Advances and Challenges of Liposome Assisted Drug Delivery

Lisa Sercombe, Tejaswi Veerati, Fatemeh Moheimani, Sherry Y Wu, Anil K Sood, Susan Hua, Lisa Sercombe, Tejaswi Veerati, Fatemeh Moheimani, Sherry Y Wu, Anil K Sood, Susan Hua

Abstract

The application of liposomes to assist drug delivery has already had a major impact on many biomedical areas. They have been shown to be beneficial for stabilizing therapeutic compounds, overcoming obstacles to cellular and tissue uptake, and improving biodistribution of compounds to target sites in vivo. This enables effective delivery of encapsulated compounds to target sites while minimizing systemic toxicity. Liposomes present as an attractive delivery system due to their flexible physicochemical and biophysical properties, which allow easy manipulation to address different delivery considerations. Despite considerable research in the last 50 years and the plethora of positive results in preclinical studies, the clinical translation of liposome assisted drug delivery platforms has progressed incrementally. In this review, we will discuss the advances in liposome assisted drug delivery, biological challenges that still remain, and current clinical and experimental use of liposomes for biomedical applications. The translational obstacles of liposomal technology will also be presented.

Keywords: accelerated blood clearance; biological challenges; complement activation–related pseudoallergy; drug delivery; lipid-based drug delivery system; liposomes; nanotechnology; translation.

Figures

Figure 1
Figure 1
Schematic representation of the different types of liposomal drug delivery systems. (A) Conventional liposome—Liposomes consist of a lipid bilayer that can be composed of cationic, anionic, or neutral (phospho)lipids and cholesterol, which encloses an aqueous core. Both the lipid bilayer and the aqueous space can incorporate hydrophobic or hydrophilic compounds, respectively. (B) PEGylated liposome—Liposome characteristics and behavior in vivo can be modified by addition of a hydrophilic polymer coating, polyethylene glycol (PEG), to the liposome surface to confer steric stabilization. (C) Ligand-targeted liposome—Liposomes can be used for specific targeting by attaching ligands (e.g., antibodies, peptides, and carbohydrates) to its surface or to the terminal end of the attached PEG chains. (D) Theranostic liposome—A single system consist of a nanoparticle, a targeting element, an imaging component, and a therapeutic component.

References

    1. Allen T. M. (1994). Long-circulating (sterically stabilized) liposomes for targeted drug delivery. Trends Pharmacol. Sci. 15, 215–220. 10.1016/0165-6147(94)90314-X
    1. Allen T. M., Cullis P. R. (2004). Drug delivery systems: entering the mainstream. Science 303, 1818–1822. 10.1126/science.1095833
    1. Allen T. M., Cullis P. R. (2013). Liposomal drug delivery systems: from concept to clinical applications. Adv. Drug Deliv. Rev. 65, 36–48. 10.1016/j.addr.2012.09.037
    1. Andresen T. L., Davidsen J., Begtrup M., Mouritsen O. G., Jørgensen K. (2004). Enzymatic release of antitumor ether lipids by specific phospholipase A2 activation of liposome-forming prodrugs. J. Med. Chem. 47, 1694–1703. 10.1021/jm031029r
    1. Antohe F., Lin L., Kao G. Y., Poznansky M. J., Allen T. M. (2004). Transendothelial movement of liposomes in vitro mediated by cancer cells, neutrophils or histamine. J. Liposome Res. 14, 1–25. 10.1081/LPR-120039660
    1. Antoni L., Nuding S., Wehkamp J., Stange E. F. (2014). Intestinal barrier in inflammatory bowel disease. World J. Gastroenterol. 20, 1165–1179. 10.3748/wjg.v20.i5.1165
    1. Awada A., Bondarenko I. N., Bonneterre J., Nowara E., Ferrero J. M., Bakshi A. V., et al. . (2014). A randomized controlled phase II trial of a novel composition of paclitaxel embedded into neutral and cationic lipids targeting tumor endothelial cells in advanced triple-negative breast cancer (TNBC). Ann. Oncol. 25, 824–831. 10.1093/annonc/mdu025
    1. Bendas G. (2001). Immunoliposomes: a promising approach to targeting cancer therapy. BioDrugs 15, 215–224. 10.2165/00063030-200115040-00002
    1. Bibi S., Lattmann E., Mohammed A. R., Perrie Y. (2012). Trigger release liposome systems: local and remote controlled delivery? J. Microencapsul. 29, 262–276. 10.3109/02652048.2011.646330
    1. Bozzuto G., Molinari A. (2015). Liposomes as nanomedical devices. Int. J. Nanomedicine 10, 975–999. 10.2147/IJN.S68861
    1. Campbell R. B., Fukumura D., Brown E. B., Mazzola L. M., Izumi Y., Jain R. K., et al. . (2002). Cationic charge determines the distribution of liposomes between the vascular and extravascular compartments of tumors. Cancer Res. 62, 6831–6836.
