AMPAkines potentiate the corticostriatal pathway to reduce acute and chronic pain

Fei Zeng, Qiaosheng Zhang, Yaling Liu, Guanghao Sun, Anna Li, Robert S Talay, Jing Wang, Fei Zeng, Qiaosheng Zhang, Yaling Liu, Guanghao Sun, Anna Li, Robert S Talay, Jing Wang

Abstract

The corticostriatal circuit plays an important role in the regulation of reward- and aversion-types of behaviors. Specifically, the projection from the prelimbic cortex (PL) to the nucleus accumbens (NAc) has been shown to regulate sensory and affective aspects of pain in a number of rodent models. Previous studies have shown that enhancement of glutamate signaling through the NAc by AMPAkines, a class of agents that specifically potentiate the function of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, reduces acute and persistent pain. However, it is not known whether postsynaptic potentiation of the NAc with these agents can achieve the full anti-nociceptive effects of PL activation. Here we compared the impact of AMPAkine treatment in the NAc with optogenetic activation of the PL on pain behaviors in rats. We found that not only does AMPAkine treatment partially reconstitute the PL inhibition of sensory withdrawals, it fully occludes the effect of the PL on reducing the aversive component of pain. These results indicate that the NAc is likely one of the key targets for the PL, especially in the regulation of pain aversion. Furthermore, our results lend support for neuromodulation or pharmacological activation of the corticostriatal circuit as an important analgesic approach.

Keywords: AMPAkine; CX 546; Nucleus accumbens; Pain; Prelimbic cortex.

Conflict of interest statement

The authors declare no competing interests.

Figures

Fig. 1
Fig. 1
Experimental design and location of intracranial viral injections and cannula placements. a Schematic for in vivo optogenetic targeting of the PL and AMPAkine treatment in the NAc. b Histologic expression of Channelrhodopsin (ChR2) in the PL. c Representative brain slice showing the intracranial infusion site in the NAc core. d Schematic showing tip of injectors in the NAc core
Fig. 2
Fig. 2
AMPAkine potentiation of the NAc partially reconstitutes the anti-nociceptive effects of PL. a Optogenetic activation of the PL has a greater impact than AMPAkine infusions into the NAc core on reducing sensory withdrawals on Hargreaves test. ChR2 group, n = 7; YFP group, n = 7; YFP + AMPAkine vs YFP + saline (*p = 0.0114); ChR2 + AMPAkine vs ChR2 + saline (p > 0.9999); ChR2 + AMPAkine vs YFP + AMPAkine (****p < 0.0001), ChR2 + saline vs YFP + saline (****p < 0.0001); Two-way ANOVA with repeated measures and Bonferroni’s multiple pair-wise comparisons. b Schematic of the CPP assay with optogenetic activation of the PL in the presence of noxious pin prick (PP) after AMPAkine or saline infusion into the NAc core. AMPAkine or saline was infused into the NAc 15 min prior to the CPP assay. During the CPP assay, one of the chambers was paired with optogenetic activation of the PL and PP; the other chamber was paired with PP alone. During the preconditioning or testing phase, no stimuli were given and rats were allowed free movement. c Control (saline-infused) rats, when presented with noxious stimuli (PP), preferred the chamber associated with optogenetic PL activation. n = 6, *p = 0.0101, paired Student’s t-test. d Control rats that had YFP injection did not demonstrate a preference for either chamber. n = 6, p = 0.5973, paired Student’s t-test. e CPP score for PL activation in the presence of noxious mechanical stimuli after saline infusion into the NAc core. n = 6, **p = 0.0098, unpaired Student’s t test. f Rats that received AMPAkine infusion prior to the CPP test, when presented with PP, did not demonstrate preference or aversion for the chamber associated with optogenetic PL activation. n = 6, p = 0.7524, paired Student’s t-test. g AMPAkine-infused rats that received YFP injection also demonstrated no preference or aversion for either chamber. n = 6, p = 0.1990, paired Student’s t-test. h After AMPAkine infusion into NAc core, the CPP score for PL activation was not increased compared with YFP control. n = 6, p = 0.5238, unpaired Student’s t test. i CPP scores indicate that AMPAkine treatment in the NAc eliminated the preference of chamber associated with PL activation. n = 6, **p = 0.0031, unpaired Student’s t test
