Role of HMGB1 in Vitiligo: Current Perceptions and Future Perspectives

Guangmin Wei, Yinghao Pan, Jingying Wang, Xia Xiong, Yuanmin He, Jixiang Xu, Guangmin Wei, Yinghao Pan, Jingying Wang, Xia Xiong, Yuanmin He, Jixiang Xu

Abstract

Vitiligo is a chronic depigmenting disorder of the skin and mucosa caused by the destruction of epidermal melanocytes. Although the exact mechanism has not been elucidated, studies have shown that oxidative stress plays an important role in the pathogenesis of vitiligo. High mobility group box protein B1 (HMGB1) is a major nonhistone protein and an extracellular proinflammatory or chemotactic molecule that is actively secreted or passively released by necrotic cells. Recent data showed that HMGB1 is overexpressed in both blood and lesional specimens from vitiligo patients. Moreover, oxidative stress triggers the release of HMGB1 from keratinocytes and melanocytes, indicating that HMGB1 may participate in the pathological process of vitiligo. Overall, this review mainly focuses on the role of HMGB1 in the potential mechanisms underlying vitiligo depigmentation under oxidative stress. In this review, we hope to provide new insights into vitiligo pathogenesis and treatment strategies.

Keywords: HMGB1; melanocytes; oxidative stress; vitiligo.

Conflict of interest statement

The authors report no conflicts of interest in this work.

© 2022 Wei et al.

Figures

Figure 1
Figure 1
The possible pathogenic function of HMGB1 in the development of vitiligo associated with oxidative stress.