    1. Campbell R. B., Ying B., Kuesters G. M., Hemphill R. (2009). Fighting cancer: from the bench to bedside using second generation cationic liposomal therapeutics. J. Pharm. Sci. 98, 411–429. 10.1002/jps.21458
    1. Carlson M., Raab Y., Peterson C., Hällgren R., Venge P. (1999). Increased intraluminal release of eosinophil granule proteins EPO, ECP, EPX, and cytokines in ulcerative colitis and proctitis in segmental perfusion. Am. J. Gastroenterol. 94, 1876–1883. 10.1111/j.1572-0241.1999.01223.x
    1. Chandrasekar P. (2008). Amphotericin B lipid complex: treatment of invasive fungal infections in patients refractory to or intolerant of amphotericin B deoxycholate. Ther. Clin. Risk Manag. 4, 1285–1294.
    1. Chang H. I., Yeh M. K. (2012). Clinical development of liposome-based drugs: formulation, characterization, and therapeutic efficacy. Int. J. Nanomedicine 7, 49–60. 10.2147/IJN.S26766
    1. Chang T. C., Shiah H. S., Yang C. H., Yeh K. H., Cheng A. L., Shen B. N., et al. . (2015). Phase I study of nanoliposomal irinotecan (PEP02) in advanced solid tumor patients. Cancer Chemother. Pharmacol. 75, 579–586. 10.1007/s00280-014-2671-x
    1. Charron D. M., Chen J., Zheng G. (2015). Theranostic lipid nanoparticles for cancer medicine. Cancer Treat. Res. 166, 103–127. 10.1007/978-3-319-16555-4_5
    1. Chrai S. S., Murari R., Ahmad I. (2002). Liposomes (a review) part two: drug delivery systems. BioPharm 17, 40–43.
    1. Clancy J. P., Dupont L., Konstan M. W., Billings J., Fustik S., Goss C. H., et al. . (2013). Phase II studies of nebulised Arikace in CF patients with Pseudomonas aeruginosa infection. Thorax 68, 818–825. 10.1136/thoraxjnl-2012-202230
    1. Coco R., Plapied L., Pourcelle V., Jérôme C., Brayden D. J., Schneider Y. J., et al. . (2013). Drug delivery to inflamed colon by nanoparticles: comparison of different strategies. Int. J. Pharm. 440, 3–12. 10.1016/j.ijpharm.2012.07.017
    1. Cole J. T., Holland N. B. (2015). Multifunctional nanoparticles for use in theranostic applications. Drug Deliv. Transl. Res. 5, 295–309. 10.1007/s13346-015-0218-2
    1. Cullis P. R., Chonn A., Semple S. C. (1998). Interactions of liposomes and lipid-based carrier systems with blood proteins: relation to clearance behaviour in vivo. Adv. Drug Deliv. Rev. 32, 3–17.
    1. Dams E. T., Laverman P., Oyen W. J., Storm G., Scherphof G. L., van Der Meer J. W., et al. . (2000). Accelerated blood clearance and altered biodistribution of repeated injections of sterically stabilized liposomes. J. Pharmacol. Exp. Ther. 292, 1071–1079.