Fig. 3
Fig. 3
AMPAkine in the NAc partially reconstitutes the anti-nociceptive effects of PL on chronic inflammatory pain. a CFA treatment induces mechanical allodynia, compared with saline-treated rats. CFA group, n = 12; Saline group, n = 13; ****p < 0.0001, Two-way ANOVA with repeated measures and Bonferroni’s multiple pair-wise comparisons. b AMPAkine infusion into the NAc core and activation of PL did not change mechanical hypersensitivity in control rats. ChR2 group, n = 7; YFP group, n = 6; ChR2 vs YFP, after AMPAkine infusion (p > 0.9999), after saline infusion (p = 0.2760); AMPAkine vs saline, in ChR2 rats (p > 0.9999), in YFP rats (p = 0.3044); Two-way ANOVA with repeated measures and Bonferroni’s multiple pair-wise comparisons. c Optogenetic activation of the PL has greater impact than AMPAkine potentiation of the NAc core on the reduction of sensory withdrawal. ChR2 group, n = 6; YFP group, n = 6; ChR2 vs YFP, after AMPAkine infusion (**p = 0.0025), after saline infusion (****p < 0.0001); AMPAkine vs saline, in ChR2 rats (p > 0.9999), in YFP rats (*p = 0.0340); Two-way ANOVA with repeated measures and Bonferroni’s multiple pair-wise comparisons
Fig. 4
Fig. 4
AMPAkine in the NAc core occludes the anti-aversive effect of PL on chronic inflammatory pain. a Schematic of the CPP test for tonic-aversive response in CFA-treated rats after AMPAkine or saline infusion in the NAc core. One of the chambers was paired with PL activation; the other chamber was not. No peripheral stimulus was given. b Saline-infused rats that received ChR2 injection preferred the chamber associated with PL activation. n = 6, *p = 0.0237, paired Student’s t-test. c Saline-infused rats that received YFP injection showed no preference for light treatment. n = 6, p = 0.5973, paired Student’s t-test. d CPP score for PL activation in the presence of spontaneous or tonic pain. n = 6, *p = 0.0232, unpaired Student’s t test. e AMPAkine pretreatment occluded the anti-aversive effects of PL activation. Rats which received CX546 infusion in the NAc core prior to CPP test did not demonstrate a preference for the chamber associated with PL activation. n = 6, p = 0.4405, paired Student’s t-test. f AMPAkine-infused rats which received YFP injection showed no chamber preference. n = 6, p = 0.1278, paired Student’s t-test. g AMPAkine pretreatment occluded the anti-aversive effects of PL activation in CFA-treated rats. After AMPAkine infusion into NAc core, the CPP score for PL activation was not increased compared with YFP control. n = 6, p = 0.6102, unpaired Student’s t test. h Compared with saline, AMPAkine treatment prior to CPP test occluded the anti-aversive effects of PL activation in CFA-treated rats. n = 6, *p = 0.0294, unpaired Student’s t test
Fig. 5
Fig. 5
AMPAkine in the NAc partially reconstitutes the anti-nociceptive effects of PL on chronic neuropathic pain. a Schematic of the SNI model. b SNI treatment induces mechanical allodynia, compared with SHAM-treated rats. SNI group, n = 12; SHAM group, n = 13; ****p < 0.0001, Two-way ANOVA with repeated measures and Bonferroni’s multiple pair-wise comparisons. c SNI treatment induces cold allodynia, compared with SHAM-treated rats. SNI group, n = 12; SHAM group, n = 13; ****p < 0.0001, Two-way ANOVA with repeated measures and Bonferroni’s multiple pair-wise comparisons. d Optogenetic activation of the PL decreased mechanical allodynia in SNI-treated rats; AMPAkine infusion in the NAc decreased mechanical allodynia in YFP rats but not ChR2 rats. ChR2 group, n = 6; YFP group, n = 6; ChR2 vs YFP, after AMPAkine infusion (****p < 0.0001), after saline infusion (****p < 0.0001); AMPAkine vs saline, in ChR2 rats (p > 0.9999), in YFP rats (***p = 0.0002); Two-way ANOVA with repeated measures and Bonferroni’s multiple pair-wise comparisons. e Activation of the PL decreased cold allodynia in SNI-treated rats; AMPAkine infusion decreased cold allodynia in YFP but not ChR2 rats. ChR2 group, n = 6; YFP group, n = 6; ChR2 vs YFP, after AMPAkine infusion (*p = 0.0364), after saline infusion (****p < 0.0001); AMPAkine vs saline, in ChR2 rats (p > 0.9999), in YFP rats (****p < 0.0001); Two-way ANOVA with repeated measures and Bonferroni’s multiple pair-wise comparisons
