The Role of Acupuncture Improving Cognitive Deficits due to Alzheimer's Disease or Vascular Diseases through Regulating Neuroplasticity

Shaozhen Ji, Jiayu Duan, Xiaobing Hou, Li Zhou, Weilan Qin, Huanmin Niu, Shuyun Luo, Yunling Zhang, Piu Chan, Xianglan Jin, Shaozhen Ji, Jiayu Duan, Xiaobing Hou, Li Zhou, Weilan Qin, Huanmin Niu, Shuyun Luo, Yunling Zhang, Piu Chan, Xianglan Jin

Abstract

Dementia affects millions of elderly worldwide causing remarkable costs to society, but effective treatment is still lacking. Acupuncture is one of the complementary therapies that has been applied to cognitive deficits such as Alzheimer's disease (AD) and vascular cognitive impairment (VCI), while the underlying mechanisms of its therapeutic efficiency remain elusive. Neuroplasticity is defined as the ability of the nervous system to adapt to internal and external environmental changes, which may support some data to clarify mechanisms how acupuncture improves cognitive impairments. This review summarizes the up-to-date and comprehensive information on the effectiveness of acupuncture treatment on neurogenesis and gliogenesis, synaptic plasticity, related regulatory factors, and signaling pathways, as well as brain network connectivity, to lay ground for fully elucidating the potential mechanism of acupuncture on the regulation of neuroplasticity and promoting its clinical application as a complementary therapy for AD and VCI.

Conflict of interest statement

The authors declare that they have no conflicts of interest.

Copyright © 2021 Shaozhen Ji et al.

Figures

Figure 1
Figure 1
The locations of acupoints in mice.
Figure 2
Figure 2
The locations of acupoints in humans.
Figure 3
Figure 3
Mechanisms involved in acupuncture regulating neuroplasticity to improve cognitive function.

References

    1. Zhang H., Hardie L., Bawajeeh A. O., Cade J. Meat consumption, cognitive function and disorders: a systematic review with narrative synthesis and meta-analysis. Nutrients. 2020;12(5):p. 1528. doi: 10.3390/nu12051528.
    1. Gale S. A., Acar D., Daffner K. R. Dementia. The American Journal of Medicine. 2018;131(10):1161–1169. doi: 10.1016/j.amjmed.2018.01.022.
    1. Fratiglioni L., Marseglia A., Dekhtyar S. Ageing without dementia: can stimulating psychosocial and lifestyle experiences make a difference? The Lancet Neurology. 2020;19(6):533–543. doi: 10.1016/S1474-4422(20)30039-9.
    1. Iadecola C., Duering M., Hachinski V., et al. Vascular Cognitive Impairment and Dementia: Journal of the American College of Cardiology. 2019;73(25):3326–3344. doi: 10.1016/j.jacc.2019.04.034.
    1. Revi M. Alzheimer’s disease therapeutic approaches. Advances in Experimental Medicine and Biology. 2020;1195:105–116. doi: 10.1007/978-3-030-32633-3_15.
    1. Hung C. Y., Wu X. Y., Chung V. C., Tang E. C., Wu J. C., Lau A. Y. Overview of systematic reviews with meta-analyses on acupuncture in post- stroke cognitive impairment and depression management. Integrative Medicine Research. 2019;8(3):145–159. doi: 10.1016/j.imr.2019.05.001.
    1. Liu Z. B., Niu W. M., Yang X. H., Niu X. M. Clinical investigation on electroacupuncture treatment of vascular dementia with “Xiusanzhen”. Zhen Ci Yan Jiu. 2008;33(2):131–134.
    1. Wang S., Yang H., Zhang J., et al. Efficacy and safety assessment of acupuncture and nimodipine to treat mild cognitive impairment after cerebral infarction: a randomized controlled trial. BMC Complementary and Alternative Medicine. 2016;16(1):p. 361. doi: 10.1186/s12906-016-1337-0.
    1. Wang Y. Y., Yu S. F., Xue H. Y., Li Y., Zhao C., Jin Y. H. Effectiveness and safety of acupuncture for the treatment of Alzheimer’s disease: a systematic review and meta-analysis. Frontiers in Aging Neuroscience. 2020;12:p. 98. doi: 10.3389/fnagi.2020.00098.
    1. Yang J. W., Shi G. X., Zhang S., et al. Effectiveness of acupuncture for vascular cognitive impairment no dementia: a randomized controlled trial. Clinical Rehabilitation. 2019;33(4):642–652. doi: 10.1177/0269215518819050.
    1. Sweatt J. D. Neural plasticity and behavior—sixty years of conceptual advances. Journal of Neurochemistry. 2016;139(Suppl 2):179–199. doi: 10.1111/jnc.13580.