    1. Dark G. G., Calvert A. H., Grimshaw R., Poole C., Swenerton K., Kaye S., et al. . (2005). Randomized trial of two intravenous schedules of the topoisomerase I inhibitor liposomal lurtotecan in women with relapsed epithelial ovarian cancer: a trial of the national cancer institute of Canada clinical trials group. J. Clin. Oncol. 23, 1859–1866. 10.1200/JCO.2005.02.028
    1. Dempsey P. W., Allison M. E., Akkaraju S., Goodnow C. C., Fearon D. T. (1996). C3d of complement as a molecular adjuvant: bridging innate and acquired immunity. Science 271, 348–350. 10.1126/science.271.5247.348
    1. Deshpande P. P., Biswas S., Torchilin V. P. (2013). Current trends in the use of liposomes for tumor targeting. Nanomedicine (Lond). 8, 1509–1528. 10.2217/nnm.13.118
    1. Dicheva B. M., ten Hagen T. L., Li L., Schipper D., Seynhaeve A. L., van Rhoon G. C., et al. . (2013). Cationic thermosensitive liposomes: a novel dual targeted heat-triggered drug delivery approach for endothelial and tumor cells. Nano Lett. 13, 2324–2331. 10.1021/nl3014154
    1. Dicheva B. M., ten Hagen T. L., Schipper D., Seynhaeve A. L., van Rhoon G. C., Eggermont A. M., et al. . (2014). Targeted and heat-triggered doxorubicin delivery to tumors by dual targeted cationic thermosensitive liposomes. J. Control. Release 195, 37–48. 10.1016/j.jconrel.2014.07.058
    1. Ding B. S., Dziubla T., Shuvaev V. V., Muro S., Muzykantov V. R. (2006). Advanced drug delivery systems that target the vascular endothelium. Mol. Interv. 6, 98–112. 10.1124/mi.6.2.7
    1. Felgner P. L., Gadek T. R., Holm M., Roman R., Chan H. W., Wenz M., et al. . (1987). Lipofection: a highly efficient, lipid-mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. U.S.A. 84, 7413–7417. 10.1073/pnas.84.21.7413
    1. Ferrari M. (2005). Nanovector therapeutics. Curr. Opin. Chem. Biol. 9, 343–346. 10.1016/j.cbpa.2005.06.001
    1. Fetterly G. J., Grasela T. H., Sherman J. W., Dul J. L., Grahn A., Lecomte D., et al. . (2008). Pharmacokinetic/pharmacodynamic modeling and simulation of neutropenia during phase I development of liposome-entrapped paclitaxel. Clin. Cancer Res. 14, 5856–5863. 10.1158/1078-0432.CCR-08-1046
    1. Gabizon A. A., Barenholz Y., Bialer M. (1993). Prolongation of the circulation time of doxorubicin encapsulated in liposomes containing a polyethylene glycol-derivatized phospholipid: pharmacokinetic studies in rodents and dogs. Pharm. Res. 10, 703–708. 10.1023/A:1018907715905
    1. Gabizon A., Catane R., Uziely B., Kaufman B., Safra T., Cohen R., et al. . (1994). Prolonged circulation time and enhanced accumulation in malignant exudates of doxorubicin encapsulated in polyethylene-glycol coated liposomes. Cancer Res. 54, 987–992.
    1. Gabizon A., Chisin R., Amselem S., Druckmann S., Cohen R., Goren D., et al. . (1991). Pharmacokinetic and imaging studies in patients receiving a formulation of liposome-associated adriamycin. Br. J. Cancer 64, 1125–1132. 10.1038/bjc.1991.476
    1. Gabizon A., Dagan A., Goren D., Barenholz Y., Fuks Z. (1982). Liposomes as in vivo carriers of adriamycin: reduced cardiac uptake and preserved antitumor activity in mice. Cancer Res. 42, 4734–4739.
    1. Gabizon A., Horowitz A. T., Goren D., Tzemach D., Shmeeda H., Zalipsky S. (2003). In vivo fate of folate-targeted polyethylene-glycol liposomes in tumor-bearing mice. Clin. Cancer Res. 9, 6551–6559.
    1. Gabizon A., Tzemach D., Mak L., Bronstein M., Horowitz A. T. (2002). Dose dependency of pharmacokinetics and therapeutic efficacy of pegylated liposomal doxorubicin (DOXIL) in murine models. J. Drug Target. 10, 539–548. 10.1080/1061186021000072447
    1. Geng S., Yang B., Wang G., Qin G., Wada S., Wang J. Y. (2014). Two cholesterol derivative-based PEGylated liposomes as drug delivery system, study on pharmacokinetics and drug delivery to retina. Nanotechnology 25:275103. 10.1088/0957-4484/25/27/275103
    1. Giannella M., Ercolani G., Cristini F., Morelli M., Bartoletti M., Bertuzzo V., et al. . (2015). High-dose weekly liposomal amphotericin b antifungal prophylaxis in patients undergoing liver transplantation: a prospective phase II trial. Transplantation 99, 848–854. 10.1097/TP.0000000000000393
    1. Gross N., Ranjbar M., Evers C., Hua J., Martin G., Schulze B., et al. . (2013). Choroidal neovascularization reduced by targeted drug delivery with cationic liposome-encapsulated paclitaxel or targeted photodynamic therapy with verteporfin encapsulated in cationic liposomes. Mol. Vis. 19, 54–61.
    1. Guo X., Szoka F. C., Jr. (2003). Chemical approaches to triggerable lipid vesicles for drug and gene delivery. Acc. Chem. Res. 36, 335–341. 10.1021/ar9703241
    1. Han X. J., Wei Y. F., Wan Y. Y., Jiang L. P., Zhang J. F., Xin H. B. (2014). Development of a novel liposomal nanodelivery system for bioluminescence imaging and targeted drug delivery in ErbB2-overexpressing metastatic ovarian carcinoma. Int. J. Mol. Med. 34, 1225–1232. 10.3892/ijmm.2014.1922
    1. Hashizume H., Baluk P., Morikawa S., McLean J. W., Thurston G., Roberge S., et al. . (2000). Openings between defective endothelial cells explain tumor vessel leakiness. Am. J. Pathol. 156, 1363–1380. 10.1016/S0002-9440(10)65006-7
    1. Hua S. (2013). Targeting sites of inflammation: intercellular adhesion molecule-1 as a target for novel inflammatory therapies. Front. Pharmacol. 4:127. 10.3389/fphar.2013.00127
    1. Hua S., Cabot P. J. (2013). Targeted nanoparticles that mimic immune cells in pain control inducing analgesic and anti-inflammatory actions: a potential novel treatment of acute and chronic pain condition. Pain Physician. 16, E199–E216.