Fig. 6
Fig. 6
AMPAkine in the NAc core occludes the anti-aversive effect of PL activation on chronic neuropathic pain. a Schematic of the CPP test for tonic-aversive response in SNI-treated rats after AMPAkine or saline infusion in the NAc core. One of the chambers was paired with PL activation; the other chamber was not. No peripheral stimulus was given. b Saline-infused rats that received ChR2 injection preferred the chamber associated with PL activation. n = 6, **p = 0.0053, paired Student’s t-test. c Saline-infused rats that received YFP injection showed no preference for light treatment. n = 6, p = 0.5806, paired Student’s t-test. d CPP score for PL activation in the presence of spontaneous or tonic pain. n = 6, **p = 0.0012, unpaired Student’s t test. e AMPAkine pretreatment occluded the anti-aversive effects of PL activation. Rats which received CX546 infusion in the NAc core prior to CPP test did not demonstrate a preference for the chamber associated with PL activation. n = 6, p = 0.7514, paired Student’s t-test. f AMPAkine-infused rats that received YFP injection showed no chamber preference. n = 6, p = 0.6766, paired Student’s t-test. g AMPAkine pretreatment occluded the anti-aversive effects of PL activation in SNI-treated rats. After AMPAkine infusion into NAc core, the CPP score for PL activation was not increased compared with YFP control. n = 6, p = 0.9492, unpaired Student’s t test. h Compared with saline, AMPAkine treatment prior to CPP test occluded the anti-aversive effects of PL activation in SNI-treated rats. n = 6, **p = 0.0018, unpaired Student’s t test

References

    1. Fuster JM. Cortex and memory: emergence of a new paradigm. J Cogn Neurosci. 2009;21:2047–2072. doi: 10.1162/jocn.2009.21280.
    1. Ressler KJ, Mayberg HS. Targeting abnormal neural circuits in mood and anxiety disorders: from the laboratory to the clinic. Nat Neurosci. 2007;10:1116–1124. doi: 10.1038/nn1944.
    1. Arnsten AF, Wang MJ, Paspalas CD. Neuromodulation of thought: flexibilities and vulnerabilities in prefrontal cortical network synapses. Neuron. 2012;76:223–239. doi: 10.1016/j.neuron.2012.08.038.
    1. Cooper SJ. Anaesthetisation of prefrontal cortex and response to noxious stimulation. Nature. 1975;254:439–440. doi: 10.1038/254439a0.
    1. Hardy SG. Analgesia elicited by prefrontal stimulation. Brain Res. 1985;339:281–284. doi: 10.1016/0006-8993(85)90093-9.
    1. Lee M, Manders TR, Eberle SE, Su C, D'Amour J, Yang R, Lin HY, Deisseroth K, Froemke RC, Wang J. Activation of corticostriatal circuitry relieves chronic neuropathic pain. J Neurosci. 2015;35:5247–5259. doi: 10.1523/JNEUROSCI.3494-14.2015.
    1. Martinez E, Lin HH, Zhou H, Dale J, Liu K, Wang J. Corticostriatal Regulation of Acute Pain. Front Cell Neurosci. 2017;11:146. doi: 10.3389/fncel.2017.00146.
    1. Dale J, Zhou H, Zhang Q, Martinez E, Hu S, Liu K, Urien L, Chen Z, Wang J. Scaling Up Cortical Control Inhibits Pain. Cell Rep. 2018;23:1301–1313. doi: 10.1016/j.celrep.2018.03.139.
    1. Zhou H, Martinez E, Lin HH, Yang R, Dale JA, Liu K, Huang D, Wang J. Inhibition of the prefrontal projection to the nucleus accumbens enhances pain sensitivity and affect. Front Cell Neurosci. 2018;12:240. doi: 10.3389/fncel.2018.00240.
    1. Vertes RP. Interactions among the medial prefrontal cortex, hippocampus and midline thalamus in emotional and cognitive processing in the rat. Neuroscience. 2006;142:1–20. doi: 10.1016/j.neuroscience.2006.06.027.
    1. Metz AE, Yau HJ, Centeno MV, Apkarian AV, Martina M. Morphological and functional reorganization of rat medial prefrontal cortex in neuropathic pain. Proc Natl Acad Sci USA. 2009;106:2423–2428. doi: 10.1073/pnas.0809897106.
    1. Apkarian AV, Sosa Y, Sonty S, Levy RM, Harden RN, Parrish TB, Gitelman DR. Chronic back pain is associated with decreased prefrontal and thalamic gray matter density. J Neurosci. 2004;24:10410–10415. doi: 10.1523/JNEUROSCI.2541-04.2004.