    1. Cramer S. C., Sur M., Dobkin B. H., et al. Harnessing neuroplasticity for clinical applications. Brain. 2011;134(6):1591–1609. doi: 10.1093/brain/awr039.
    1. von Bernhardi R., Bernhardi L. E., Eugenin J. What is neural plasticity? Advances in Experimental Medicine and Biology. 2017;1015:1–15. doi: 10.1007/978-3-319-62817-2_1.
    1. Arnsten A. F., Paspalas C. D., Gamo N. J., Yang Y., Wang M. Dynamic network connectivity: a new form of neuroplasticity. Trends in Cognitive Sciences. 2010;14(8):365–375. doi: 10.1016/j.tics.2010.05.003.
    1. Jackson J., Jambrina E., Li J., et al. Targeting the synapse in Alzheimer’s disease. Frontiers in Neuroscience. 2019;13:p. 735. doi: 10.3389/fnins.2019.00735.
    1. Liu B., Liu J., Zhang J., Mao W., Li S. Effects of autophagy on synaptic-plasticity-related protein expression in the hippocampus CA1 of a rat model of vascular dementia. Neuroscience Letters. 2019;707, article 134312 doi: 10.1016/j.neulet.2019.134312.
    1. Dayan E., Cohen L. G. Neuroplasticity subserving motor skill learning. Neuron. 2011;72(3):443–454. doi: 10.1016/j.neuron.2011.10.008.
    1. Cavaleiro C., Martins J., Goncalves J., Castelo-Branco M. Memory and cognition-related neuroplasticity enhancement by transcranial direct current stimulation in rodents: a systematic review. Neural Plasticity. 2020;2020:23. doi: 10.1155/2020/4795267.4795267
    1. Zhao Z. Q. Neural mechanism underlying acupuncture analgesia. Progress in Neurobiology. 2008;85(4):355–375. doi: 10.1016/j.pneurobio.2008.05.004.
    1. Ding X., Yu J., Yu T., Fu Y., Han J. Acupuncture regulates the aging-related changes in gene profile expression of the hippocampus in senescence-accelerated mouse (SAMP10) Neuroscience Letters. 2006;399(1-2):11–16. doi: 10.1016/j.neulet.2006.01.067.
    1. Yu C. C., Wang J., Ye S. S., et al. Preventive Electroacupuncture Ameliorates D-Galactose-Induced Alzheimer’s Disease-Like Pathology and Memory Deficits Probably via Inhibition of GSK3β/mTOR Signaling Pathway. Evidence-based Complementary and Alternative Medicine. 2020;2020:12. doi: 10.1155/2020/1428752.1428752
    1. Huang X., Huang K., Li Z., et al. Electroacupuncture improves cognitive deficits and insulin resistance in an OLETF rat model of Al/D-gal induced aging model via the PI3K/Akt signaling pathway. Brain Research. 2020;1740, article 146834 doi: 10.1016/j.brainres.2020.146834.
    1. Liang P., Wang Z., Qian T., Li K. Acupuncture stimulation of Taichong (Liv3) and Hegu (LI4) modulates the default mode network activity in Alzheimer’s disease. American Journal of Alzheimer's Disease and Other Dementias. 2014;29(8):739–748. doi: 10.1177/1533317514536600.
    1. Frisen J. Neurogenesis and gliogenesis in nervous system plasticity and repair. Annual Review of Cell and Developmental Biology. 2016;32(1):127–141. doi: 10.1146/annurev-cellbio-111315-124953.
    1. Zhao C., Deng W., Gage F. H. Mechanisms and functional implications of adult neurogenesis. Cell. 2008;132(4):645–660. doi: 10.1016/j.cell.2008.01.033.
    1. Baglietto-Vargas D., Sánchez-Mejias E., Navarro V., et al. Dual roles of Aβ in proliferative processes in an amyloidogenic model of Alzheimer’s disease. Scientific Reports. 2017;7(1, article 10085) doi: 10.1038/s41598-017-10353-7.
    1. Bondolfi L., Calhoun M., Ermini F., et al. Amyloid-associated neuron loss and gliogenesis in the neocortex of amyloid precursor protein transgenic mice. The Journal of Neuroscience. 2002;22(2):515–522. doi: 10.1523/JNEUROSCI.22-02-00515.2002.
    1. Verret L., Jankowsky J. L., Xu G. M., Borchelt D. R., Rampon C. Alzheimer’s-type amyloidosis in transgenic mice impairs survival of newborn neurons derived from adult hippocampal neurogenesis. The Journal of Neuroscience. 2007;27(25):6771–6780. doi: 10.1523/JNEUROSCI.5564-06.2007.
