An Acceptance Test for Assistive Robots

Francisco Martín Rico, Francisco J Rodríguez-Lera, Jonatan Ginés Clavero, Ángel Manuel Guerrero-Higueras, Vicente Matellán Olivera, Francisco Martín Rico, Francisco J Rodríguez-Lera, Jonatan Ginés Clavero, Ángel Manuel Guerrero-Higueras, Vicente Matellán Olivera

Abstract

Socially assistive robots have been used in the care of elderly or dependent people, particularly with patients suffering from neurological diseases, like autism and dementia. There are some proposals, but there are no standardized mechanisms for assessing a particular robot's suitability for specific therapy. This paper reports the evaluation of an acceptance test for assistive robots applied to people with dementia. The proposed test focuses on evaluating the suitability of a robot during therapy sessions. The test measures the rejection of the robot by the patient based on observational data. This test would recommend what kind of robot and what functionalities can be used in therapy. The novelty of this approach is the formalization of a specific validation process that only considers the reaction of the person to whom the robot is applied, and may be used more effectively than existing tests, which may not be adequate for evaluating assistance robots. The test's feasibility was tested by applying it to a set of dementia patients in a specialized care facility.

Keywords: acceptance test; assistive robots; dementia.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The social robot used in this work.
Figure 2
Figure 2
Uncanny Valley Theory.
Figure 3
Figure 3
Games that are part of cognitive therapy. (a): General knowledge game; (b): Logical game; (c): Memory game
Figure 4
Figure 4
Scheme of the scenario of the experiment.
Figure 5
Figure 5
Distribution by diagnosis and by gender of the people who participated in the study. (left):population disease distribution; (right): gender distribution.
Figure 6
Figure 6
Distribution of subjects by score on the MMSE, and its relationship with age and gender. (left):gender distribution; (right): age distribution.
Figure 7
Figure 7
Images during tests.
Figure 8
Figure 8
Result of the obtained scored in the test.
Figure 9
Figure 9
Spearman’s correlation of test results and patient characteristics.
Figure 10
Figure 10
Correlation of Likert test and evaluation factor.
Figure 11
Figure 11
Correlation of Likert test and patient characteristics.

