al. Oxalate elimination via hemodialysis or peritoneal dialysis in children with chronic renal failure. Pediatr Nephrol. 1996;10:488–492. doi: 10.1007/s004670050145.
    1. Bunchman TE, Swartz RD. Oxalate removal in type I hyperoxaluria or acquired oxalosis using HD and equilibration PD. Perit Dial Int. 1994;14:81–84. doi: 10.1177/089686089401400117.
    1. Cochat P, et al. Primary hyperoxaluria type 1: indications for screening and guidance for diagnosis and treatment. Nephrol Dial Transplant. 2012;27:1729–1736. doi: 10.1093/ndt/gfs078.
    1. Metry EL, et al. Transplantation outcomes in patients with primary hyperoxaluria: a systematic review. Pediatr Nephrol. 2021;36:2217–2226. doi: 10.1007/s00467-021-05043-6.
    1. Nolkemper D, et al. Long-term results of pre-emptive liver transplantation in primary hyperoxaluria type 1. Pediatr Transplant. 2000;4:177–181. doi: 10.1034/j.1399-3046.2000.00107.x.
    1. Brinkert F, et al. Transplantation procedures in children with primary hyperoxaluria type 1: outcome and longitudinal growth. Transplantation. 2009;87:1415–1421. doi: 10.1097/TP.0b013e3181a27939.
    1. Jamieson NV, European PHI Transplantation Study Group. A 20-year experience of combined liver/kidney transplantation for primary hyperoxaluria (PH1): the European PH1 transplant registry experience 1984-2004. Am J Nephrol. 2005;25:282–9.
    1. Saborio P, Scheinman JI. Transplantation for primary hyperoxaluria in the United States. Kidney Int. 1999;56:1094–1100. doi: 10.1046/j.1523-1755.1999.00619.x.
    1. Monico CG, Milliner DS. Combined liver-kidney and kidney-alone transplantation in primary hyperoxaluria. Liver Transpl. 2001;7:954–963. doi: 10.1053/jlts.2001.28741.
    1. Hoppe B, Langman CB. A United States survey on diagnosis, treatment, and outcome of primary hyperoxaluria. Pediatr Nephrol. 2003;18:986–991. doi: 10.1007/s00467-003-1234-x.
    1. Dhondup T, Lorenz EC, Milliner DS, Lieske JC. Combined liver-kidney transplantation for primary hyperoxaluria type 2: a case report. Am J Transplant. 2018;18:253–257. doi: 10.1111/ajt.14418.
    1. del Bello A, Cointault O, Delas A, Kamar N. Primary hyperoxaluria type 2 successfully treated with combined liver-kidney transplantation after failure of isolated kidney transplantation. Am J Transplant. 2020;20:1752–1753. doi: 10.1111/ajt.15829.
    1. Mclaurin AW, Beisel WR, Mccormick GJ, Scalettar R, Herman RH. Primary hyperoxaluria. Ann Intern Med. 1961;55:70–80. doi: 10.7326/0003-4819-55-1-70.
    1. Milliner DS, Eickholt JT, Bergstralh EJ, Wilson DM, Smith LH. Results of long-term treatment with orthophosphate and pyridoxine in patients with primary hyperoxaluria. N Engl J Med. 1994;331:1553–1558. doi: 10.1056/NEJM199412083312304.
    1. Toussaint C. Pyridoxine-responsive PH1: treatment. J Nephrol. 1998;11(Suppl. 1):49–50.
    1. Gibbs DA, Watts RW. Biochemical studies on the treatment of primary hyperoxaluria. Arch Dis Child. 1967;42:505–508. doi: 10.1136/adc.42.225.505.
    1. Holmgren G, Hörnström T, Johansson S, Samuelson G. Primary hyperoxaluria (glycolic acid variant): a clinical and genetical investigation of eight cases. Ups J Med Sci. 1978;83:65–70. doi: 10.3109/03009737809179114.
    1. Helin I. Primary hyperoxaluria: an analysis of 17 Scandinavian patients. Scand J Urol Nephrol. 1980;14:61–64. doi: 10.3109/00365598009181192.