    1. Lindvall O., Kokaia Z. Neurogenesis following stroke affecting the adult brain. Cold Spring Harbor Perspectives in Biology. 2015;7(11) doi: 10.1101/cshperspect.a019034.
    1. Li G., Cheng H., Zhang X., et al. Hippocampal neuron loss is correlated with cognitive deficits in SAMP8 mice. Neurological Sciences. 2013;34(6):963–969. doi: 10.1007/s10072-012-1173-z.
    1. Li G., Zhang X., Cheng H., et al. Acupuncture improves cognitive deficits and increases neuron density of the hippocampus in middle-aged SAMP8 mice. Acupuncture in Medicine. 2012;30(4):339–345. doi: 10.1136/acupmed-2012-010180.
    1. Cheng H., Yu J., Jiang Z., et al. Acupuncture improves cognitive deficits and regulates the brain cell proliferation of SAMP8 mice. Neuroscience Letters. 2008;432(2):111–116. doi: 10.1016/j.neulet.2007.12.009.
    1. Li X., Guo F., Zhang Q., et al. Electroacupuncture decreases cognitive impairment and promotes neurogenesis in the APP/PS1 transgenic mice. BMC Complementary and Alternative Medicine. 2014;14(1):p. 37. doi: 10.1186/1472-6882-14-37.
    1. Tao J., Chen B., Gao Y., et al. Electroacupuncture enhances hippocampal NSCs proliferation in cerebral ischemia-reperfusion injured rats via activation of notch signaling pathway. The International Journal of Neuroscience. 2013;124(3):204–212. doi: 10.3109/00207454.2013.840781.
    1. Kim Y. R., Kim H. N., Ahn S. M., Choi Y. H., Shin H. K., Choi B. T. Electroacupuncture promotes post-stroke functional recovery via enhancing endogenous neurogenesis in mouse focal cerebral ischemia. PLoS One. 2014;9(2, article e90000) doi: 10.1371/journal.pone.0090000.
    1. Li F., Yan C. Q., Lin L. T., et al. Acupuncture attenuates cognitive deficits and increases pyramidal neuron number in hippocampal CA1 area of vascular dementia rats. BMC Complementary and Alternative Medicine. 2015;15(1):p. 133. doi: 10.1186/s12906-015-0656-x.
    1. Lin R., Iacovitti L. Classic and novel stem cell niches in brain homeostasis and repair. Brain Research. 2015;1628:327–342. doi: 10.1016/j.brainres.2015.04.029.
    1. Gorelick P. B., Scuteri A., Black S. E., et al. Vascular contributions to cognitive impairment and dementia: a statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2011;42(9):2672–2713. doi: 10.1161/STR.0b013e3182299496.
    1. Ibrahim A. M., Pottoo F. H., Dahiya E. S., Khan F. A., Kumar J. S. Neuron-glia interactions: molecular basis of Alzheimer’s disease and applications of neuroproteomics. The European Journal of Neuroscience. 2020;52(2):2931–2943. doi: 10.1111/ejn.14838.
    1. Franklin R. J., ffrench-Constant C. Remyelination in the CNS: from biology to therapy. Nature Reviews Neuroscience. 2008;9(11):839–855. doi: 10.1038/nrn2480.
    1. Ahn S. M., Kim Y. R., Kim H. N., Shin Y. I., Shin H. K., Choi B. T. Electroacupuncture ameliorates memory impairments by enhancing oligodendrocyte regeneration in a mouse model of prolonged cerebral hypoperfusion. Scientific Reports. 2016;6(1, article 28646) doi: 10.1038/srep28646.
    1. Santello M., Toni N., Volterra A. Astrocyte function from information processing to cognition and cognitive impairment. Nature Neuroscience. 2019;22(2):154–166. doi: 10.1038/s41593-018-0325-8.
    1. Hwang I. K., Chung J. Y., Yoo D. Y., et al. Comparing the effects of acupuncture and electroacupuncture at Zusanli and Baihui on cell proliferation and neuroblast differentiation in the rat hippocampus. The Journal of Veterinary Medical Science. 2010;72(3):279–284. doi: 10.1292/jvms.09-0374.
    1. Zhou C. L., Zhao L., Shi H. Y., et al. Combined acupuncture and HuangDiSan treatment affects behavior and synaptophysin levels in the hippocampus of senescence-accelerated mouse prone 8 after neural stem cell transplantation. Neural Regeneration Research. 2018;13(3):541–548. doi: 10.4103/1673-5374.228760.
    1. Zhao L., Zhou C., Li L., et al. Acupuncture improves cerebral microenvironment in mice with Alzheimer’s disease treated with hippocampal neural stem cells. Molecular Neurobiology. 2017;54(7):5120–5130. doi: 10.1007/s12035-016-0054-5.