References

    1. Flandorfer P. Population ageing and socially assistive robots for elderly persons: The importance of sociodemographic factors for user acceptance. Int. J. Popul. Res. 2012;1:1–13. doi: 10.1155/2012/829835.
    1. Bemelmans R., Gelderblom G.J., Jonker P., De Witte L. Socially assistive robots in elderly care: A systematic review into effects and effectiveness. J. Am. Med Dir. Assoc. 2012;13:114–120. doi: 10.1016/j.jamda.2010.10.002.
    1. Pandey M.D., Zhang X. System reliability analysis of the robotic manipulator with random joint clearances. Mech. Mach. Theory. 2012;58:137–152. doi: 10.1016/j.mechmachtheory.2012.08.009.
    1. Zhang D., Han X. Kinematic Reliability Analysis of Robotic Manipulator. J. Mech. Des. 2019;142:044502. doi: 10.1115/1.4044436.
    1. Kim J., Song W.J., Kang B.S. Stochastic approach to kinematic reliability of open-loop mechanism with dimensional tolerance. Appl. Math. Model. 2010;34:1225–1237. doi: 10.1016/j.apm.2009.08.009.
    1. Martín F., Ginés J. Practical Aspects of Deploying Robotherapy Systems. In: Ollero A., Sanfeliu A., Montano L., Lau N., Cardeira C., editors. Advances in Various Field of Robotics, Proceedings of the ROBOT 2017: Third Iberian Robotics Conference, Sevilla, Spain, 22–24 November 2017. Springer International Publishing; Cham, Switzerland: 2018. pp. 367–378.
    1. Mori M. The Uncanny Valley. IEEE Robot. Autom. Mag. 2012;19:98–100. doi: 10.1109/MRA.2012.2192811.
    1. Klamer T., Allouch S.B. Acceptance and use of a social robot by elderly users in a domestic environment; Proceedings of the 2010 4th International Conference on Pervasive Computing Technologies for Healthcare; Munich, Germany. 22–25 March 2010; pp. 1–8.
    1. Werner F. A Survey on Current Practices in User Evaluation of Companion Robots. Human-Robot Interaction. Springer; Berlin/Heidelberg, Germany: 2020. pp. 65–88.
    1. Nomura T., Suzuki T., Kanda T., Kato K. Measurement of negative attitudes toward robots. Interact. Stud. 2006;7:437–454. doi: 10.1075/is.7.3.14nom.
    1. Nomura T., Kanda T., Suzuki T. Experimental investigation into influence of negative attitudes toward robots on human-robot interaction. AI Soc. 2006;20:138–150. doi: 10.1007/s00146-005-0012-7.
    1. Kuhnert B., Ragni M., Lindner F. The gap between human’s attitude towards robots in general and human’s expectation of an ideal everyday life robot; Proceedings of the 2017 26th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN); Lisbon, Portugal. 28 August–1 September 2017; pp. 1102–1107.
    1. De Graaf M., Ben Allouch S., van Dijk J. Long-Term Acceptance of Social Robots in Domestic Environments: Insights From a User’s Perspective. [(accessed on 12 July 2020)]; Available online: .
    1. Damholdt M., Olesen M., Nørskov M., Hakli R., Larsen S., Vestergaard C., Seibt J. A Generic Scale for Assessment of Attitudes Towards Social Robots: The ASOR-5. Front. Artif. Intell. Appl. 2016;290:45–47.
    1. Carpinella C.M., Wyman A.B., Perez M.A., Stroessner S.J. The Robotic Social Attributes Scale (RoSAS): Development and Validation; Proceedings of the 2017 12th ACM/IEEE International Conference on Human-Robot Interaction (HRI); Vienna, Austria. 6–9 March 2017; pp. 254–262.
    1. Nomura T., Kanda T., Suzuki T., Kato K. Prediction of Human Behavior in Human–Robot Interaction Using Psychological Scales for Anxiety and Negative Attitudes Toward Robots. IEEE Trans. Robot. 2008;24:442–451. doi: 10.1109/TRO.2007.914004.
    1. Nomura T., Suzuki T., Kanda T., Kato K. Measurement of Anxiety toward Robots; Proceedings of the ROMAN 2006—The 15th IEEE International Symposium on Robot and Human Interactive Communication; Hatfield, UK. 6–8 September 2006; pp. 372–377.
    1. Weiss A., Bernhaupt R., Lankes M., Tscheligi M. The USUS evaluation framework for human-robot interaction; Proceedings of the Adaptive and Emergent Behaviour and Complex Systems—Proceedings of the 23rd Convention of the Society for the Study of Artificial Intelligence and Simulation of Behaviour, AISB 2009; Edinburgh, UK. 6–9 April 2009; pp. 158–165.
    1. Kelley J.F. An Iterative Design Methodology for User-Friendly Natural Language Office Information Applications. ACM Trans. Inf. Syst. 1984;2:26–41. doi: 10.1145/357417.357420.