    1. Hua S., Marks E., Schneider J. J., Keely S. (2015). Advances in oral nano-delivery systems for colon targeted drug delivery in inflammatory bowel disease: selective targeting to diseased versus healthy tissue. Nanomedicine 11, 1117–1132. 10.1016/j.nano.2015.02.018
    1. Hua S., Wu S. Y. (2013). The use of lipid-based nanocarriers for targeted pain therapies. Front. Pharmacol. 4:143. 10.3389/fphar.2013.00143
    1. Immordino M. L., Dosio F., Cattel L. (2006). Stealth liposomes: review of the basic science, rationale, and clinical applications, existing and potential. Int. J. Nanomedicine 1, 297–315.
    1. Ishida T., Harada M., Wang X. Y., Ichihara M., Irimura K., Kiwada H. (2005). Accelerated blood clearance of PEGylated liposomes following preceding liposome injection: effects of lipid dose and PEG surface-density and chain length of the first-dose liposomes. J. Control. Release 105, 305–317. 10.1016/j.jconrel.2005.04.003
    1. Ishida T., Harashima H., Kiwada H. (2001a). Interactions of liposomes with cells in vitro and in vivo: opsonins and receptors. Curr. Drug Metab. 2, 397–409. 10.2174/1389200013338306
    1. Ishida T., Ichihara M., Wang X., Kiwada H. (2006a). Spleen plays an important role in the induction of accelerated blood clearance of PEGylated liposomes. J. Control. Release 115, 243–250. 10.1016/j.jconrel.2006.08.001
    1. Ishida T., Ichihara M., Wang X., Yamamoto K., Kimura J., Majima E., et al. . (2006b). Injection of PEGylated liposomes in rats elicits PEG-specific IgM, which is responsible for rapid elimination of a second dose of PEGylated liposomes. J. Control. Release 112, 15–25. 10.1016/j.jconrel.2006.01.005
    1. Ishida T., Kirchmeier M. J., Moase E. H., Zalipsky S., Allen T. M. (2001b). Targeted delivery and triggered release of liposomal doxorubicin enhances cytotoxicity against human B lymphoma cells. Biochim. Biophys. Acta 1515, 144–158. 10.1016/S0005-2736(01)00409-6
    1. Ishida T., Kiwada H. (2008). Accelerated blood clearance (ABC) phenomenon upon repeated injection of PEGylated liposomes. Int. J. Pharm. 354, 56–62. 10.1016/j.ijpharm.2007.11.005
    1. Ishida T., Masuda K., Ichikawa T., Ichihara M., Irimura K., Kiwada H. (2003). Accelerated clearance of a second injection of PEGylated liposomes in mice. Int. J. Pharm. 255, 167–174. 10.1016/S0378-5173(03)00085-1
    1. Jaafar-Maalej C., Elaissari A., Fessi H. (2012). Lipid-based carriers: manufacturing and applications for pulmonary route. Expert Opin. Drug Deliv. 9, 1111–1127. 10.1517/17425247.2012.702751
    1. Jahn F., Jordan K., Behlendorf T., Globig C., Schmoll H. J., Müller-Tidow C., et al. . (2015). Safety and efficacy of liposomal cytarabine in the treatment of neoplastic meningitis. Oncology 89, 137–142. 10.1159/000380913
    1. Kirpotin D. B., Drummond D. C., Shao Y., Shalaby M. R., Hong K., Nielsen U. B., et al. . (2006). Antibody targeting of long-circulating lipidic nanoparticles does not increase tumor localization but does increase internalization in animal models. Cancer Res. 66, 6732–6740. 10.1158/0008-5472.CAN-05-4199
    1. Kirpotin D., Park J. W., Hong K., Zalipsky S., Li W. L., Carter P., et al. . (1997). Sterically stabilized anti-HER2 immunoliposomes: design and targeting to human breast cancer cells in vitro. Biochem. Mosc. 36, 66–75. 10.1021/bi962148u
    1. Klimuk S. K., Semple S. C., Scherrer P., Hope M. J. (1999). Contact hypersensitivity: a simple model for the characterization of disease-site targeting by liposomes. Biochim. Biophys. Acta 1417, 191–201. 10.1016/S0005-2736(98)00261-2
    1. Koning G. A., Storm G. (2003). Targeted drug delivery systems for the intracellular delivery of macromolecular drugs. Drug Discov. Today 8, 482–483. 10.1016/S1359-6446(03)02699-0
    1. Kono K. (2001). Thermosensitive polymer-modified liposomes. Adv. Drug Deliv. Rev. 53, 307–319. 10.1016/S0169-409X(01)00204-6