    1. Jack C. R., Jr., Knopman D. S., Jagust W. J., et al. Hypothetical model of dynamic biomarkers of the Alzheimer's pathological cascade. Lancet Neurology. 2010;9(1):119–128. doi: 10.1016/s1474-4422(09)70299-6.
    1. Wang F., Cao Y., Ma L., Pei H., Rausch W. D., Li H. Dysfunction of cerebrovascular endothelial cells: prelude to vascular dementia. Frontiers in Aging Neuroscience. 2018;10:p. 376. doi: 10.3389/fnagi.2018.00376.
    1. Falke E., Nissanov J., Mitchell T. W., Bennett D. A., Trojanowski J. Q., Arnold S. E. Subicular dendritic arborization in Alzheimer’s disease correlates with neurofibrillary tangle density. The American Journal of Pathology. 2003;163(4):1615–1621. doi: 10.1016/S0002-9440(10)63518-3.
    1. Yu C. C., Wang Y., Shen F., et al. High-frequency (50 Hz) electroacupuncture ameliorates cognitive impairment in rats with amyloid beta 1-42-induced Alzheimer’s disease. Neural Regeneration Research. 2018;13(10):1833–1841. doi: 10.4103/1673-5374.238620.
    1. Yang H. Y., Liu Y., Xie J. C., Liu N. N., Tian X. Effects of repetitive transcranial magnetic stimulation on synaptic plasticity and apoptosis in vascular dementia rats. Behavioural Brain Research. 2015;281:149–155. doi: 10.1016/j.bbr.2014.12.037.
    1. Buffington S. A., Huang W., Costa-Mattioli M. Translational control in synaptic plasticity and cognitive dysfunction. Annual Review of Neuroscience. 2014;37(1):17–38. doi: 10.1146/annurev-neuro-071013-014100.
    1. Neves G., Cooke S. F., Bliss T. V. Synaptic plasticity, memory and the hippocampus: a neural network approach to causality. Nature Reviews Neuroscience. 2008;9(1):65–75. doi: 10.1038/nrn2303.
    1. Bourne J. N., Harris K. M. Balancing structure and function at hippocampal dendritic spines. Annual Review of Neuroscience. 2008;31(1):47–67. doi: 10.1146/annurev.neuro.31.060407.125646.
    1. Xia W. G., Zheng C. J., Zhang X., Wang J. Effects of “nourishing liver and kidney” acupuncture therapy on expression of brain derived neurotrophic factor and synaptophysin after cerebral ischemia reperfusion in rats. Journal of Huazhong University of Science and Technology. Medical Sciences. 2017;37(2):271–278. doi: 10.1007/s11596-017-1727-7.
    1. Wang Y., Wang Q., Ren B., et al. “Olfactory three-needle” enhances spatial learning and memory ability in SAMP8 mice. Behavioural Neurology. 2020;2020:11. doi: 10.1155/2020/2893289.2893289
    1. Cai M., Lee J. H., Yang E. J. Electroacupuncture attenuates cognition impairment via anti-neuroinflammation in an Alzheimer’s disease animal model. Journal of Neuroinflammation. 2019;16(1):p. 264. doi: 10.1186/s12974-019-1665-3.
    1. Kan B. H., Yu J. C., Zhao L., et al. Acupuncture improves dendritic structure and spatial learning and memory ability of Alzheimer’s disease mice. Neural Regeneration Research. 2018;13(8):1390–1395. doi: 10.4103/1673-5374.235292.
    1. Liu T., Zhang X. Z., Han J. X., Nie K. Using bioinformatics tools to explore cellular biological mechanisms of “triple energizer acupuncture method” in treating senile dementia. Zhen Ci Yan Jiu. 2019;44:424–429.
    1. Collingridge G. L., Peineau S., Howland J. G., Wang Y. T. Long-term depression in the CNS. Nature Reviews. Neuroscience. 2010;11(7):459–473. doi: 10.1038/nrn2867.
    1. van den Broeke E. N., van Rijn C. M., Biurrun Manresa J. A., Andersen O. K., Arendt-Nielsen L., Wilder-Smith O. H. Neurophysiological correlates of nociceptive heterosynaptic long-term potentiation in humans. Journal of Neurophysiology. 2010;103(4):2107–2113. doi: 10.1152/jn.00979.2009.
    1. Kong L.-h., Li W., Wang H., et al. High-frequency electroacupuncture evidently reinforces hippocampal synaptic transmission in Alzheimer’s disease rats. Neural Regeneration Research. 2016;11(5):801–806. doi: 10.4103/1673-5374.182708.
    1. Lin Y. W., Hsieh C. L. Electroacupuncture at Baihui acupoint (GV20) reverses behavior deficit and long-term potentiation through N-methyl-D-aspartate and transient receptor potential vanilloid subtype 1 receptors in middle cerebral artery occlusion rats. Journal of Integrative Neuroscience. 2010;9(3):269–282. doi: 10.1142/S0219635210002433.
