Review: microbial transformations of human bile acids

Douglas V Guzior, Robert A Quinn, Douglas V Guzior, Robert A Quinn

Abstract

Bile acids play key roles in gut metabolism, cell signaling, and microbiome composition. While the liver is responsible for the production of primary bile acids, microbes in the gut modify these compounds into myriad forms that greatly increase their diversity and biological function. Since the early 1960s, microbes have been known to transform human bile acids in four distinct ways: deconjugation of the amino acids glycine or taurine, and dehydroxylation, dehydrogenation, and epimerization of the cholesterol core. Alterations in the chemistry of these secondary bile acids have been linked to several diseases, such as cirrhosis, inflammatory bowel disease, and cancer. In addition to the previously known transformations, a recent study has shown that members of our gut microbiota are also able to conjugate amino acids to bile acids, representing a new set of "microbially conjugated bile acids." This new finding greatly influences the diversity of bile acids in the mammalian gut, but the effects on host physiology and microbial dynamics are mostly unknown. This review focuses on recent discoveries investigating microbial mechanisms of human bile acids and explores the chemical diversity that may exist in bile acid structures in light of the new discovery of microbial conjugations. Video Abstract.

Keywords: Bile acid; Cholic acid; Clostridium scindens; Conjugation; Enterocloster bolteae; Gut health; Metabolism; Microbiology; Microbiome.

Conflict of interest statement

The authors declare that they have no competing interests.

Figures

Fig. 1
Fig. 1
Diversity of known human bile acids. A All BAs are built off the same sterol backbone with variations in hydroxylated positions, hydroxyl orientation, and the presence of ketones. CA and CDCA, along with GlyCA, GlyCDCA, TaurCA, and TaurCDCA, make up the primary BA pool. Remaining BAs in the list make up secondary and tertiary BA pools as a result of modifications from gut microbes [–7]. Allobile acids, although matching in hydroxyl positions to their standard bile acid counterparts, differ in ring orientation. Standard bile acids have the first ring in the B transorientation, yielding 5β-BAs, while allobile acids have this ring in the C cis-orientation, yielding 5α-BAs
Fig. 2
Fig. 2
Deconjugation reactions and enzyme homology present between gut bacteria. Regardless of hydroxylation positions, substitution of water for either A glycine or B taurine yields the same products. C Structural homology between subunits from B. thetaiotaomicron (6UFY, blue), L. salivarius (5HKE, red), B. longum (2HF0, yellow), C. perfringens (2BJF, green), and E. faecalis (4WL3, orange) using Visual Molecular Dynamics (VMD) software [47]. D Structural homology (QH) was measured utilizing VMD with a minimum of 0.5804 and a maximum of 0.8533. E. faecalis and L. salivarius BSHs had the greatest similarity while B. thetaiotaomicron was the most dissimilar to all other organisms. These analyses were created de novo for this review
Fig. 3
Fig. 3
Dehydroxylation pathway for primary BAs CA (R: -OH) and CDCA (R: -H). A The pathway to complete 7α-dehydroxylation is a multi-stage process that involves progressive substrate oxidation, likely for molecule stability, prior to dehydroxylation, followed by reduction at each previously oxidized position along the sterol backbone [59]. The enzyme capable of dehydroxylation, BaiE, is highly conserved structurally between C. scindens (red), C. hylemonae (blue), and P. hiranonis (yellow), evident in both B side and C top-down views of BaiE
Fig. 4
Fig. 4
Pathways of CA and CDCA epimerization, including corresponding EC identifiers. A CA undergoes three different epimerization pathways leading to the production of iCA (via 3α/β-HSDH), UCA (via 7α/β-HSDH), or 12-ECA (via 12α/β-HSDH) while B CDCA undergoes two distinct epimerization pathways leading to the production of UDCA (via 7α/β-HSDH) or iCDCA (via 3α/β-HSDH). *S. maltophilia transforms CDCA to 7-oxo-CDCA but the enzyme is categorized under EC 1.1.1.159, where the official reaction involves CA 7α-oxidation [70]
Fig. 5
Fig. 5
Potential increased diversity of host BA pool as a result of MCBA production. With the current understanding of BA metabolism, A primary BAs CA and CDCA are known to be conjugated in the liver to taurine and glycine to form B GlyCA, TaurCA, GlyCDCA, and TaurCDCA, completing the pool of primary human BAs. In light of recent research, CA is also known to be conjugated by gut microbes to form C PheCA, LeuCA, and TyrCA [5]. Expanding the potential library of microbially conjugated BAs by including the remaining amino acids conjugates for D CA and E CDCA increases the diversity of human BAs over 5-fold for these backbones alone