    1. Moayedi M, Weissman-Fogel I, Crawley AP, Goldberg MB, Freeman BV, Tenenbaum HC, Davis KD. Contribution of chronic pain and neuroticism to abnormal forebrain gray matter in patients with temporomandibular disorder. NeuroImage. 2011;55:277–286. doi: 10.1016/j.neuroimage.2010.12.013.
    1. Kucyi A, Moayedi M, Weissman-Fogel I, Goldberg MB, Freeman BV, Tenenbaum HC, Davis KD. Enhanced medial prefrontal-default mode network functional connectivity in chronic pain and its association with pain rumination. J Neurosci. 2014;34:3969–3975. doi: 10.1523/JNEUROSCI.5055-13.2014.
    1. Geha PY, Baliki MN, Harden RN, Bauer WR, Parrish TB, Apkarian AV. The brain in chronic CRPS pain: abnormal gray-white matter interactions in emotional and autonomic regions. Neuron. 2008;60:570–581. doi: 10.1016/j.neuron.2008.08.022.
    1. Borckardt JJ, Reeves ST, Kotlowski P, Abernathy JH, Field LC, Dong L, Frohman H, Moore H, Ryan K, Madan A, George MS. Fast left prefrontal rTMS reduces post-gastric bypass surgery pain: findings from a large-scale, double-blind, sham-controlled clinical trial. Brain Stimul. 2014;7:42–48. doi: 10.1016/j.brs.2013.07.007.
    1. Seminowicz DA, Moayedi M. The dorsolateral prefrontal cortex in acute and chronic pain. J Pain. 2017;18:1027–1035. doi: 10.1016/j.jpain.2017.03.008.
    1. Morgan MM, Sohn JH, Liebeskind JC. Stimulation of the periaqueductal gray matter inhibits nociception at the supraspinal as well as spinal level. Brain Res. 1989;502:61–66. doi: 10.1016/0006-8993(89)90461-7.
    1. Fields HL, Bry J, Hentall I, Zorman G. The activity of neurons in the rostral medulla of the rat during withdrawal from noxious heat. J Neurosci. 1983;3:2545–2552. doi: 10.1523/JNEUROSCI.03-12-02545.1983.
    1. Morgan MM, Gold MS, Liebeskind JC, Stein C. Periaqueductal gray stimulation produces a spinally mediated, opioid antinociception for the inflamed hindpaw of the rat. Brain Res. 1991;545:17–23. doi: 10.1016/0006-8993(91)91264-2.
    1. Ossipov MH, Morimura K, Porreca F. Descending pain modulation and chronification of pain. Curr Opin Support Palliat Care. 2014;8:143–151. doi: 10.1097/SPC.0000000000000055.
    1. Cheriyan J, Sheets PL. Altered excitability and local connectivity of mPFC-PAG neurons in a mouse model of neuropathic pain. J Neurosci. 2018;38:4829–4839. doi: 10.1523/JNEUROSCI.2731-17.2018.
    1. Lammel S, Ion DI, Roeper J, Malenka RC. Projection-specific modulation of dopamine neuron synapses by aversive and rewarding stimuli. Neuron. 2011;70:855–862. doi: 10.1016/j.neuron.2011.03.025.
    1. Reynolds SM, Berridge KC. Emotional environments retune the valence of appetitive versus fearful functions in nucleus accumbens. Nat Neurosci. 2008;11:423–425. doi: 10.1038/nn2061.
    1. Arai A, Kessler M, Xiao P, Ambros-Ingerson J, Rogers G, Lynch G. A centrally active drug that modulates AMPA receptor gated currents. Brain Res. 1994;638:343–346. doi: 10.1016/0006-8993(94)90669-6.
    1. Kanju PM, Parameshwaran K, Sims C, Bahr BA, Shonesy BC, Suppiramaniam V. Ampakine CX516 ameliorates functional deficits in AMPA receptors in a hippocampal slice model of protein accumulation. Exp Neurol. 2008;214:55–61. doi: 10.1016/j.expneurol.2008.07.010.
    1. Damgaard T, Larsen DB, Hansen SL, Grayson B, Neill JC, Plath N. Positive modulation of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors reverses sub-chronic PCP-induced deficits in the novel object recognition task in rats. Behav Brain Res. 2010;207:144–150. doi: 10.1016/j.bbr.2009.09.048.