References

    1. Kruger C, Schallreuter KU. A review of the worldwide prevalence of vitiligo in children/adolescents and adults. Int J Dermatol. 2012;51(10):1206–1212. doi:10.1111/j.1365-4632.2011.05377.x
    1. Hamidizadeh N, Ranjbar S, Ghanizadeh A, Parvizi MM, Jafari P, Handjani F. Evaluating prevalence of depression, anxiety and hopelessness in patients with vitiligo on an Iranian population. Health Qual Life Outcomes. 2020;18(1):20. doi:10.1186/s12955-020-1278-7
    1. Bergqvist C, Ezzedine K. Vitiligo: a review. Dermatology. 2020;236(6):571–592. doi:10.1159/000506103
    1. Lotti T, Gianfaldoni S, Valle Y, Rovesti M, Feliciano C, Satolli F. Controversial issues in vitiligo patients: a review of old and recent treatments. Dermatol Ther. 2019;32(1):e12745. doi:10.1111/dth.12745
    1. Agalave N, Svensson C. Extracellular high-mobility group box 1 protein (HMGB1) as a mediator of persistent pain. Mol Med. 2015;20:569–578. doi:10.2119/molmed.2014.00176
    1. Kim J, Lee E, Seo J, Oh S. Impact of high-mobility group box 1 on melanocytic survival and its involvement in the pathogenesis of vitiligo. Br J Dermatol. 2017;176(6):1558–1568. doi:10.1111/bjd.15151
    1. Marrot L. Pollution and sun exposure: a deleterious synergy. mechanisms and opportunities for skin protection. Curr Med Chem. 2018;25(40):5469–5486. doi:10.2174/0929867324666170918123907
    1. Denat L, Kadekaro A, Marrot L, Leachman S, Abdel-Malek Z. Melanocytes as instigators and victims of oxidative stress. J Invest Dermatol. 2014;134(6):1512–1518. doi:10.1038/jid.2014.65
    1. Mitra S, De Sarkar S, Pradhan A, et al. Levels of oxidative damage and proinflammatory cytokines are enhanced in patients with active vitiligo. Free Radic Res. 2017;51:986–994. doi:10.1080/10715762.2017.1402303
    1. Guerra L, Dellambra E, Brescia S, Raskovic D. Vitiligo: pathogenetic hypotheses and targets for current therapies. Curr Drug Metab. 2010;11(5):451–467. doi:10.2174/138920010791526105
    1. Ma J, Li S, Zhu L, et al. Baicalein protects human vitiligo melanocytes from oxidative stress through activation of NF-E2-related factor2 (Nrf2) signaling pathway. Free Radic Biol Med. 2018;129:492–503. doi:10.1016/j.freeradbiomed.2018.10.421
    1. Qiao Z, Wang X, Xiang L, Zhang C. Dysfunction of autophagy: a possible mechanism involved in the pathogenesis of vitiligo by breaking the redox balance of melanocytes. Oxid Med Cell Longev. 2016;2016:3401570. doi:10.1155/2016/3401570
    1. Wang Q, Huang L, Yue J. Oxidative stress activates the TRPM2-Ca-CaMKII-ROS signaling loop to induce cell death in cancer cells. Biochim Biophys Acta Mol Cell Res. 2017;1864(6):957–967. doi:10.1016/j.bbamcr.2016.12.014
    1. Dell’ Anna M, Ottaviani M, Bellei B, et al. Membrane lipid defects are responsible for the generation of reactive oxygen species in peripheral blood mononuclear cells from vitiligo patients. J Cell Physiol. 2010;223(1):187–193. doi:10.1002/jcp.22027
    1. Sahoo A, Lee B, Boniface K, et al. MicroRNA-211 regulates oxidative phosphorylation and energy metabolism in human vitiligo. J Invest Dermatol. 2017;137(9):1965–1974. doi:10.1016/j.jid.2017.04.025
    1. Park K, Lee S, Shin K, Uchida Y. Insights into the role of endoplasmic reticulum stress in skin function and associated diseases. FEBS J. 2019;286(2):413–425. doi:10.1111/febs.14739
    1. Chen J, Zhuang T, Chen J, et al. Homocysteine induces melanocytes apoptosis via PERK-eIF2α-CHOP pathway in vitiligo. Clin Sci. 2020;134(10):1127–1141. doi:10.1042/CS20200218