    1. Zhu Y., Wang X., Ye X., Gao C., Wang W. Effects of electroacupuncture on the expression of p70 ribosomal protein S6 kinase and ribosomal protein S6 in the hippocampus of rats with vascular dementia. Neural Regeneration Research. 2012;7(3):207–211. doi: 10.3969/j.issn.1673-5374.2012.03.009.
    1. Tang Y., Shao S., Guo Y., et al. Electroacupuncture mitigates hippocampal cognitive impairments by reducing BACE1 deposition and activating PKA in APP/PS1 double transgenic mice. Neural Plasticity. 2019;2019:12. doi: 10.1155/2019/2823679.2823679
    1. Jing X. H., Chen S. L., Shi H., Cai H., Jin Z. G. Electroacupuncture restores learning and memory impairment induced by both diabetes mellitus and cerebral ischemia in rats. Neuroscience Letters. 2008;443(3):193–198. doi: 10.1016/j.neulet.2008.07.086.
    1. Yang J. W., Wang X. R., Zhang M., et al. Acupuncture as a multifunctional neuroprotective therapy ameliorates cognitive impairment in a rat model of vascular dementia: a quantitative iTRAQ proteomics study. CNS Neuroscience & Therapeutics. 2018;24(12):1264–1274. doi: 10.1111/cns.13063.
    1. Ye Y., Li H., Yang J. W., et al. Acupuncture attenuated vascular dementia-induced hippocampal long-term potentiation impairments via activation of D1/D5 receptors. Stroke. 2017;48(4):1044–1051. doi: 10.1161/STROKEAHA.116.014696.
    1. Xiao L. Y., Wang X. R., Yang J. W., et al. Acupuncture prevents the impairment of hippocampal LTP through β1-AR in vascular dementia rats. Molecular Neurobiology. 2018;55(10):7677–7690. doi: 10.1007/s12035-018-0943-x.
    1. Xiao L.-Y., Yang J.-W., Wang X.-R., et al. Acupuncture Rescues Cognitive Impairment and Upregulates Dopamine--Hydroxylase Expression in Chronic Cerebral Hypoperfusion Rats. BioMed Research International. 2018;2018:8. doi: 10.1155/2018/5423961.5423961
    1. Shen M. H., Tang Q. Q., Li Z. R., Ma C. Effect of electroacupuncture on hippocampal LTP in Alzheimer' s disease rats induced by Abeta(25-35) Zhen Ci Yan Jiu. 2010;35(1):3–7.
    1. Greengard P., Valtorta F., Czernik A. J., Benfenati F. Synaptic vesicle phosphoproteins and regulation of synaptic function. Science. 1993;259(5096):780–785. doi: 10.1126/science.8430330.
    1. Citri A., Malenka R. C. Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology. 2008;33(1):18–41. doi: 10.1038/sj.npp.1301559.
    1. Martin S. B., Dowling A. L. S., Lianekhammy J., et al. Synaptophysin and synaptojanin-1 in Down syndrome are differentially affected by Alzheimer’s disease. Journal of Alzheimer’s Disease. 2014;42(3):767–775. doi: 10.3233/JAD-140795.
    1. Dong J., Zhao J., Lin Y., et al. Exercise improves recognition memory and synaptic plasticity in the prefrontal cortex for rats modelling vascular dementia. Neurological Research. 2017;40:68–77. doi: 10.1080/01616412.2017.1398389.
    1. Yang G., Pei Y.-N., Shao S.-J., et al. Effects of electroacupuncture at “Baihui” and “Yongquan” on the levels of synaptic plasticity related proteins postsynaptic density-95 and synaptophysin in hippocampus of APP/PS1 mice. Zhen Ci Yan Jiu. 2020;45(4):310–314. doi: 10.13702/j.1000-0607.190012.
    1. Dong W., Yang W., Li F., et al. Electroacupuncture improves synaptic function in SAMP8 mice probably via inhibition of the AMPK/eEF2K/eEF2 signaling pathway. Evidence-based Complementary and Alternative Medicine. 2019;2019:10. doi: 10.1155/2019/8260815.8260815
    1. Wang Y., Kong L., Li W., et al. Effects and mechanisms of different frequencies of electroacupuncture for learning and memory ability of Alzheimer’s rats. Zhongguo Zhen Jiu. 2017;37(6):629–636. doi: 10.13703/j.0255-2930.2017.06.016.
    1. He X., Yan T., Chen R., Ran D. Acute effects of electro-acupuncture (EA) on hippocampal long term potentiation (LTP) of perforant path-dentate gyrus granule cells synapse related to memory. Acupunct Electrother Res. 2012;37(2):89–101. doi: 10.3727/036012912X13831831256168.