    1. Harrison AR, Kasidas GP, Rose GA. Hyperoxaluria and recurrent stone formation apparently cured by short courses of pyridoxine. Br Med J (Clin Res Ed) 1981;282:2097–2098. doi: 10.1136/bmj.282.6282.2097-a.
    1. Alinei P, Guignard JP, Jaeger P. Pyridoxine treatment of type 1 hyperoxaluria. N Engl J Med. 1984;311:798–799.
    1. Leumann E, Matasovic A, Niederwieser A. Pyridoxine in primary hyperoxaluria type I. Lancet. 1986;2:699. doi: 10.1016/S0140-6736(86)90221-7.
    1. Morgan SH, Maher ER, Purkiss P, Watts RW, Curtis JR. Oxalate metabolism in end-stage renal disease: the effect of ascorbic acid and pyridoxine. Nephrol Dial Transplant. 1988;3:28–32.
    1. Edwards P, Nemat S, Rose GA. Effects of oral pyridoxine upon plasma and 24-hour urinary oxalate levels in normal subjects and stone formers with idiopathic hypercalciuria. Urol Res. 1990;18:393–396. doi: 10.1007/BF00297371.
    1. Shah GM, et al. Effects of ascorbic acid and pyridoxine supplementation on oxalate metabolism in peritoneal dialysis patients. Am J Kidney Dis. 1992;20:42–49. doi: 10.1016/S0272-6386(12)80315-5.
    1. Costello JF, Sadovnic MC, Smith M, Stolarski C. Effect of vitamin B6 supplementation on plasma oxalate and oxalate removal rate in hemodialysis patients. J Am Soc Nephrol. 1992;3:1018–1024. doi: 10.1681/ASN.V341018.
    1. Marangella M. Transplantation strategies in type 1 primary hyperoxaluria: the issue of pyridoxine responsiveness. Nephrol Dial Transplant. 1999;14:301–303. doi: 10.1093/ndt/14.2.301.
    1. Dakshinamurti K, Dakshinamurti S, Czubryt MP. Vitamin B6: effects of deficiency, and metabolic and therapeutic functions. In: Preedy V, Patel V (Eds), Handbook of famine, starvation, and nutrient deprivation. Springer International Publishing; Springer Cham, 2017: p. 1–23. 10.1007/978-3-319-40007-5_81-1.
    1. Musayev FN, et al. Molecular basis of reduced pyridoxine 5’-phosphate oxidase catalytic activity in neonatal epileptic encephalopathy disorder. J Biol Chem. 2009;284:30949–30956. doi: 10.1074/jbc.M109.038372.
    1. Salido E, Pey AL, Rodriguez R, Lorenzo V. Primary hyperoxalurias: disorders of glyoxylate detoxification. Biochim Biophys Acta. 2012;1822:1453–1464. doi: 10.1016/j.bbadis.2012.03.004.
    1. Oppici E, et al. Pyridoxamine and pyridoxal are more effective than pyridoxine in rescuing folding-defective variants of human alanine:glyoxylate aminotransferase causing primary hyperoxaluria type I. Hum Mol Genet. 2015;24:5500–5511. doi: 10.1093/hmg/ddv276.
    1. Fargue S, Lewin J, Rumsby G, Danpure CJ. Four of the most common mutations in primary hyperoxaluria type 1 unmask the cryptic mitochondrial targeting sequence of alanine:glyoxylate aminotransferase encoded by the polymorphic minor allele. J Biol Chem. 2013;288:2475–2484. doi: 10.1074/jbc.M112.432617.
    1. Fodor K, Wolf J, Erdmann R, Schliebs W, Wilmanns M. Molecular requirements for peroxisomal targeting of alanine-glyoxylate aminotransferase as an essential determinant in primary hyperoxaluria type 1. PLoS Biol. 2012;10:e1001309. doi: 10.1371/journal.pbio.1001309.