    1. Navratilova E, Porreca F. Reward and motivation in pain and pain relief. Nat Neurosci. 2014;17:1304–1312. doi: 10.1038/nn.3811.
    1. Baliki MN, Geha PY, Fields HL, Apkarian AV. Predicting value of pain and analgesia: nucleus accumbens response to noxious stimuli changes in the presence of chronic pain. Neuron. 2010;66:149–160. doi: 10.1016/j.neuron.2010.03.002.
    1. Becerra L, Borsook D. Signal valence in the nucleus accumbens to pain onset and offset. Eur J Pain. 2008;12:866–869. doi: 10.1016/j.ejpain.2007.12.007.
    1. Becerra L, Breiter HC, Wise R, Gonzalez RG, Borsook D. Reward circuitry activation by noxious thermal stimuli. Neuron. 2001;32:927–946. doi: 10.1016/S0896-6273(01)00533-5.
    1. Magnusson JE, Martin RV. Additional evidence for the involvement of the basal ganglia in formalin-induced nociception: the role of the nucleus accumbens. Brain Res. 2002;942:128–132. doi: 10.1016/S0006-8993(02)02489-7.
    1. Gear RW, Aley KO, Levine JD. Pain-induced analgesia mediated by mesolimbic reward circuits. J Neurosci. 1999;19:7175–7181. doi: 10.1523/JNEUROSCI.19-16-07175.1999.
    1. Gear RW, Levine JD. Rostral ventral medulla cholinergic mechanism in pain-induced analgesia. Neurosci Lett. 2009;464:170–172. doi: 10.1016/j.neulet.2009.08.036.
    1. Goffer Y, Xu D, Eberle SE, D'Amour J, Lee M, Tukey D, Froemke RC, Ziff EB, Wang J. Calcium-permeable AMPA receptors in the nucleus accumbens regulate depression-like behaviors in the chronic neuropathic pain state. J Neurosci. 2013;33:19034–19044. doi: 10.1523/JNEUROSCI.2454-13.2013.
    1. Baliki MN, Petre B, Torbey S, Herrmann KM, Huang L, Schnitzer TJ, Fields HL, Apkarian AV. Corticostriatal functional connectivity predicts transition to chronic back pain. Nat Neurosci. 2012;15:1117–1119. doi: 10.1038/nn.3153.
    1. Arai AC, Kessler M. Pharmacology of ampakine modulators: From AMPA receptors to synapses and behavior. Curr Drug Targets. 2007;8:583–602. doi: 10.2174/138945007780618490.
    1. Lynch G. Glutamate-based therapeutic approaches: ampakines. Curr Opin Pharmacol. 2006;6:82–88. doi: 10.1016/j.coph.2005.09.005.
    1. Su C, Lin HY, Yang R, Xu D, Lee M, Pawlak N, Norcini M, Sideris A, Recio-Pinto E, Huang D, Wang J. AMPAkines Target the Nucleus Accumbens to Relieve Postoperative Pain. Anesthesiology. 2016;125:1030–1043. doi: 10.1097/ALN.0000000000001336.
    1. Le AM, Lee M, Su C, Zou A, Wang J. AMPAkines have novel analgesic properties in rat models of persistent neuropathic and inflammatory pain. Anesthesiology. 2014;121:1080–1090. doi: 10.1097/ALN.0000000000000351.
    1. Johansen JP, Fields HL, Manning BH. The affective component of pain in rodents: direct evidence for a contribution of the anterior cingulate cortex. Proc Natl Acad Sci USA. 2001;98:8077–8082. doi: 10.1073/pnas.141218998.
    1. King T, Vera-Portocarrero L, Gutierrez T, Vanderah TW, Dussor G, Lai J, Fields HL, Porreca F. Unmasking the tonic-aversive state in neuropathic pain. Nat Neurosci. 2009;12:1364–1366. doi: 10.1038/nn.2407.
    1. Uprety D, Baber A, Foy M. Ketamine infusion for sickle cell pain crisis refractory to opioids: a case report and review of literature. Ann Hematol. 2014;93:769–771. doi: 10.1007/s00277-013-1954-3.
    1. Zhang Q, Manders T, Tong AP, Yang R, Garg A, Martinez E, Zhou H, Dale J, Goyal A, Urien L, et al. Chronic pain induces generalized enhancement of aversion. Elife. 2017;6:8.
    1. Singh A, Patel D, Li A, Hu L, Zhang Q, Liu Y, Guo X, Robinson E, Martinez E, Doan L, et al. Mapping cortical integration of sensory and affective pain pathways. Curr Biol. 2020;30(1703–1715):e1705.