    1. Otmakhova N. A., Lisman J. E. D1/D5 dopamine receptor activation increases the magnitude of early long-term potentiation at CA1 hippocampal synapses. The Journal of Neuroscience. 1996;16(23):7478–7486. doi: 10.1523/JNEUROSCI.16-23-07478.1996.
    1. Tritsch N. X., Sabatini B. L. Dopaminergic modulation of synaptic transmission in cortex and striatum. Neuron. 2012;76(1):33–50. doi: 10.1016/j.neuron.2012.09.023.
    1. Lee B., Sur B., Shim J., Hahm D. H., Lee H. Acupuncture stimulation improves scopolamine-induced cognitive impairment via activation of cholinergic system and regulation of BDNF and CREB expressions in rats. BMC Complementary and Alternative Medicine. 2014;14(1):p. 338. doi: 10.1186/1472-6882-14-338.
    1. Arima-Yoshida F., Watabe A. M., Manabe T. The mechanisms of the strong inhibitory modulation of long-term potentiation in the rat dentate gyrus. The European Journal of Neuroscience. 2011;33(9):1637–1646. doi: 10.1111/j.1460-9568.2011.07657.x.
    1. Kind P. C., Neumann P. E. Plasticity: downstream of glutamate. Trends in Neurosciences. 2001;24(10):553–555. doi: 10.1016/S0166-2236(00)01921-4.
    1. Liu L., Wong T. P., Pozza M. F., et al. Role of NMDA receptor subtypes in governing the direction of hippocampal synaptic plasticity. Science. 2004;304(5673):1021–1024. doi: 10.1126/science.1096615.
    1. Bartlett T. E., Bannister N. J., Collett V. J., et al. Differential roles of NR2A and NR2B-containing NMDA receptors in LTP and LTD in the CA1 region of two-week old rat hippocampus. Neuropharmacology. 2007;52(1):60–70. doi: 10.1016/j.neuropharm.2006.07.013.
    1. Zhang Y., Mao X., Lin R., Li Z., Lin J. Electroacupuncture ameliorates cognitive impairment through inhibition of Ca2+-mediated neurotoxicity in a rat model of cerebral ischaemia-reperfusion injury. Acupuncture in Medicine. 2018;36(6):401–407. doi: 10.1136/acupmed-2016-011353.
    1. Mu Y., Lee S. W., Gage F. H. Signaling in adult neurogenesis. Current Opinion in Neurobiology. 2010;20(4):416–423. doi: 10.1016/j.conb.2010.04.010.
    1. Iso T., Kedes L., Hamamori Y. HES and HERP families: multiple effectors of the Notch signaling pathway. Journal of Cellular Physiology. 2003;194(3):237–255. doi: 10.1002/jcp.10208.
    1. Guo H.-d., Tian J.-x., Zhu J., et al. Electroacupuncture suppressed neuronal apoptosis and improved cognitive impairment in the AD model rats possibly via downregulation of Notch signaling pathway. Evidence-based Complementary and Alternative Medicine. 2015;2015:9. doi: 10.1155/2015/393569.393569
    1. Binder D. K., Scharfman H. E. Brain-derived neurotrophic factor. Growth Factors. 2009;22:123–131.
    1. Egan M. F., Kojima M., Callicott J. H., et al. The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell. 2003;112:257–269. doi: 10.1016/s0092-8674(03)00035-7.
    1. Chen Z. Y., Patel P. D., Sant G., et al. Variant brain-derived neurotrophic factor (BDNF) (Met66) alters the intracellular trafficking and activity-dependent secretion of wild-type BDNF in neurosecretory cells and cortical neurons. The Journal of Neuroscience. 2004;24(18):4401–4411. doi: 10.1523/jneurosci.0348-04.2004.
    1. Pang P. T., Teng H. K., Zaitsev E., et al. Cleavage of proBDNF by tPA/plasmin is essential for long-term hippocampal plasticity. Science. 2004;306(5695):487–491. doi: 10.1126/science.1100135.
    1. Lu B., Pang P. T., Woo N. H. The yin and yang of neurotrophin action. Nature Reviews. Neuroscience. 2005;6(8):603–614. doi: 10.1038/nrn1726.
    1. Lee R., Kermani P., Teng K. K., Hempstead B. L. Regulation of cell survival by secreted proneurotrophins. Science. 2001;294(5548):1945–1948. doi: 10.1126/science.1065057.
    1. Lin R., Chen J., Li X., et al. Electroacupuncture at the Baihui acupoint alleviates cognitive impairment and exerts neuroprotective effects by modulating the expression and processing of brain-derived neurotrophic factor in APP/PS1 transgenic mice. Molecular Medicine Reports. 2016;13(2):1611–1617. doi: 10.3892/mmr.2015.4751.