    1. Kraft J. C., Freeling J. P., Wang Z., Ho R. J. (2014). Emerging research and clinical development trends of liposome and lipid nanoparticle drug delivery systems. J. Pharm. Sci. 103, 29–52. 10.1002/jps.23773
    1. Kunstfeld R., Wickenhauser G., Michaelis U., Teifel M., Umek W., Naujoks K., et al. . (2003). Paclitaxel encapsulated in cationic liposomes diminishes tumor angiogenesis and melanoma growth in a “humanized” SCID mouse model. J. Invest. Dermatol. 120, 476–482. 10.1046/j.1523-1747.2003.12057.x
    1. Larsson J. M., Karlsson H., Sjövall H., Hansson G. C. (2009). A complex, but uniform O-glycosylation of the human MUC2 mucin from colonic biopsies analyzed by nanoLC/MSn. Glycobiology 19, 756–766. 10.1093/glycob/cwp048
    1. Laverman P., Boerman O. C., Oyen W. J., Dams E. T., Storm G., Corstens F. H. (1999). Liposomes for scintigraphic detection of infection and inflammation. Adv. Drug Deliv. Rev. 37, 225–235.
    1. Laverman P., Carstens M. G., Storm G., Moghimi S. M. (2001). Recognition and clearance of methoxypoly(ethyleneglycol)2000-grafted liposomes by macrophages with enhanced phagocytic capacity. Implications in experimental and clinical oncology. Biochim. Biophys. Acta 1526, 227–229. 10.1016/S0304-4165(01)00142-8
    1. Löhr J. M., Haas S. L., Bechstein W. O., Bodoky G., Cwiertka K., Fischbach W., et al. . (2012). Cationic liposomal paclitaxel plus gemcitabine or gemcitabine alone in patients with advanced pancreatic cancer: a randomized controlled phase II trial. Ann. Oncol. 23, 1214–1222. 10.1093/annonc/mdr379
    1. Lv H., Zhang S., Wang B., Cui S., Yan J. (2006). Toxicity of cationic lipids and cationic polymers in gene delivery. J. Control. Release 114, 100–109. 10.1016/j.jconrel.2006.04.014
    1. Lyass O., Uziely B., Ben-Yosef R., Tzemach D., Heshing N. I., Lotem M., et al. . (2000). Correlation of toxicity with pharmacokinetics of pegylated liposomal doxorubicin (Doxil) in metastatic breast carcinoma. Cancer 89, 1037–1047. 10.1002/1097-0142(20000901)89:5<1037::AID-CNCR13>;2-Z
    1. Mangala L. S., Han H. D., Lopez-Berestein G., Sood A. K. (2009). Liposomal siRNA for ovarian cancer. Methods Mol. Biol. 555, 29–42. 10.1007/978-1-60327-295-7_3
    1. Maruyama K. (2002). PEG-immunoliposome. Biosci. Rep. 22, 251–266. 10.1023/A:1020138622686
    1. Metselaar J. M., Storm G. (2005). Liposomes in the treatment of inflammatory disorders. Expert Opin. Drug Deliv. 465–76 10.1517/17425247.2.3.465
    1. Moghimi S. M., Hamad I., Andresen T. L., Jørgensen K., Szebeni J. (2006). Methylation of the phosphate oxygen moiety of phospholipid-methoxy(polyethylene glycol) conjugate prevents PEGylated liposome-mediated complement activation and anaphylatoxin production. FASEB J. 20, 2591–2593. 10.1096/fj.06-6186fje
    1. Moghimi S. M., Hunter A. C. (2001). Capture of stealth nanoparticles by the body's defences. Crit. Rev. Ther. Drug Carrier Syst. 18, 527–550. 10.1615/CritRevTherDrugCarrierSyst.v18.i6.30
    1. Moghimi S. M., Szebeni J. (2003). Stealth liposomes and long circulating nanoparticles: critical issues in pharmacokinetics, opsonization and protein-binding properties. Prog. Lipid Res. 42, 463–478. 10.1016/S0163-7827(03)00033-X
    1. Monteiro N., Martins A., Reis R. L., Neves N. M. (2014). Liposomes in tissue engineering and regenerative medicine. J. R. Soc. Interface 11:20140459. 10.1098/rsif.2014.0459
    1. Murday J. S., Siegel R. W., Stein J., Wright J. F. (2009). Translational nanomedicine: status assessment and opportunities. Nanomedicine 5, 251–273. 10.1016/j.nano.2009.06.001
    1. Narang A. S., Chang R. K., Hussain M. A. (2013). Pharmaceutical development and regulatory considerations for nanoparticles and nanoparticulate drug delivery systems. J. Pharm. Sci. 102, 3867–3882. 10.1002/jps.23691
    1. Needham D., Anyarambhatla G., Kong G., Dewhirst M. W. (2000). A new temperature-sensitive liposome for use with mild hyperthermia: characterization and testing in a human tumor xenograft model. Cancer Res. 60, 1197–1201.