    1. Hopper ED, Pittman AMC, Fitzgerald MC, Tucker CL. In vivo and in vitro examination of stability of primary hyperoxaluria-associated human alanine:glyoxylate aminotransferase. J Biol Chem. 2008;283:30493–30502. doi: 10.1074/jbc.M803525200.
    1. Oppici E, et al. Biochemical analyses are instrumental in identifying the impact of mutations on holo and/or apo-forms and on the region(s) of alanine:glyoxylate aminotransferase variants associated with primary hyperoxaluria type I. Mol Genet Metab. 2012;105:132–140. doi: 10.1016/j.ymgme.2011.09.033.
    1. Harambat J, Fargue S, Acquaviva C, et al. Genotype-phenotype correlation in primary hyperoxaluria type 1: the p.Gly170Arg AGXT mutation is associated with a better outcome. Kidney Int. 2010;77:443–9.
    1. van Woerden CS, Groothoff JW, Wanders RJA, Davin J-C, Wijburg FA. Primary hyperoxaluria type 1 in The Netherlands: prevalence and outcome. Nephrol Dial Transplant. 2003;18:273–279. doi: 10.1093/ndt/18.2.273.
    1. Chetyrkin SV, et al. Pyridoxamine lowers kidney crystals in experimental hyperoxaluria: a potential therapy for primary hyperoxaluria. Kidney Int. 2005;7:53–60. doi: 10.1111/j.1523-1755.2005.00054.x.
    1. Scheinman JI, et al. Pyridoxamine lowers oxalate excretion and kidney crystals in experimental hyperoxaluria: a potential therapy for primary hyperoxaluria. Urol Res. 2005;33:368–371. doi: 10.1007/s00240-005-0493-3.
    1. Dwyer JP, et al. Pyridoxamine dihydrochloride in diabetic nephropathy (PIONEER-CSG-17): lessons learned from a pilot study. Nephron. 2015;129:22–28. doi: 10.1159/000369310.
    1. Williams ME, et al. Effects of pyridoxamine in combined phase 2 studies of patients with type 1 and type 2 diabetes and overt nephropathy. Am J Nephrol. 2007;27:605–614. doi: 10.1159/000108104.
    1. Hoyer-Kuhn H, et al. Vitamin B6 in primary hyperoxaluria I: first prospective trial after 40 years of practice. Clin J Am Soc Nephrol. 2014;9:468–477. doi: 10.2215/CJN.06820613.
    1. Latta K, Brodehl J. Primary hyperoxaluria type I. Eur J Pediatr. 1990;149:518–522. doi: 10.1007/BF01957682.
    1. Monico CG, Rossetti S, Olson JB, Milliner DS. Pyridoxine effect in type I primary hyperoxaluria is associated with the most common mutant allele. Kidney Int. 2005;67:1704–1709. doi: 10.1111/j.1523-1755.2005.00267.x.
    1. Monico CG, Olson JB, Milliner DS. Implications of genotype and enzyme phenotype in pyridoxine response of patients with type I primary hyperoxaluria. Am J Nephrol. 2005;25:183–188. doi: 10.1159/000085411.
    1. Milliner DS. The primary hyperoxalurias: an algorithm for diagnosis. Am J Nephrol. 2005;25:154–160. doi: 10.1159/000085407.
    1. Leumann EP, Niederwieser A, Fanconi A. New aspects of infantile oxalosis. Pediatr Nephrol. 1987;1:531–535. doi: 10.1007/BF00849265.
    1. Hoppe B, et al. Safety, pharmacodynamics, and exposure-response modeling results from a first-in-human phase 1 study of nedosiran (PHYOX1) in primary hyperoxaluria. Kidney Int. 2022;101:626–634. doi: 10.1016/j.kint.2021.08.015.
    1. Liebow A, et al. An investigational RNAi therapeutic targeting glycolate oxidase reduces oxalate production in models of primary hyperoxaluria. J Am Soc Nephrol. 2017;28:494–503. doi: 10.1681/ASN.2016030338.
    1. Garrelfs SF, et al. Lumasiran, an RNAi therapeutic for primary hyperoxaluria type 1. N Engl J Med. 2021;384:1216–1226. doi: 10.1056/NEJMoa2021712.