    1. Lin R., Li L., Zhang Y., et al. Electroacupuncture ameliorate learning and memory by improving N-acetylaspartate and glutamate metabolism in APP/PS1 mice. Biological Research. 2018;51(1):p. 21. doi: 10.1186/s40659-018-0166-7.
    1. Xiong J., Zhang Z., Ma Y., et al. The effect of combined scalp acupuncture and cognitive training in patients with stroke on cognitive and motor functions. NeuroRehabilitation. 2020;46:75–82. doi: 10.3233/nre-192942.
    1. Hesp Z. C., Goldstein E. Z., Miranda C. J., Kaspar B. K., McTigue D. M. Chronic oligodendrogenesis and remyelination after spinal cord injury in mice and rats. The Journal of Neuroscience. 2015;35(3):1274–1290. doi: 10.1523/JNEUROSCI.2568-14.2015.
    1. Arendt T., Stieler J. T., Holzer M. Tau and tauopathies. Brain Research Bulletin. 2016;126:238–292. doi: 10.1016/j.brainresbull.2016.08.018.
    1. Jiang J., Liu G., Shi S., Li Y., Li Z. Effects of manual acupuncture combined with donepezil in a mouse model of Alzheimer’s disease. Acupuncture in Medicine. 2019;37(1):64–71. doi: 10.1136/acupmed-2016-011310.
    1. Reddy P. H. Amyloid beta-induced glycogen synthase kinase 3β phosphorylated VDAC1 in Alzheimer’s disease: implications for synaptic dysfunction and neuronal damage. Biochimica et Biophysica Acta-Molecular Basis of Disease. 2013;1832(12):1913–1921. doi: 10.1016/j.bbadis.2013.06.012.
    1. Avrahami L., Farfara D., Shaham-Kol M., Vassar R., Frenkel D., Eldar-Finkelman H. Inhibition of glycogen synthase kinase-3 ameliorates β-amyloid pathology and restores lysosomal acidification and mammalian target of rapamycin activity in the Alzheimer disease mouse model: in vivo and in vitro studies. The Journal of Biological Chemistry. 2013;288(2):1295–1306. doi: 10.1074/jbc.M112.409250.
    1. Duffy S. N., Craddock K. J., Abel T., Nguyen P. V. Environmental enrichment modifies the PKA-dependence of hippocampal LTP and improves hippocampus-dependent memory. Learning & Memory. 2001;8(1):26–34. doi: 10.1101/lm.36301.
    1. Raiker S. J., Lee H., Baldwin K. T., Duan Y., Shrager P., Giger R. J. Oligodendrocyte-myelin glycoprotein and Nogo negatively regulate activity-dependent synaptic plasticity. The Journal of Neuroscience. 2010;30:12432–12445. doi: 10.1523/jneurosci.0895-10.2010.
    1. Sui L., Wang J., Li B. M. Role of the phosphoinositide 3-kinase-Akt-mammalian target of the rapamycin signaling pathway in long-term potentiation and trace fear conditioning memory in rat medial prefrontal cortex. Learning & Memory. 2008;15(10):762–776. doi: 10.1101/lm.1067808.
    1. Hoeffer C. A., Tang W., Wong H., et al. Removal of FKBP12 enhances mTOR-Raptor interactions, LTP, memory, and perseverative/repetitive behavior. Neuron. 2008;60(5):832–845. doi: 10.1016/j.neuron.2008.09.037.
    1. Swiech L., Perycz M., Malik A., Jaworski J. Role of mTOR in physiology and pathology of the nervous system. Biochimica et Biophysica Acta. 2008;1784(1):116–132. doi: 10.1016/j.bbapap.2007.08.015.
    1. Zhu Y., Zeng Y., Wang X., Ye X. Effect of electroacupuncture on the expression of mTOR and eIF4E in hippocampus of rats with vascular dementia. Neurological Sciences. 2013;34(7):1093–1097. doi: 10.1007/s10072-012-1209-4.
    1. Fukada T., Tonks N. K. Identification of YB-1 as a regulator of PTP1B expression: implications for regulation of insulin and cytokine signaling. The EMBO Journal. 2003;22(3):479–493. doi: 10.1093/emboj/cdg067.
    1. Sang L., Liu C., Wang L., et al. Disrupted brain structural connectivity network in subcortical ischemic vascular cognitive impairment with no dementia. Frontiers in Aging Neuroscience. 2020;12:p. 6. doi: 10.3389/fnagi.2020.00006.
    1. Sperling R. A., LaViolette P. S., O'Keefe K., et al. Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron. 2009;63(2):178–188. doi: 10.1016/j.neuron.2009.07.003.