    1. Nehoff H., Parayath N. N., Domanovitch L., Taurin S., Greish K. (2014). Nanomedicine for drug targeting: strategies beyond the enhanced permeability and retention effect. Int. J. Nanomedicine 9, 2539–2555. 10.2147/IJN.S47129
    1. Ning Y. M., He K., Dagher R., Sridhara R., Farrell A. T., Justice R., et al. . (2007). Liposomal doxorubicin in combination with bortezomib for relapsed or refractory multiple myeloma. Oncology (Williston Park) 21, 1503–1508. discussion: 11, 13, 16 passim.
    1. Noble C. O., Kirpotin D. B., Hayes M. E., Mamot C., Hong K., Park J. W., et al. . (2004). Development of ligand-targeted liposomes for cancer therapy. Expert Opin. Ther. Targets 8, 335–353. 10.1517/14728222.8.4.335
    1. Northfelt D. W., Martin F. J., Working P., Volberding P. A., Russell J., Newman M., et al. . (1996). Doxorubicin encapsulated in liposomes containing surface-bound polyethylene glycol: pharmacokinetics, tumor localization, and safety in patients with AIDS-related Kaposi's sarcoma. J. Clin. Pharmacol. 36, 55–63. 10.1002/j.1552-4604.1996.tb04152.x
    1. Offner F., Krcmery V., Boogaerts M., Doyen C., Engelhard D., Ribaud P., et al. . (2004). Liposomal nystatin in patients with invasive aspergillosis refractory to or intolerant of amphotericin B. Antimicrob. Agents Chemother. 48, 4808–4812. 10.1128/AAC.48.12.4808-4812.2004
    1. Oku N., Namba Y. (1994). Long-circulating liposomes. Crit. Rev. Ther. Drug Carrier Syst. 11, 231–270.
    1. Olivier K. N., Shaw P. A., Glaser T. S., Bhattacharyya D., Fleshner M., Brewer C. C., et al. . (2014). Inhaled amikacin for treatment of refractory pulmonary nontuberculous mycobacterial disease. Ann. Am. Thorac. Soc. 11, 30–35. 10.1513/AnnalsATS.201307-231OC
    1. Ozpolat B., Lopez-Berestein G., Adamson P., Fu C. J., Williams A. H. (2003). Pharmacokinetics of intravenously administered liposomal all-trans-retinoic acid (ATRA) and orally administered ATRA in healthy volunteers. J. Pharm. Pharm. Sci. 6, 292–301.
    1. Park J. W., Hong K., Kirpotin D. B., Colbern G., Shalaby R., Baselga J., et al. . (2002). Anti-HER2 immunoliposomes: enhanced efficacy attributable to targeted delivery. Clin. Cancer Res. 8, 1172–1181.
    1. Peterson C. G., Eklund E., Taha Y., Raab Y., Carlson M. (2002). A new method for the quantification of neutrophil and eosinophil cationic proteins in feces: establishment of normal levels and clinical application in patients with inflammatory bowel disease. Am. J. Gastroenterol. 97, 1755–1762. 10.1111/j.1572-0241.2002.05837.x
    1. Ponce A. M., Vujaskovic Z., Yuan F., Needham D., Dewhirst M. W. (2006). Hyperthermia mediated liposomal drug delivery. Int. J. Hyperthermia 22, 205–213. 10.1080/02656730600582956
    1. Poste G., Papahadjopoulos D., Vail W. J. (1976). Lipid vesicles as carriers for introducing biologically active materials into cells. Methods Cell Biol. 14, 33–71. 10.1016/S0091-679X(08)60468-9
    1. Puri A., Loomis K., Smith B., Lee J. H., Yavlovich A., Heldman E., et al. . (2009). Lipid-based nanoparticles as pharmaceutical drug carriers: from concepts to clinic. Crit. Rev. Ther. Drug Carrier Syst. 26, 523–580. 10.1615/CritRevTherDrugCarrierSyst.v26.i6.10
    1. Rahman A. M., Yusuf S. W., Ewer M. S. (2007). Anthracycline-induced cardiotoxicity and the cardiac-sparing effect of liposomal formulation. Int. J. Nanomedicine 2, 567–583.