    1. Dutta C, et al. Inhibition of glycolate oxidase with dicer-substrate siRNA reduces calcium oxalate deposition in a mouse model of primary hyperoxaluria type 1. Mol Ther. 2016;24:770–778. doi: 10.1038/mt.2016.4.
    1. Scott LJ. Keam SJ. Lumasiran: first approval. Drugs. 2021;81:277–282. doi: 10.1007/s40265-020-01463-0.
    1. Frishberg Y, et al. Phase 1/2 study of lumasiran for treatment of primary hyperoxaluria type 1: a placebo-controlled randomized clinical trial. Clin J Am Soc Nephrol. 2021 doi: 10.2215/CJN.14730920.
    1. McGregor TL, et al. Characterising a healthy adult with a rare HAO1 knockout to support a therapeutic strategy for primary hyperoxaluria. Elife. 2020;9:e54363. doi: 10.7554/eLife.54363.
    1. Méaux M-N, et al. The effect of lumasiran therapy for primary hyperoxaluria type 1 in small infants. Pediatr Nephrol. 2022;37:907–911. doi: 10.1007/s00467-021-05393-1.
    1. Chiodini B, et al. Case report: sustained efficacy of lumasiran at 18 months in primary hyperoxaluria type 1. Front Pediatr. 2021;9:791616. doi: 10.3389/fped.2021.791616.
    1. Aldabek K, Grossman OK, Al-Omar O, Fox JA, Moritz ML. Infantile primary hyperoxaluria type 1 treated with lumasiran in twin males. Cureus. 2022;14:e21673.
    1. Stone HK, et al. Primary hyperoxaluria diagnosed after kidney transplant: a review of the literature and case report of aggressive renal replacement therapy and lumasiran to prevent allograft loss. Am J Transplant. 2021;21:4061–4067. doi: 10.1111/ajt.16762.
    1. di Toro A, et al. Oxalic cardiomyopathy: could it influence treatment plans in patients with primary hyperoxaluria type 1? J Am Coll Cardiol. 2021;78:998–999. doi: 10.1016/j.jacc.2021.06.039.
    1. Poyah P, et al. Primary hyperoxaluria type 1 (PH1) presenting with end-stage kidney disease and cutaneous manifestations in adulthood: a case report. Can J Kidney Health Dis. 2021;8:20543581211058932. doi: 10.1177/20543581211058931.
    1. Joher N, et al. Early post-transplant recurrence of oxalate nephropathy in a patient with primary hyperoxaluria type 1, despite pretransplant lumasiran therapy. Kidney Int. 2022;101:185–186. doi: 10.1016/j.kint.2021.10.022.
    1. Ariceta G, et al. Hepatic lactate dehydrogenase A: an RNA interference target for the treatment of all known types of primary hyperoxaluria. Kidney Int Rep. 2021;6:1088–1098. doi: 10.1016/j.ekir.2021.01.029.
    1. Shee K, et al. Nedosiran dramatically reduces serum oxalate in dialysis-dependent primary hyperoxaluria 1: a compassionate use case report. Urology. 2021;156:e147–e149. doi: 10.1016/j.urology.2021.03.014.
    1. Mucha L, et al. Clinical and economic impact of primary hyperoxaluria: a retrospective claims analysis. J Manag Care Spec Pharm. 2022;28:316–323.
    1. Dejban P, Lieske JC. New therapeutics for primary hyperoxaluria type 1. Curr Opin Nephrol Hypertens. 2022 doi: 10.1097/MNH.0000000000000790.
    1. Moya-Garzon MD, et al. New salicylic acid derivatives, double inhibitors of glycolate oxidase and lactate dehydrogenase, as effective agents decreasing oxalate production. Eur J Med Chem. 2022;237:114396. doi: 10.1016/j.ejmech.2022.114396.
    1. Ding J, et al. Dual glycolate oxidase/lactate dehydrogenase A inhibitors for primary hyperoxaluria. ACS Med Chem Lett. 2021;12:1116–1123. doi: 10.1021/acsmedchemlett.1c00196.