    1. Wang Z., Nie B., Li D., et al. Effect of acupuncture in mild cognitive impairment and Alzheimer disease: a functional MRI study. PLoS One. 2012;7(8, article e42730) doi: 10.1371/journal.pone.0042730.
    1. Tang Y., Xing Y., Zhu Z., et al. The effects of 7-week cognitive training in patients with vascular cognitive impairment, no dementia (the Cog-VACCINE study): a randomized controlled trial. Alzheimers Dement. 2019;15(5):605–614. doi: 10.1016/j.jalz.2019.01.009.
    1. Stampanoni Bassi M., Iezzi E., Gilio L., Centonze D., Buttari F. Synaptic plasticity shapes brain connectivity: implications for network topology. International Journal of Molecular Sciences. 2019;20(24):p. 6193. doi: 10.3390/ijms20246193.
    1. Yu C.-c., Ma C.-y., Wang H., et al. Effects of acupuncture on Alzheimer’s disease: evidence from neuroimaging studies. Chinese Journal of Integrative Medicine. 2019;25(8):631–640. doi: 10.1007/s11655-018-2993-3.
    1. Zheng W., Su Z., Liu X., et al. Modulation of functional activity and connectivity by acupuncture in patients with Alzheimer disease as measured by resting-state fMRI. PLoS One. 2018;13, article e0196933 doi: 10.1371/journal.pone.0196933.
    1. Shan Y., Wang J.-J., Wang Z.-Q., et al. Neuronal specificity of acupuncture in Alzheimer’s disease and mild cognitive impairment patients: a functional MRI study. Evidence-based Complementary and Alternative Medicine. 2018;2018:10. doi: 10.1155/2018/7619197.7619197
    1. Feng Y., Bai L., Ren Y., et al. FMRI connectivity analysis of acupuncture effects on the whole brain network in mild cognitive impairment patients. Magnetic Resonance Imaging. 2012;30(5):672–682. doi: 10.1016/j.mri.2012.01.003.
    1. Zhao L., Zhu F., Chen S., et al. Acupuncture at the Taixi (KI3) acupoint activates cerebral neurons in elderly patients with mild cognitive impairment. Neural Regeneration Research. 2014;9:1163–1168. doi: 10.4103/1673-5374.135319.
    1. Chen S., Bai L., Xu M., et al. Multivariate granger causality analysis of acupuncture effects in mild cognitive impairment patients: an FMRI study. Evidence-based Complementary and Alternative Medicine. 2013;2013:12. doi: 10.1155/2013/127271.127271
    1. Fu P., Jia J. P., Zhu J., Huang J. J. Effects of acupuncture at Neiguan (PC 6) on human brain functional imaging in different functional states. Zhongguo Zhen Jiu. 2005;25:784–786.
    1. Zhou Y., Jia J. Effect of acupuncture given at the HT 7, ST 36, ST 40 and KI 3 acupoints on various parts of the brains of Alzheimer’s disease patients. Acupuncture & Electro-Therapeutics Research. 2008;33(1):9–17. doi: 10.3727/036012908803861186.
    1. Tan T. T., Wang D., Huang J. K., et al. Modulatory effects of acupuncture on brain networks in mild cognitive impairment patients. Neural Regeneration Research. 2017;12(2):250–258. doi: 10.4103/1673-5374.200808.
    1. Li H., Wang Z., Yu H., et al. The long-term effects of acupuncture on hippocampal functional connectivity in aMCI with hippocampal atrophy: a randomized longitudinal fMRI study. Neural Plasticity. 2020;2020:9. doi: 10.1155/2020/6389368.
    1. Bai L., Zhang M., Chen S., et al. Characterizing acupuncture de qi in mild cognitive impairment: relations with small-world efficiency of functional brain networks. Evidence-based Complementary and Alternative Medicine. 2013;2013:8. doi: 10.1155/2013/304804.304804
    1. Xiao L. Y., Wang X. R., Yang Y., et al. Applications of acupuncture therapy in modulating plasticity of central nervous system. Neuromodulation. 2018;21(8):762–776. doi: 10.1111/ner.12724.
    1. Ding N., Jiang J., Xu A., Tang Y., Li Z. Manual acupuncture regulates behavior and cerebral blood flow in the SAMP8 mouse model of Alzheimer’s disease. Frontiers in Neuroscience. 2019;13:p. 37. doi: 10.3389/fnins.2019.00037.
    1. Kong J., Gollub R., Huang T., et al. Acupuncture de qi, from qualitative history to quantitative measurement. Journal of Alternative and Complementary Medicine. 2007;13(10):1059–1070. doi: 10.1089/acm.2007.0524.

Source: PubMed

3
Sottoscrivi