    1. Li S, Zhu G, Yang Y, et al. Oxidative stress drives CD8 T-cell skin trafficking in patients with vitiligo through CXCL16 upregulation by activating the unfolded protein response in keratinocytes. J Allergy Clin Immunol. 2017;140(1):177–189.e9. doi:10.1016/j.jaci.2016.10.013
    1. Mosenson J, Eby J, Hernandez C, Le Poole I. A central role for inducible heat-shock protein 70 in autoimmune vitiligo. Exp Dermatol. 2013;22(9):566–569. doi:10.1111/exd.12183
    1. Zhang Y, Liu L, Jin L, et al. Oxidative stress-induced calreticulin expression and translocation: new insights into the destruction of melanocytes. J Invest Dermatol. 2014;134(1):183–191. doi:10.1038/jid.2013.268
    1. Sessa L, Bianchi M. The evolution of High Mobility Group Box (HMGB) chromatin proteins in multicellular animals. Gene. 2007;387:133–140. doi:10.1016/j.gene.2006.08.034
    1. Yang H, Wang H, Andersson U. Targeting inflammation driven by HMGB1. Front Immunol. 2020;11:484. doi:10.3389/fimmu.2020.00484
    1. Zhao Z, Hu Z, Zeng R, Yao Y. HMGB1 in kidney diseases. Life Sci. 2020;259:118203. doi:10.1016/j.lfs.2020.118203
    1. Zhang W, Guo S, Li B, et al. Proinflammatory effect of high-mobility group protein B1 on keratinocytes: an autocrine mechanism underlying psoriasis development. J Pathol. 2017;241(3):392–404. doi:10.1002/path.4848
    1. Wang Y, Zhang Y, Peng G, Han X. Glycyrrhizin ameliorates atopic dermatitis-like symptoms through inhibition of HMGB1. Int Immunopharmacol. 2018;60:9–17. doi:10.1016/j.intimp.2018.04.029
    1. de Carvalho G, Hirata F, Domingues R, et al. Up-regulation of HMGB1 and TLR4 in skin lesions of lichen planus. Arch Dermatol Res. 2018;310(6):523–528. doi:10.1007/s00403-018-1837-5
    1. Senda N, Miyagaki T, Kamijo H, et al. Increased HMGB1 levels in lesional skin and sera in patients with cutaneous T-cell lymphoma. Eur J Dermatol. 2018;28(5):621–627. doi:10.1684/ejd.2018.3400
    1. Wang J, Fu L, Yang H, Cao K, Sun Q, Chen T. The anti-inflammatory effects of HMGB1 blockades in a mouse model of cutaneous vasculitis. Front Immunol. 2020;11:2032. doi:10.3389/fimmu.2020.02032
    1. Abdulahad D, Westra J, Limburg P, Kallenberg C, Bijl M. HMGB1 in systemic lupus Erythematosus: its role in cutaneous lesions development. Autoimmun Rev. 2010;9(10):661–665. doi:10.1016/j.autrev.2010.05.015
    1. Chen T, Guo Z, Wang W, Qin S, Cao N, Li M. Increased serum HMGB1 levels in patients with Henoch-Schönlein purpura. Exp Dermatol. 2014;23(6):419–423. doi:10.1111/exd.12422
    1. Yoshizaki A, Komura K, Iwata Y, et al. Clinical significance of serum HMGB-1 and sRAGE levels in systemic sclerosis: association with disease severity. J Clin Immunol. 2009;29(2):180–189. doi:10.1007/s10875-008-9252-x
    1. Cui T, Zhang W, Li S, et al. Oxidative stress-induced HMGB1 release from melanocytes: a paracrine mechanism underlying the cutaneous inflammation in vitiligo. J Invest Dermatol. 2019;139(10):2174–2184.e4. doi:10.1016/j.jid.2019.03.1148
    1. Mou K, Liu W, Miao Y, Cao F, Li P. HMGB1 deficiency reduces HO-induced oxidative damage in human melanocytes via the Nrf2 pathway. J Cell Mol Med. 2018;22(12):6148–6156. doi:10.1111/jcmm.13895
    1. He Y, Li S, Zhang W, et al. Dysregulated autophagy increased melanocyte sensitivity to HO-induced oxidative stress in vitiligo. Sci Rep. 2017;7:42394. doi:10.1038/srep42394