    1. Ran S., Downes A., Thorpe P. E. (2002). Increased exposure of anionic phospholipids on the surface of tumor blood vessels. Cancer Res. 62, 6132–6140.
    1. Riehemann K., Schneider S. W., Luger T. A., Godin B., Ferrari M., Fuchs H. (2009). Nanomedicine–challenge and perspectives. Angew. Chem. Int. Ed Engl. 48, 872–897. 10.1002/anie.200802585
    1. Rip J., Chen L., Hartman R., van den Heuvel A., Reijerkerk A., van Kregten J., et al. . (2014). Glutathione PEGylated liposomes: pharmacokinetics and delivery of cargo across the blood-brain barrier in rats. J. Drug Target. 22, 460–467. 10.3109/1061186X.2014.888070
    1. Sapra P., Allen T. M. (2003). Ligand-targeted liposomal anticancer drugs. Prog. Lipid Res. 42, 439–462. 10.1016/S0163-7827(03)00032-8
    1. Sawant R. R., Torchilin V. P. (2012). Challenges in development of targeted liposomal therapeutics. AAPS J. 14, 303–315. 10.1208/s12248-012-9330-0
    1. Schmitt C. J., Dietrich S., Ho A. D., Witzens-Harig M. (2012). Replacement of conventional doxorubicin by pegylated liposomal doxorubicin is a safe and effective alternative in the treatment of non-Hodgkin's lymphoma patients with cardiac risk factors. Ann. Hematol. 91, 391–397. 10.1007/s00277-011-1308-y
    1. Seiden M. V., Muggia F., Astrow A., Matulonis U., Campos S., Roche M., et al. . (2004). A phase II study of liposomal lurtotecan (OSI-211) in patients with topotecan resistant ovarian cancer. Gynecol. Oncol. 93, 229–232. 10.1016/j.ygyno.2003.12.037
    1. Senior J. H. (1987). Fate and behavior of liposomes in vivo: a review of controlling factors. Crit. Rev. Ther. Drug Carrier Syst. 3, 123–193.
    1. Storm G., ten Kate M. T., Working P. K., Bakker-Woudenberg I. A. (1998). Doxorubicin entrapped in sterically stabilized liposomes: effects on bacterial blood clearance capacity of the mononuclear phagocyte system. Clin. Cancer Res. 4, 111–115.
    1. Suenaga M., Mizunuma N., Matsusaka S., Shinozaki E., Ozaka M., Ogura M., et al. . (2015). Phase II study of reintroduction of oxaliplatin for advanced colorectal cancer in patients previously treated with oxaliplatin and irinotecan: RE-OPEN study. Drug Des. Devel. Ther. 9, 3099–3108. 10.2147/DDDT.S85567
    1. Szebeni J. (2005). Complement activation-related pseudoallergy: a new class of drug-induced acute immune toxicity. Toxicology 216, 106–121. 10.1016/j.tox.2005.07.023
    1. Szebeni J., Alving C. R., Rosivall L., Bünger R., Baranyi L., Bedöcs P., et al. . (2007). Animal models of complement-mediated hypersensitivity reactions to liposomes and other lipid-based nanoparticles. J. Liposome Res. 17, 107–117. 10.1080/08982100701375118
    1. Szebeni J., Barenholz Y. (2009). Adverse immune effects of liposomes: complement activation, immunogenicity and immune suppression, in Harnessing Biomaterials for Nanomedicine: Preparation, Toxicity and Applications, ed P. S. Publishing (Singapore: Pan Stanford Publishing; ), 1–19.
    1. Szebeni J., Fontana J. L., Wassef N. M., Mongan P. D., Morse D. S., Dobbins D. E., et al. . (1999). Hemodynamic changes induced by liposomes and liposome-encapsulated hemoglobin in pigs: a model for pseudoallergic cardiopulmonary reactions to liposomes. Role of complement and inhibition by soluble CR1 and anti-C5a antibody. Circulation 99, 2302–2309. 10.1161/01.CIR.99.17.2302
    1. Szebeni J., Moghimi S. M. (2009). Liposome triggering of innate immune responses: a perspective on benefits and adverse reactions. J. Liposome Res. 19, 85–90. 10.1080/08982100902792855
    1. Teli M. K., Mutalik S., Rajanikant G. K. (2010). Nanotechnology and nanomedicine: going small means aiming big. Curr. Pharm. Des. 16, 1882–1892. 10.2174/138161210791208992
    1. Tinkle S., McNeil S. E., Mühlebach S., Bawa R., Borchard G., Barenholz Y. C., et al. . (2014). Nanomedicines: addressing the scientific and regulatory gap. Ann. N.Y. Acad. Sci. 1313, 35–56. 10.1111/nyas.12403
    1. Tirosh B., Khatib N., Barenholz Y., Nissan A., Rubinstein A. (2009). Transferrin as a luminal target for negatively charged liposomes in the inflamed colonic mucosa. Mol. Pharm. 6, 1083–1091. 10.1021/mp9000926
    1. Torchilin V. P. (1994). Immunoliposomes and PEGylated immunoliposomes: possible use for targeted delivery of imaging agents. Immunomethods 4, 244–258. 10.1006/immu.1994.1027
    1. Torchilin V. P., Klibanov A. L., Huang L., O'Donnell S., Nossiff N. D., Khaw B. A. (1992). Targeted accumulation of polyethylene glycol-coated immunoliposomes in infarcted rabbit myocardium. FASEB J. 6, 2716–2719.
