In Vitro Comparative Skin Irritation Induced by Nano and Non-Nano Zinc Oxide

Maria Pilar Vinardell, Hector Llanas, Laura Marics, Montserrat Mitjans, Maria Pilar Vinardell, Hector Llanas, Laura Marics, Montserrat Mitjans

Abstract

This study was designed to determine whether nano-sized ZnO has the potential to cause acute cutaneous irritation using cultured HaCaT keratinocytes and a human skin equivalent as in vitro models, compared to non-nanomaterials. Commercial nano ZnO with different sizes (50 nm and 100 nm) was characterized by dynamic light scattering (DLS) and microscopy (SEM) in different media. Nano ZnO reduced the cell viability of HaCaT in a dose-dependent and time-dependent manner, in a similar way to macro ZnO. However, the 3D-epidermis model revealed no irritation at 1 mg/mL after 24 h of exposure. In conclusion, nano-sized ZnO does not irritate skin, in a similar manner to non-nano ZnO.

Keywords: 3D-epidermal model; cytotoxicity; keratinocytes; skin irritation; zinc oxide.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Transmission electron microscopy (TEM) images of ZnO 50 nm (a) and 100 nm (b) in distilled water, phosphate buffered saline (PBS) and Dulbecco’s modified Eagle medium (DMEM) cell culture medium, respectively.
Figure 2
Figure 2
Cell viability of HaCaT cells exposed to different concentrations of ZnO (a) and ZnO 50 (b) and 100 nm (c), respectively, after 24, 48 and 72 h incubation. Mean values ± standard deviation of triplicates of at least three independent experiments. ap < 0.05, bp < 0.01 and cp < 0.001 compared to controls.
Figure 3
Figure 3
IC50 values calculated from the curves of cell viability of HaCaT cells exposed to ZnO and ZnO 50 and 100 nm after 24, 48 and 72 h incubation. Mean values ± standard deviation of triplicates of at least three independent experiments.
Figure 4
Figure 4
Images of HaCaT cell by phase contrast microscopy. Control cells without treatment (a), cells treated for 24 h with 25 µg/mL of ZnO (b), ZnO 50 nm (c) and ZnO 100 nm (d).
Figure 5
Figure 5
Episkin histological images. Tissues were processed for paraffin sections and stained with hematoxylin and eosin stain for histological examination. Normal control group treated with PBS (a), ZnO non-nanometric (b), ZnO 50 nm (c) and ZnO 100 nm (d).