    1. Martin-Higueras C, Luis-Lima S, Salido E. Glycolate oxidase is a safe and efficient target for substrate reduction therapy in a mouse model of primary hyperoxaluria type I. Mol Ther. 2016;24:719–725. doi: 10.1038/mt.2015.224.
    1. Moya-Garzón MD, et al. Salicylic acid derivatives inhibit oxalate production in mouse hepatocytes with primary hyperoxaluria type 1. J Med Chem. 2018;61:7144–7167. doi: 10.1021/acs.jmedchem.8b00399.
    1. Zabaleta N, et al. CRISPR/Cas9-mediated disruption of glycolate oxidase is an efficacious and safe treatment for primary hyperoxaluria type I. Mol Ther. 2018;26:384–385.
    1. le Dudal M, et al. Stiripentol protects against calcium oxalate nephrolithiasis and ethylene glycol poisoning. J Clin Invest. 2019;129:2571–2577. doi: 10.1172/JCI99822.
    1. Letavernier E, Daudon M. Stiripentol identifies a therapeutic target to reduce oxaluria. Curr Opin Nephrol Hypertens. 2020;29:394–399. doi: 10.1097/MNH.0000000000000621.
    1. Martin-Higueras C, Feldkötter M, Hoppe B. Is stiripentol truly effective for treating primary hyperoxaluria? Clin Kidney J. 2021;14:442–444. doi: 10.1093/ckj/sfaa068.
    1. Kempf C, et al. Stiripentol fails to lower plasma oxalate in a dialysis-dependent PH1 patient. Pediatr Nephrol. 2020;35:1787–1789. doi: 10.1007/s00467-020-04585-5.
    1. Shee K, Stoller ML. Perspectives in primary hyperoxaluria - historical, current and future clinical interventions. Nat Rev Urol. 2022;19:137–146. doi: 10.1038/s41585-021-00543-4.
    1. Martinez-Turrillas R, et al. In vivo CRISPR-Cas9 inhibition of hepatic LDH as treatment of primary hyperoxaluria. Mol Ther Methods Clin Dev. 2022;25:137–146. doi: 10.1016/j.omtm.2022.03.006.
    1. Allison MJ, Dawson KA, Mayberry WR, Foss JG. Oxalobacter formigenes gen. nov., sp. nov.: oxalate-degrading anaerobes that inhabit the gastrointestinal tract. Arch Microbiol. 1985;141:1–7.
    1. Hatch M, Freel RW, Vaziri ND. Regulatory aspects of oxalate secretion in enteric oxalate elimination. J Am Soc Nephrol. 1999;10(Suppl. 1):S324–S328.
    1. Hatch M, Freel RW. Intestinal transport of an obdurate anion: oxalate. Urol Res. 2005;33:1–16. doi: 10.1007/s00240-004-0445-3.
    1. Hatch M, et al. Oxalobacter sp. reduces urinary oxalate excretion by promoting enteric oxalate secretion. Kidney Int. 2006;69:691–698. doi: 10.1038/sj.ki.5000162.
    1. Hatch M, et al. Enteric oxalate elimination is induced and oxalate is normalized in a mouse model of primary hyperoxaluria following intestinal colonization with oxalobacter. Am J Physiol Gastrointest Liver Physiol. 2011;86:G461–G469. doi: 10.1152/ajpgi.00434.2010.
    1. Grujic D, et al. Hyperoxaluria is reduced and nephrocalcinosis prevented with an oxalate-degrading enzyme in mice with hyperoxaluria. Am J Nephrol. 2009;29:86–93. doi: 10.1159/000151395.
    1. Hoppe B, et al. Effects of Oxalobacter formigenes in subjects with primary hyperoxaluria type 1 and end-stage renal disease: a phase II study. Nephrol Dial Transplant. 2020 doi: 10.1093/ndt/gfaa135.
    1. Hoppe B, et al. Oxalobacter formigenes: a potential tool for the treatment of primary hyperoxaluria type 1. Kidney Int. 2006;70:1305–1311. doi: 10.1038/sj.ki.5001707.