    1. Ren K, Dubner R. Inflammatory models of pain and hyperalgesia. Ilar j. 1999;40:111–118. doi: 10.1093/ilar.40.3.111.
    1. De Felice M, Eyde N, Dodick D, Dussor GO, Ossipov MH, Fields HL, Porreca F. Capturing the aversive state of cephalic pain preclinically. Ann Neurol. 2013;14:68.
    1. De Felice M, Eyde N, Dodick D, Dussor GO, Ossipov MH, Fields HL, Porreca F. Capturing the aversive state of cephalic pain preclinically. Ann Neurol. 2013;74:257–265.
    1. Navratilova E, Xie JY, Meske D, Qu C, Morimura K, Okun A, Arakawa N, Ossipov M, Fields HL, Porreca F. Endogenous opioid activity in the anterior cingulate cortex is required for relief of pain. J Neurosci. 2015;35:7264–7271. doi: 10.1523/JNEUROSCI.3862-14.2015.
    1. Zhou H, Zhang Q, Martinez E, Dale J, Hu S, Zhang E, Liu K, Huang D, Yang G, Chen Z, Wang J. Ketamine reduces aversion in rodent pain models by suppressing hyperactivity of the anterior cingulate cortex. Nat Commun. 2018;9:3751. doi: 10.1038/s41467-018-06295-x.
    1. Decosterd I, Woolf CJ. Spared nerve injury: an animal model of persistent peripheral neuropathic pain. Pain. 2000;87:149–158. doi: 10.1016/S0304-3959(00)00276-1.
    1. Wang J, Goffer Y, Xu D, Tukey DS, Shamir DB, Eberle SE, Zou AH, Blanck TJ, Ziff EB. A single subanesthetic dose of ketamine relieves depression-like behaviors induced by neuropathic pain in rats. Anesthesiology. 2011;115:812–821. doi: 10.1097/ALN.0b013e31822f16ae.
    1. Song I, Huganir RL. Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci. 2002;25:578–588. doi: 10.1016/S0166-2236(02)02270-1.
    1. Ren J, Ding XQ, Funk GD, Greer JJ. Ampakine CX717 protects against fentanyl-induced respiratory depression and lethal apnea in rats. Anesthesiology. 2009;110:1364–1370. doi: 10.1097/ALN.0b013e31819faa2a.
    1. Ren J, Poon BY, Tang Y, Funk GD, Greer JJ. Ampakines alleviate respiratory depression in rats. Am J Respir Crit Care Med. 2006;174:1384–1391. doi: 10.1164/rccm.200606-778OC.
    1. Greer JJ, Smith JC, Feldman JL. Role of excitatory amino-acids in the generation and transmission of respiratory drive in neonatal rat. Journal of Physiology-London. 1991;437:727–749. doi: 10.1113/jphysiol.1991.sp018622.
    1. Funk GD, Smith JC, Feldman JL. Generation and transmission of respiratory oscillations in medullary slices—role of excitatory amino-acids. J Neurophysiol. 1993;70:1497–1515. doi: 10.1152/jn.1993.70.4.1497.
    1. Pace RW, Mackay DD, Feldman JL, Del Negro CA. Inspiratory bursts in the preBotzinger complex depend on a calcium-activated non-specific cation current linked to glutamate receptors in neonatal mice. J Physiol Lond. 2007;582:113–125. doi: 10.1113/jphysiol.2007.133660.
    1. van der Schier R, Roozekrans M, van Velzen M, Dahan A, Niesters M. Opioid-induced respiratory depression: reversal by non-opioid drugs. F1000Prime Rep. 2014;6:79.
    1. Simmons DA, Rex CS, Palmer L, Pandyarajan V, Fedulov V, Gall CM, Lynch G. Up-regulating BDNF with an ampakine rescues synaptic plasticity and memory in Huntington's disease knockin mice. Proc Natl Acad Sci USA. 2009;106:4906–4911. doi: 10.1073/pnas.0811228106.
    1. Skolnick P, Popik P, Trullas R. Glutamate-based antidepressants: 20 years on. Trends Pharmacol Sci. 2009;30:563–569. doi: 10.1016/j.tips.2009.09.002.
    1. Tuominen HJ, Tiihonen J, Wahlbeck K. Glutamatergic drugs for schizophrenia: a systematic review and meta-analysis. Schizophr Res. 2005;72:225–234. doi: 10.1016/j.schres.2004.05.005.