    1. Qiao Z, Xu Z, Xiao Q, et al. Dysfunction of ATG7-dependent autophagy dysregulates the antioxidant response and contributes to oxidative stress-induced biological impairments in human epidermal melanocytes. Cell Death Discov. 2020;6:31. doi:10.1038/s41420-020-0266-3
    1. Yu Y, Tang D, Kang R. Oxidative stress-mediated HMGB1 biology. Front Physiol. 2015;6:93. doi:10.3389/fphys.2015.00093
    1. Khambu B, Huda N, Chen X, et al. HMGB1 promotes ductular reaction and tumorigenesis in autophagy-deficient livers. J Clin Invest. 2019;129(5):2163. doi:10.1172/JCI129234
    1. Yang H, Ni H, Ding W, Li S, Zhu G, Yang Y. Emerging players in autophagy deficiency-induced liver injury and tumorigenesis. Gene Expr. 2019;19(3):229–234. doi:10.3727/105221619X15486875608177
    1. Zhang L, Li J, Ma J, et al. The relevance of Nrf2 pathway and autophagy in pancreatic cancer cells upon stimulation of reactive oxygen species. Oxid Med Cell Longev. 2016;2016:3897250.
    1. Jain A, Lamark T, Sjøttem E, et al. p62/SQSTM1 is a target gene for transcription factor NRF2 and creates a positive feedback loop by inducing antioxidant response element-driven gene transcription. J Biol Chem. 2010;285(29):22576–22591. doi:10.1074/jbc.M110.118976
    1. Kang R, Zeh H, Lotze M, Tang D, Beclin T. 1 network regulates autophagy and apoptosis. Cell Death Differ. 2011;18(4):571–580. doi:10.1038/cdd.2010.191
    1. Zhou J, An X, Dong J, et al. IL-17 induces cellular stress microenvironment of melanocytes to promote autophagic cell apoptosis in vitiligo. FASEB J. 2018;32(9):4899–4916. doi:10.1096/fj.201701242RR
    1. Wang X, Sun R, Wei H, Tian Z. High-mobility group box 1 (HMGB1)-Toll-like receptor (TLR) 4-interleukin (IL)-23-IL-17A axis in drug-induced damage-associated lethal hepatitis: interaction of γδ T cells with macrophages. Hepatology. 2013;57(1):373–384. doi:10.1002/hep.25982
    1. Hu X, Zhang K, Chen Z, Jiang H, Xu W. The HMGB1‑IL‑17A axis contributes to hypoxia/reoxygenation injury via regulation of cardiomyocyte apoptosis and autophagy. Mol Med Rep. 2018;17(1):336–341. doi:10.3892/mmr.2017.7839
    1. Jadeja S, Mayatra J, Vaishnav J, Shukla N, Begum R, Concise A. Review on the role of endoplasmic reticulum stress in the development of autoimmunity in vitiligo pathogenesis. Front Immunol. 2020;11:624566. doi:10.3389/fimmu.2020.624566
    1. Shoab Mansuri M, Singh M. Could ER stress be a major link between oxidative stress and autoimmunity in vitiligo? J Pigment Disord. 2014;01(03). doi:10.4172/2376-0427.1000123
    1. Zhu X, Yao F, Yao Y, Dong N, Yu Y, Sheng Z. Endoplasmic reticulum stress and its regulator XBP-1 contributes to dendritic cell maturation and activation induced by high mobility group box-1 protein. Int J Biochem Cell Biol. 2012;44(7):1097–1105. doi:10.1016/j.biocel.2012.03.018
    1. Ren Y, Yang S, Xu S, et al. Genetic variation of promoter sequence modulates XBP1 expression and genetic risk for vitiligo. PLoS Genet. 2009;5(6):e1000523. doi:10.1371/journal.pgen.1000523
    1. Toosi S, Orlow S, Manga P. Vitiligo-inducing phenols activate the unfolded protein response in melanocytes resulting in upregulation of IL6 and IL8. J Invest Dermatol. 2012;132(11):2601–2609. doi:10.1038/jid.2012.181
    1. Jadeja S, Vaishnav J, Bharti A, Begum R. Elevated X-box binding protein1 splicing and interleukin-17A expression are associated with active generalized vitiligo in Gujarat population. Front Immunol. 2021;12:801724. doi:10.3389/fimmu.2021.801724
    1. Huang Q, Yang Z, Zhou J, Luo Y. HMGB1 induces endothelial progenitor cells apoptosis via RAGE-dependent PERK/eIF2α pathway. Mol Cell Biochem. 2017;431:67–74. doi:10.1007/s11010-017-2976-2