References

    1. Liu W.T. Nanoparticles and their biological and environmental applications. J. Biosci. Bioeng. 2006;102:1–7. doi: 10.1263/jbb.102.1.
    1. Nohynek G.J., Dufour E.K., Roberts M.S. Nanotechnology, cosmetics and the skin: Is there a health risk? Skin Pharmacol. Physiol. 2008;21:136–149. doi: 10.1159/000131078.
    1. Hussain S.M., Warheit D.B., Ng S.P., Comfort K.K., Grabinski C.M., Braydich-Stolle L.K. At the Crossroads of Nanotoxicology in vitro: Past Achievements and Current Challenges. Toxicol. Sci. 2015;147:5–16. doi: 10.1093/toxsci/kfv106.
    1. Vinardell M.P., Mitjans M. Antitumor activities of metal oxides nanoparticles. Nanomaterials. 2015;5:1004–1021. doi: 10.3390/nano5021004.
    1. Osmond M.J., McCall M.J. Zinc oxide nanoparticles in modern sunscreens: An analysis of potential exposure and hazard. Nanotoxicology. 2010;4:15–41. doi: 10.3109/17435390903502028.
    1. Hackenberg S., Kleinsasser N. Dermal toxicity of ZnO nanoparticles: A worrying feature of sunscreen? Nanomedicine (Lond.) 2012;7:461–4613. doi: 10.2217/nnm.12.23.
    1. Gulson B., McCall M.J., Bowman D.M., Pinheiro T. A review of critical factors for assessing the dermal absorption of metal oxide nanoparticles from sunscreens applied to humans, and a research strategy to address current deficiencies. Arch. Toxicol. 2015;89:1909–1930. doi: 10.1007/s00204-015-1564-z.
    1. Nohynek G.J., Dufour E.K. Nano-sized cosmetic formulations or solid nanoparticles in sunscreens: A risk to human health? Arch. Toxicol. 2012;86:1063–1075. doi: 10.1007/s00204-012-0831-5.
    1. Holmes A.M., Song Z., Moghimi H.R., Roberts M.S. Relative Penetration of Zinc Oxide and Zinc Ions into Human Skin after Application of Different Zinc Oxide Formulations. ACS Nano. 2016;10:1810–1819. doi: 10.1021/acsnano.5b04148.
    1. Ryu H.J., Seo M.Y., Jung S.K., Maeng E.H., Lee S.Y., Jang D.H., Lee T.J., Jo K.Y., Kim Y.R., Cho K.B., et al. Zinc oxide nanoparticles: A 90-day repeated-dose dermal toxicity study in rats. Int. J. Nanomed. 2014;9(Suppl. 2):137–144.
    1. Everett W.N., Chern C., Sun D., McMahon R.E., Zhang X., Chen W.J., Hahn M.S., Sue H.J. Phosphate-enhanced cytotoxicity of zinc oxide nanoparticles and agglomerates. Toxicol. Lett. 2014;225:177–184. doi: 10.1016/j.toxlet.2013.12.005.
    1. Peng Y.H., Tso C.P., Tsai Y.C., Zhuang C.M., Shih Y.H. The effect of electrolytes on the aggregation kinetics of three different ZnO nanoparticles in water. Sci. Total Environ. 2015;530–531:183–190. doi: 10.1016/j.scitotenv.2015.05.059.
    1. Lee S.H., Lee H.R., Kim Y.R., Kim M.K. Toxic response of zinc oxide nanoparticles in human epidermal keratinocyte HaCaT cells. Toxicol. Environ. Health Sci. 2012;4:14–18. doi: 10.1007/s13530-012-0112-y.
    1. Wahab R., Siddiqui M.A., Saquib Q., Dwivedi S., Ahmad J., Musarrat J., Al-Khedhairy A.A., Shin H.S. ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity. Colloids Surf. B. 2014;117:267–276. doi: 10.1016/j.colsurfb.2014.02.038.
    1. OECD . Test No. 439: In Vitro Skin Irritation: Reconstructed Human Epidermis Test Method. OECD Publishing; Paris, France: 2015.
    1. Choi J., Kim H., Choi J., Oh S.M., Park J., Park K. Skin corrosion and irritation test of sunscreen nanoparticles using reconstructed 3D human skin model. Environ. Health Toxicol. 2014;29:e2014004. doi: 10.5620/eht.2014.29.e2014004.
    1. Surekha P., Kishore A.S., Srinivas A., Selvam G., Goparaju A., Reddy P.N., Murthy P.B. Repeated dose dermal toxicity study of nano zinc oxide with Sprague-Dawley rats. Cutan. Ocul. Toxicol. 2012;31:26–32. doi: 10.3109/15569527.2011.595750.
    1. Jeong S.H., Kim H.J., Ryu H.J., Ryu W.I., Park Y.H., Bae H.C., Jang Y.S., Son S.W. ZnO nanoparticles induce TNF-α expression via ROS-ERK-Egr 1 pathway in human keratinocytes. J. Dermatol. Sci. 2013;72:263–273. doi: 10.1016/j.jdermsci.2013.08.002.
    1. Leite-Silva V.R., Liu D.C., Sanchez W.Y., Studier H., Mohammed Y.H., Holmes A., Becker W., Grice J.E., Benson H.A., Roberts M.S. Effect of flexing and massage on in vivo human skin penetration and toxicity of zinc oxide nanoparticles. Nanomedicine (Lond.) 2016;11:1193–1205. doi: 10.2217/nnm-2016-0010.
    1. Mosmann T. Rapid colorimetric assay to cellular growth and survival: Application to proliferation and cytotoxicity assays. J. Immunol. Methods. 1983;65:55–63. doi: 10.1016/0022-1759(83)90303-4.
    1. Monteiro-Riviere N.A., Inman A.O., Zhang L.W. Limitations and relative utility of screening assays to assess engineered nanoparticle toxicity in a human cell line. Toxicol. Appl. Pharm. 2009;234:222–235. doi: 10.1016/j.taap.2008.09.030.
    1. Kroll A., Pillukat M.H., Hahn D., Schnekenburger J. Interference of engineered nanoparticles with in vitro toxicity assays. Arch. Toxicol. 2012;86:1123–1136. doi: 10.1007/s00204-012-0837-z.

Source: PubMed

3
Sottoscrivi