    1. Zheng YW, Balabhadrapatruni S, Masumura C, Darlington CL, Smith PF. Effects of the putative cognitive-enhancing ampakine, CX717, on attention and object recognition memory. Curr Alzheimer Res. 2011;8:876–882. doi: 10.2174/156720511798192709.
    1. Huang L, Cichon J, Ninan I, Yang G. Post-anesthesia AMPA receptor potentiation prevents anesthesia-induced learning and synaptic deficits. Sci Transl Med. 2016;8:344ra385. doi: 10.1126/scitranslmed.aaf7151.
    1. Sun Y, Liu K, Martinez E, Dale J, Huang D, Wang J. AMPAkines and morphine provide complementary analgesia. Behav Brain Res. 2017;334:1–5. doi: 10.1016/j.bbr.2017.07.020.
    1. Melzack RaC KL. Sensory, motivational, and central control determinants of pain: a new conceptual model. The Skin Senses. 1968;25:423–443.
    1. Basbaum AI, Bautista DM, Scherrer G, Julius D. Cellular and molecular mechanisms of pain. Cell. 2009;139:267–284. doi: 10.1016/j.cell.2009.09.028.
    1. Basbaum AI, Fields HL. Endogenous pain control mechanisms: review and hypothesis. Ann Neurol. 1978;4:451–462. doi: 10.1002/ana.410040511.
    1. Basbaum AI, Fields HL. Endogenous pain control systems: brainstem spinal pathways and endorphin circuitry. Annu Rev Neurosci. 1984;7:309–338. doi: 10.1146/annurev.ne.07.030184.001521.
    1. Mansour AR, Farmer MA, Baliki MN, Apkarian AV. Chronic pain: the role of learning and brain plasticity. Restor Neurol Neurosci. 2014;32:129–139.
    1. Metz AE, Yau HJ, Centeno MV, Apkarian AV, Martina M. Morphological and functional reorganization of rat medial prefrontal cortex in neuropathic pain. Proc Natl Acad Sci USA. 2009;106:2423–2428. doi: 10.1073/pnas.0809897106.
    1. Bushnell MC, Ceko M, Low LA. Cognitive and emotional control of pain and its disruption in chronic pain. Nat Rev Neurosci. 2013;14:502–511. doi: 10.1038/nrn3516.
    1. Salzman CD, Fusi S. Emotion, cognition, and mental state representation in amygdala and prefrontal cortex. Annu Rev Neurosci. 2010;33:173–202. doi: 10.1146/annurev.neuro.051508.135256.
    1. Zhou H, Zhang Q, Martinez E, Dale J, Robinson E, Huang D, Wang J. A novel neuromodulation strategy to enhance the prefrontal control to treat pain. Mol Pain. 2019;15:1744806919845739.
    1. Kiritoshi T, Ji G, Neugebauer V. Rescue of impaired mGluR5-driven endocannabinoid signaling restores prefrontal cortical output to inhibit pain in arthritic rats. J Neurosci. 2016;36:837–850. doi: 10.1523/JNEUROSCI.4047-15.2016.
    1. Zhang ZZ, Gadotti VM, Chen LN, Souza IA, Stemkowski PL, Zamponi GW. Role of prelimbic GABAergic circuits in sensory and emotional aspects of neuropathic pain. Cell Reports. 2015;12:752–759. doi: 10.1016/j.celrep.2015.07.001.
    1. Zhang Z, Gadotti VM, Chen L, Souza IA, Stemkowski PL, Zamponi GW. Role of prelimbic GABAergic circuits in sensory and emotional aspects of neuropathic pain. Cell Rep. 2015;12:752–759. doi: 10.1016/j.celrep.2015.07.001.
    1. Ji G, Sun H, Fu Y, Li Z, Pais-Vieira M, Galhardo V, Neugebauer V. Cognitive impairment in pain through amygdala-driven prefrontal cortical deactivation. J Neurosci. 2010;30:5451–5464. doi: 10.1523/JNEUROSCI.0225-10.2010.
    1. Huang J, Gadotti VM, Chen L, Souza IA, Huang S, Wang D, Ramakrishnan C, Deisseroth K, Zhang Z, Zamponi GW. A neuronal circuit for activating descending modulation of neuropathic pain. Nat Neurosci. 2019;22:1659–1668. doi: 10.1038/s41593-019-0481-5.
    1. Ren W, Centeno MV, Wei X, Wickersham I, Martina M, Apkarian AV, Surmeier DJ. Adaptive alterations in the mesoaccumbal network following peripheral nerve injury. Pain. 2020;8:74.