    1. Angelopoulou E, Paudel Y, Piperi C. Exploring the role of high-mobility group box 1 (HMGB1) protein in the pathogenesis of Huntington’s disease. J Mol Med. 2020;98(3):325–334.
    1. Wu H, Chen Z, Chen J, et al. High Mobility Group B-1 (HMGB-1) promotes apoptosis of macrophage-derived foam cells by inducing endoplasmic reticulum stress. Cell Physiol Biochem. 2018;48(3):1019–1029. doi:10.1159/000491970
    1. Dell’ Anna M, Ottaviani M, Kovacs D, et al. Energetic mitochondrial failing in vitiligo and possible rescue by cardiolipin. Sci Rep. 2017;7(1):13663. doi:10.1038/s41598-017-13961-5
    1. Li J, Huang Q, Long X, et al. Mitochondrial elongation-mediated glucose metabolism reprogramming is essential for tumour cell survival during energy stress. Oncogene. 2017;36(34):4901–4912. doi:10.1038/onc.2017.98
    1. Yang W, Nagasawa K, Münch C, et al. Mitochondrial sirtuin network reveals dynamic SIRT3-dependent deacetylation in response to membrane depolarization. Cell. 2016;167(4):985–1000.e21. doi:10.1016/j.cell.2016.10.016
    1. Song Y, Li S, Geng W, et al. Sirtuin 3-dependent mitochondrial redox homeostasis protects against AGEs-induced intervertebral disc degeneration. Redox Biol. 2018;19:339–353. doi:10.1016/j.redox.2018.09.006
    1. Yi X, Guo W, Shi Q, et al. SIRT3-dependent mitochondrial dynamics remodeling contributes to oxidative stress-induced melanocyte degeneration in vitiligo. Theranostics. 2019;9(6):1614–1633. doi:10.7150/thno.30398
    1. Wang Q, Li L, Li C, Pei Z, Zhou M, Li N. SIRT3 protects cells from hypoxia via PGC-1α- and MnSOD-dependent pathways. Neuroscience. 2015;286:109–121. doi:10.1016/j.neuroscience.2014.11.045
    1. Chen Y, Pitzer A.L, Li X, Li P.L, Wang L, Zhang Y. Instigation of endothelial Nlrp3 inflammasome by adipokine visfatin promotes inter-endothelial junction disruption: role of HMGB1. J Cell Mol Med. 2015;19(12):2715–27.
    1. Kurundkar D, Kurundkar AR, Bone NB, et al. SIRT3 diminishes inflammation and mitigates endotoxin-induced acute lung injury. JCI Insight. 2019;4(1). doi:10.1172/jci.insight.120722
    1. Fang P, Liang J, Jiang X, et al. Quercetin attenuates d-GaLN-induced L02 cell damage by suppressing oxidative stress and mitochondrial apoptosis via inhibition of HMGB1. Front Pharmacol. 2020;11:608. doi:10.3389/fphar.2020.00608
    1. Liu B, Gan X, Zhao Y, Gao J, Yu H. Inhibition of HMGB1 reduced high glucose-induced BMSCs apoptosis via activation of AMPK and regulation of mitochondrial functions. J Physiol Biochem. 2021;77(2):227–235. doi:10.1007/s13105-021-00784-2
    1. Dong WW, Liu YJ, Lv Z, et al. Lung endothelial barrier protection by resveratrol involves inhibition of HMGB1 release and HMGB1-induced mitochondrial oxidative damage via an Nrf2-dependent mechanism. Free Radic Biol Med. 2015;88(Pt B):404–416. doi:10.1016/j.freeradbiomed.2015.05.004
    1. Huang CY, Chiang SF, Chen WT, et al. HMGB1 promotes ERK-mediated mitochondrial Drp1 phosphorylation for chemoresistance through RAGE in colorectal cancer. Cell Death Dis. 2018;9(10):1004. doi:10.1038/s41419-018-1019-6
    1. Park E, Kim Y, Chang K. Hemin reduces HMGB1 release by UVB in an AMPK/HO-1-dependent pathway in human keratinocytes HaCaT cells. Arch Med Res. 2017;48(5):423–431. doi:10.1016/j.arcmed.2017.10.007
    1. Nygaard U, van den Bogaard E, Niehues H, et al. The ”Alarmins” HMBG1 and IL-33 downregulate structural skin barrier proteins and impair epidermal growth. Acta Derm Venereol. 2017;97(3):305–312. doi:10.2340/00015555-2552