    1. Ulrich A. S. (2002). Biophysical aspects of using liposomes as delivery vehicles. Biosci. Rep. 22, 129–150. 10.1023/A:1020178304031
    1. Vingerhoeds M. H., Storm G., Crommelin D. J. (1994). Immunoliposomes in vivo. Immunomethods 4, 259–272. 10.1006/immu.1994.1028
    1. Wang X., Song Y., Su Y., Tian Q., Li B., Quan J., et al. (2015). Are PEGylated liposomes better than conventional liposomes? A special case for vincristine. Drug Deliv. 29, 1–9. 10.3109/10717544.2015.1027015
    1. Webb M. S., Saxon D., Wong F. M., Lim H. J., Wang Z., Bally M. B., et al. . (1998). Comparison of different hydrophobic anchors conjugated to poly(ethylene glycol): effects on the pharmacokinetics of liposomal vincristine. Biomembranes 1372, 272–282. 10.1016/S0005-2736(98)00077-7
    1. Wetzler M., Thomas D. A., Wang E. S., Shepard R., Ford L. A., Heffner T. L., et al. . (2013). Phase I/II trial of nanomolecular liposomal annamycin in adult patients with relapsed/refractory acute lymphoblastic leukemia. Clin. Lymphoma Myeloma Leuk. 13, 430–434. 10.1016/j.clml.2013.03.015
    1. Willis M., Forssen E. (1998). Ligand-targeted liposomes. Adv. Drug Deliv. Rev. 29, 249–271. 10.1016/S0169-409X(97)00083-5
    1. Wu J., Lee A., Lu Y., Lee R. J. (2007). Vascular targeting of doxorubicin using cationic liposomes. Int. J. Pharm. 337, 329–335. 10.1016/j.ijpharm.2007.01.003
    1. Yarmolenko P. S., Zhao Y., Landon C., Spasojevic I., Yuan F., Needham D., et al. . (2010). Comparative effects of thermosensitive doxorubicin-containing liposomes and hyperthermia in human and murine tumours. Int. J. Hyperthermia 26, 485–498. 10.3109/02656731003789284
    1. Zamboni W. C., Ramalingam S., Friedland D. M., Edwards R. P., Stoller R. G., Strychor S., et al. . (2009). Phase I and pharmacokinetic study of pegylated liposomal CKD-602 in patients with advanced malignancies. Clin. Cancer Res. 15, 1466–1472. 10.1158/1078-0432.CCR-08-1405
    1. Zhang H., Wang G., Yang H. (2011). Drug delivery systems for differential release in combination therapy. Expert Opin. Drug Deliv. 8, 171–190. 10.1517/17425247.2011.547470
    1. Zhang J. A., Anyarambhatla G., Ma L., Ugwu S., Xuan T., Sardone T., et al. . (2005). Development and characterization of a novel Cremophor EL free liposome-based paclitaxel (LEP-ETU) formulation. Eur. J. Pharm. Biopharm. 59, 177–187. 10.1016/j.ejpb.2004.06.009
    1. Zhang J. A., Xuan T., Parmar M., Ma L., Ugwu S., Ali S., et al. . (2004). Development and characterization of a novel liposome-based formulation of SN-38. Int. J. Pharm. 270, 93–107. 10.1016/j.ijpharm.2003.10.015
    1. Zhang L., Gu F. X., Chan J. M., Wang A. Z., Langer R. S., Farokhzad O. C. (2008). Nanoparticles in medicine: therapeutic applications and developments. Clin. Pharmacol. Ther. 83, 761–769. 10.1038/sj.clpt.6100400
    1. Zou Y., Ling Y. H., Van N. T., Priebe W., Perez-Soler R. (1994). Antitumor activity of free and liposome-entrapped annamycin, a lipophilic anthracycline antibiotic with non-cross-resistance properties. Cancer Res. 54, 1479–1484.

Source: PubMed

3
Sottoscrivi