    1. Sesack SR, Pickel VM. Prefrontal cortical efferents in the rat synapse on unlabeled neuronal targets of catecholamine terminals in the nucleus accumbens septi and on dopamine neurons in the ventral tegmental area. J Comp Neurol. 1992;320:145–160. doi: 10.1002/cne.903200202.
    1. Sesack SR, Grace AA. Cortico-Basal Ganglia reward network: microcircuitry. Neuropsychopharmacology. 2010;35:27–47. doi: 10.1038/npp.2009.93.
    1. Navratilova E, Xie JY, Okun A, Qu C, Eyde N, Ci S, Ossipov MH, King T, Fields HL, Porreca F. Pain relief produces negative reinforcement through activation of mesolimbic reward-valuation circuitry. Proc Natl Acad Sci U S A. 2012;109:20709–20713. doi: 10.1073/pnas.1214605109.
    1. Schwartz N, Temkin P, Jurado S, Lim BK, Heifets BD, Polepalli JS, Malenka RC. Chronic pain. Decreased motivation during chronic pain requires long-term depression in the nucleus accumbens. Science. 2014;345:535–542. doi: 10.1126/science.1253994.
    1. Su C, D'Amour J, Lee M, Lin HY, Manders T, Xu D, Eberle SE, Goffer Y, Zou AH, Rahman M, et al. Persistent pain alters AMPA receptor subunit levels in the nucleus accumbens. Mol Brain. 2015;8:46. doi: 10.1186/s13041-015-0140-z.
    1. Jones AF, Sheets PL. Sex-specific disruption of distinct mPFC inhibitory neurons in spared-nerve injury model of neuropathic pain. Cell Rep. 2020;31:107729. doi: 10.1016/j.celrep.2020.107729.
    1. Gadotti VM, Zhang Z, Huang J, Zamponi GW. Analgesic effects of optogenetic inhibition of basolateral amygdala inputs into the prefrontal cortex in nerve injured female mice. Mol Brain. 2019;12:105. doi: 10.1186/s13041-019-0529-1.
    1. Carr KD, Chau LS, CabezadeVaca S, Gustafson K, Stouffer M, Tukey DS, Restituito S, Ziff EB. AMPA receptor subunit GluR1 downstream of D-1 dopamine receptor stimulation in nucleus accumbens shell mediates increased drug reward magnitude in food-restricted rats. Neuroscience. 2010;165:1074–1086. doi: 10.1016/j.neuroscience.2009.11.015.
    1. Hargreaves K, Dubner R, Brown F, Flores C, Joris J. A new and sensitive method for measuring thermal nociception in cutaneous hyperalgesia. Pain. 1988;32:77–88. doi: 10.1016/0304-3959(88)90026-7.
    1. Tawfic QA, Faris AS, Kausalya R. The role of a low-dose ketamine-midazolam regimen in the management of severe painful crisis in patients with sickle cell disease. J Pain Symptom Manage. 2014;47:334–340. doi: 10.1016/j.jpainsymman.2013.03.012.
    1. Bourquin AF, Suveges M, Pertin M, Gilliard N, Sardy S, Davison AC, Spahn DR, Decosterd I. Assessment and analysis of mechanical allodynia-like behavior induced by spared nerve injury (SNI) in the mouse. Pain. 2006;122:14–16. doi: 10.1016/j.pain.2005.10.036.
    1. Chaplan SR, Bach FW, Pogrel JW, Chung JM, Yaksh TL. Quantitative assessment of tactile allodynia in the rat paw. J Neurosci Methods. 1994;53:55–63. doi: 10.1016/0165-0270(94)90144-9.
    1. Hao JX, Shi TJ, Xu IS, Kaupilla T, Xu XJ, Hökfelt T, Bartfai T, Wiesenfeld-Hallin Z. Intrathecal galanin alleviates allodynia-like behaviour in rats after partial peripheral nerve injury. Eur J Neurosci. 1999;11:427–432. doi: 10.1046/j.1460-9568.1999.00447.x.
    1. Jørum E, Warncke T, Stubhaug A. Cold allodynia and hyperalgesia in neuropathic pain: the effect of N-methyl-D-aspartate (NMDA) receptor antagonist ketamine–a double-blind, cross-over comparison with alfentanil and placebo. Pain. 2003;101:229–235. doi: 10.1016/S0304-3959(02)00122-7.

Source: PubMed

3
Sottoscrivi