    1. Chen X, Guo W, Chang Y, et al. Oxidative stress-induced IL-15 trans-presentation in keratinocytes contributes to CD8 T cells activation via JAK-STAT pathway in vitiligo. Free Radic Biol Med. 2019;139:80–91. doi:10.1016/j.freeradbiomed.2019.05.011
    1. Toki Y, Takenouchi T, Harada H, et al. Extracellular ATP induces P2X7 receptor activation in mouse Kupffer cells, leading to release of IL-1beta, HMGB1, and PGE2, decreased MHC class I expression and necrotic cell death. Biochem Biophys Res Commun. 2015;458(4):771–776. doi:10.1016/j.bbrc.2015.02.011
    1. Chan H, Chou H, Duran M, et al. Major role of epidermal growth factor receptor and Src kinases in promoting oxidative stress-dependent loss of adhesion and apoptosis in epithelial cells. J Biol Chem. 2010;285(7):4307–4318. doi:10.1074/jbc.M109.047027
    1. Li S, Kang P, Zhang W, et al. Activated NLR family pyrin domain containing 3 (NLRP3) inflammasome in keratinocytes promotes cutaneous T-cell response in patients with vitiligo. J Allergy Clin Immunol. 2020;145(2):632–645. doi:10.1016/j.jaci.2019.10.036
    1. Jia C, Zhang J, Chen H, et al. Endothelial cell pyroptosis plays an important role in Kawasaki disease via HMGB1/RAGE/cathepsin B signaling pathway and NLRP3 inflammasome activation. Cell Death Dis. 2019;10(10):778. doi:10.1038/s41419-019-2021-3
    1. Xie WH, Ding J, Xie XX, et al. Hepatitis B virus X protein promotes liver cell pyroptosis under oxidative stress through NLRP3 inflammasome activation. Inflamm Res. 2020;69(7):683–696. doi:10.1007/s00011-020-01351-z
    1. Hegab DS, Attia MAS. Decreased circulating T regulatory cells in Egyptian patients with nonsegmental vitiligo: correlation with disease activity. Dermatol Res Pract. 2015;2015:1–7.
    1. Klarquist J, Denman CJ, Hernandez C, et al. Reduced skin homing by functional Treg in vitiligo. Pigment Cell Melanoma Res. 2010;23(2):276–286. doi:10.1111/j.1755-148X.2010.00688.x
    1. Dwivedi M, Laddha N, Arora P, Marfatia Y, Begum R. Decreased regulatory T-cells and CD4 (+) /CD8 (+) ratio correlate with disease onset and progression in patients with generalized vitiligo. Pigment Cell Melanoma Res. 2013;26(4):586–591. doi:10.1111/pcmr.12105
    1. Zhang J, Chen L, Wang F, et al. Extracellular HMGB1 exacerbates autoimmune progression and recurrence of type 1 diabetes by impairing regulatory T cell stability. Diabetologia. 2020;63(5):987–1001. doi:10.1007/s00125-020-05105-8
    1. Esquivel D, Mishra R, Srivastava A. Stem cell therapy offers a possible safe and promising alternative approach for treating vitiligo: a review. Curr Pharm Des. 2020;26(37):4815–4821. doi:10.2174/1381612826666200730221446
    1. Paudel YN, Angelopoulou E, Piperi C, Othman I, Shaikh MF. HMGB1-mediated neuroinflammatory responses in brain injuries: potential mechanisms and therapeutic opportunities. Int J Mol Sci. 2020;21(13):4609. doi:10.3390/ijms21134609
    1. Andersson U, Yang H, Harris H. Extracellular HMGB1 as a therapeutic target in inflammatory diseases. Expert Opin Ther Targets. 2018;22(3):263–277. doi:10.1080/14728222.2018.1439924
    1. Satoh T. The role of HMGB1 in inflammatory skin diseases. J Dermatol Sci. 2022;107:58–64. doi:10.1016/j.jdermsci.2022.07.005
    1. Lamore S, Cabello C, Wondrak G. HMGB1-directed drug discovery targeting cutaneous inflammatory dysregulation. Curr Drug Metab. 2010;11(3):250–265. doi:10.2174/138920010791196337

Source: PubMed

3
Sottoscrivi