    1. Hoppe B, et al. A randomised phase I/II trial to evaluate the efficacy and safety of orally administered Oxalobacter formigenes to treat primary hyperoxaluria. Pediatr Nephrol. 2017;32:781–790. doi: 10.1007/s00467-016-3553-8.
    1. Rashid ST, et al. Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. J Clin Invest. 2010;120:3127–3136. doi: 10.1172/JCI43122.
    1. Martinez-Turrillas R, Rodriguez-Diaz S, Rodriguez-Marquez P,et al. Generation of an induced pluripotent stem cell line (CIMAi001-A) from a compound heterozygous primary hyperoxaluria type I (PH1) patient carrying p.G170R and p.R122* mutations in the AGXT gene. Stem Cell Res. 2019;41:101626.
    1. Zapata-Linares N, Rodriguez S, Salido E, et al. Generation and characterization of human iPSC lines derived from a primary hyperoxaluria type I patient with p.I244T mutation. Stem Cell Res. 2016;16:116–9.
    1. Estève J, et al. Generation of induced pluripotent stem cells-derived hepatocyte-like cells for ex vivo gene therapy of primary hyperoxaluria type 1. Stem Cell Res. 2019;38:101467. doi: 10.1016/j.scr.2019.101467.
    1. Beck BB, et al. Liver cell transplantation in severe infantile oxalosis: a potential bridging procedure to orthotopic liver transplantation? Nephrol Dial Transplant. 2012;27:2984–2989. doi: 10.1093/ndt/gfr776.
    1. Jiang J, et al. Correction of hyperoxaluria by liver repopulation with hepatocytes in a mouse model of primary hyperoxaluria type-1. Transplantation. 2008;85:1253–1260. doi: 10.1097/TP.0b013e31816de49e.
    1. Salido E, et al. Phenotypic correction of a mouse model for primary hyperoxaluria with adeno-associated virus gene transfer. Mol Ther. 2011;19:870–875. doi: 10.1038/mt.2010.270.
    1. Toscano MG, de Haan P. How simian virus 40 hijacks the intracellular protein trafficking pathway to its own benefit … and ours. Front Immunol. 2018;9:1160. doi: 10.3389/fimmu.2018.01160.
    1. Toscano MG, et al. Generation of a Vero-based packaging cell line to produce SV40 gene delivery vectors for use in clinical gene therapy studies. Mol Ther Methods Clin Dev. 2017;6:124–134. doi: 10.1016/j.omtm.2017.06.007.
    1. Fernández-Higuero JÁ, et al. Structural and functional insights on the roles of molecular chaperones in the mistargeting and aggregation phenotypes associated with primary hyperoxaluria type I. Adv Protein Chem Struct Biol. 2019;114:119–152. doi: 10.1016/bs.apcsb.2018.09.003.
    1. Belostotsky R, et al. Translation inhibition corrects aberrant localization of mutant alanine-glyoxylate aminotransferase: possible therapeutic approach for hyperoxaluria. J Mol Med (Berl) 2018;96:621–630. doi: 10.1007/s00109-018-1651-8.
    1. Miyata N, et al. Pharmacologic rescue of an enzyme-trafficking defect in primary hyperoxaluria 1. Proc Natl Acad Sci. 2014;111:14406–14411. doi: 10.1073/pnas.1408401111.
    1. Moreno-Sánchez R, Marín-Hernández Á, del Mazo-Monsalvo I, Saavedra E, Rodríguez-Enríquez S. Assessment of the low inhibitory specificity of oxamate, aminooxyacetate and dichloroacetate on cancer energy metabolism. Biochim Biophys Acta Gen Subj. 2017;861:3221–3236. doi: 10.1016/j.bbagen.2016.08.006.
    1. Wang M, et al. High throughput cell-based assay for identification of glycolate oxidase inhibitors as a potential treatment for primary hyperoxaluria type 1. Sci Rep. 2016;6:34060. doi: 10.1038/srep34060.

Source: PubMed

3
Sottoscrivi