    1. Heerink M., Krose B., Evers V., Wielinga B. Assessing Acceptance of Assistive Social Agent Technology by Older Adults: The Almere Model. I. J. Soc. Robot. 2010;2:361–375. doi: 10.1007/s12369-010-0068-5.
    1. Breazeal C., Takanishi A., Kobayashi T. Springer Handbook of Robotics. Springer; Berlin/Heidelberg, Germany: 2008. Social Robots that Interact with People; pp. 1349–1369.
    1. Arevalo-Rodriguez I., Smailagic N., Roqué i Figuls M., Ciapponi A., Sanchez-Perez E., Giannakou A., Pedraza O., Bonfill X., Cullum S. Mini-Mental State Examination (MMSE) for the detection of Alzheimer’s disease and other dementias in people with mild cognitive impairment (MCI) Cochrane Database Syst. Rev. 2015;3:CD010783.
    1. Ardito C., Costabile M.F., Lanzilotti R., De Angeli A., Desolda G. A field study of a multi-touch display at a conference; Proceedings of the International Working Conference on Advanced Visual Interfaces; Capri Island, Italy. 22–25 May 2012; pp. 580–587.
    1. Valentí Soler M., Agüera-Ortiz L., Olazarán Rodríguez J., Mendoza Rebolledo C., Pérez Muñoz A., Rodríguez Pérez I., Osa Ruiz E., Barrios Sánchez A., Herrero Cano V., Carrasco Chillón L., et al. Social robots in advanced dementia. Front. Aging Neurosci. 2015;7:133. doi: 10.3389/fnagi.2015.00133.
    1. Schmidtler J., Bengler K., Dimeas F., Campeau-Lecours A. A questionnaire for the evaluation of physical assistive devices (quead): Testing usability and acceptance in physical human-robot interaction; Proceedings of the 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC); Banff, AB, Canada. 5–8 October 2017; pp. 876–881.
    1. Rossi S., Santangelo G., Staffa M., Varrasi S., Conti D., Di Nuovo A. Psychometric evaluation supported by a social robot: Personality factors and technology acceptance; Proceedings of the 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN); Nanjing, China. 27–31 August 2018; pp. 802–807.
    1. Bechade L., Dubuisson-Duplessis G., Pittaro G., Garcia M., Devillers L. Advanced Social Interaction with Agents: 8th International Workshop on Spoken Dialog Systems. Springer International Publishing; Cham, Switzerland: 2019. Towards Metrics of Evaluation of Pepper Robot as a Social Companion for the Elderly; pp. 89–101.
    1. Koceski S., Koceska N. Evaluation of an assistive telepresence robot for elderly healthcare. J. Med. Syst. 2016;40:121. doi: 10.1007/s10916-016-0481-x.
    1. Di Nuovo A., Broz F., Wang N., Belpaeme T., Cangelosi A., Jones R., Esposito R., Cavallo F., Dario P. The multi-modal interface of Robot-Era multi-robot services tailored for the elderly. Intell. Serv. Robot. 2018;11:109–126. doi: 10.1007/s11370-017-0237-6.
    1. Martínez J., Romero-Garcés A., Suárez C., Marfi R., Ting K.L.H., Iglesias A., García J., Fernández F., Ducñas Á., Calderita L.V., et al. Towards a robust robotic assistant for Comprehensive Geriatric Assessment procedures: Updating the CLARC system; Proceedings of the 2018 27th IEEE International Symposium on Robot and Human Interactive Communication (RO-MAN); Nanjing, China. 27–31 August 2018; pp. 820–825.
    1. Bedaf S., Marti P., Amirabdollahian F., de Witte L. A multi-perspective evaluation of a service robot for seniors: The voice of different stakeholders. Disabil. Rehabil. Assist. Technol. 2018;13:592–599. doi: 10.1080/17483107.2017.1358300.
    1. Miller E. Short- and long-term memory in patients with presenile dementia (Alzheimer’s disease) Psychol. Med. 1973;3:221–224. doi: 10.1017/S003329170004856X.
    1. Hasson D., Arnetz B.B. Validation and findings comparing VAS vs. Likert scales for psychosocial measurements. Int. Electron. J. Health Educ. 2005;8:178–192.
    1. Shiomi M., Shinozawa K., Nakagawa Y., Miyashita T., Sakamoto T., Terakubo T., Ishiguro H., Hagita N. Recommendation Effects of a Social Robot for Advertisement-Use Context in a Shopping Mall. Int. J. Soc. Robot. 2013;5:251–262. doi: 10.1007/s12369-013-0180-4.
    1. Freeman J., Young T. Correlation coefficient: Association between two continuous variables. [(accessed on 12 July 2020)];Scope Tutor. 2009 :1–3. Available online: .

Source: PubMed

3
Sottoscrivi