References

    1. Goodacre CJ, Naylor WP. Evolution of the temperament theory and mental attitude in complete denture prosthodontics: from hippocrates to M.M. House. J Prosthodontics. 2020;29:594–598. doi: 10.1111/jopr.13215.
    1. Liu L, Dong W, Wang S, Zhang Y, Liu T, Xie R, et al. Deoxycholic acid disrupts the intestinal mucosal barrier and promotes intestinal tumorigenesis. Food Funct. 2018;9:5588–5597. doi: 10.1039/C8FO01143E.
    1. Cao H, Xu M, Dong W, Deng B, Wang S, Zhang Y, et al. Secondary bile acid-induced dysbiosis promotes intestinal carcinogenesis. Int J Cancer. 2017;140:2545–2556. doi: 10.1002/ijc.30643.
    1. Hofmann AF. The continuing importance of bile acids in liver and intestinal disease. Arch Intern Med. 1999;159:2647–2658. doi: 10.1001/archinte.159.22.2647.
    1. Quinn RA, Melnik AV, Vrbanac A, Fu T, Patras KA, Christy MP, et al. Global chemical effects of the microbiome include new bile-acid conjugations. Nature. 2020;579:123–9. 10.1038/s41586-020-2047-9. Accessed 27 May 2020.
    1. Heinken A, Ravcheev DA, Baldini F, Heirendt L, Fleming RMT, Thiele I. Systematic assessment of secondary bile acid metabolism in gut microbes reveals distinct metabolic capabilities in inflammatory bowel disease. Microbiome. 2019;7:75. doi: 10.1186/s40168-019-0689-3.
    1. Noronha A, Modamio J, Jarosz Y, Guerard E, Sompairac N, Preciat G, et al. The Virtual Metabolic Human database: Integrating human and gut microbiome metabolism with nutrition and disease. Nucleic Acids Re. 2019;47:D614–D624. doi: 10.1093/nar/gky992.
    1. Bortolini O, Medici A, Poli S. Biotransformations on steroid nucleus of bile acids. Steroids. 1997:564–77 Available from: .
    1. Russell DW. The enzymes, regulation, and genetics of bile acid synthesis. Annu Rev Biochem. 2003;72:137–174. doi: 10.1146/annurev.biochem.72.121801.161712.
    1. Moini J. Epidemiology of diet and diabetes mellitus. Epidemiol Diab. 2019:57–73. 10.1016/B978-0-12-816864-6.00005-5.
    1. Kakiyama G, Muto A, Takei H, Nittono H, Murai T, Kurosawa T, et al. A simple and accurate HPLC method for fecal bile acid profile in healthy and cirrhotic subjects: Validation by GC-MS and LC-MS. J Lipid Res. 2014;55:978–990. doi: 10.1194/jlr.D047506.
    1. García-Cañaveras JC, Donato MT, Castell JV, Lahoz A. Targeted profiling of circulating and hepatic bile acids in human, mouse, and rat using a UPLC-MRM-MS-validated method. J Lipid Res. 2012;53:2231–2241. doi: 10.1194/jlr.D028803.
    1. Goto J, Hasegawa K, Nambara T, Iida T. Studies on steroids. CCLIV. Gas chromatographic-mass spectrometric determination of 4- and 6-hydroxylated bile acids in human urine with negative ion chemical ionization detection. Chromatogr. 1992;574:1–7 Available from: . Accessed 15 Mar 2021.
    1. Li J, Dawson PA. Animal models to study bile acid metabolism. Biochim Biophys Acta. 2019:895–911. 10.1016/j.bbadis.2018.05.011.
    1. Hofmann AF. The enterohepatic circulation of bile acids in mammals: Form and functions. Front Biosci. 2009;14:2584–2598. doi: 10.2741/3399.
    1. Dawson PA, Karpen SJ. Intestinal transport and metabolism of bile acids. J Lipid Res. 2015:1085–99 Available from: .
    1. Ridlon JM, Kang DJ, Hylemon PB. Bile salt biotransformations by human intestinal bacteria. J Lipid Res. 2006;47:241–259. doi: 10.1194/jlr.R500013-JLR200.
    1. Aldini R, Roda A, Lenzi PL, Ussia G, Vaccari MC, Mazzella G, et al. Bile acid active and passive ileal transport in the rabbit: effect of luminal stirring. Eur J Clin Invest. 1992;22:744–50. 10.1111/j.1365-2362.1992.tb01439.x. Accessed 15 Mar 2021.
    1. de Aguiar Vallim TQ, Tarling EJ, Edwards PA. Pleiotropic roles of bile acids in metabolism. Cell Metabolism. 2013:657–69. 10.1016/j.cmet.2013.03.013.
    1. Shin DJ, Wang L. Bile acid-activated receptors: a review on FXR and other nuclear receptors. Handbook Exp Pharmacol. 2019:51–72 Available from: . Accessed 23 Oct 2020.
    1. Inagaki T, Moschetta A, Lee YK, Peng L, Zhao G, Downes M, et al. Regulation of antibacterial defense in the small intestine by the nuclear bile acid receptor. Proc Natl Acad Sci USA. 2006;103:3920–5. Available from: . Accessed 23 Oct 2020.
    1. Hofmann AF, Eckmann L. How bile acids confer gut mucosal protection against bacteria. Proc Natl Acad Sci USA. 2006:4333–4. Available from: . Accessed 23 Oct 2020.
    1. Sinal CJ, Tohkin M, Miyata M, Ward JM, Lambert G, Gonzalez FJ. Targeted disruption of the nuclear receptor FXR/BAR impairs bile acid and lipid homeostasis. Cell. 2000;102:731–744. doi: 10.1016/S0092-8674(00)00062-3.
    1. Tremblay S, Romain G, Roux M, Chen XL, Brown K, Gibson DL, et al. Bile acid administration elicits an intestinal antimicrobial program and reduces the bacterial burden in two mouse models of enteric infection. Infect Immun. 2017;85. Available from: 10.1128/IAI.00942-16. Accessed 15 Mar 2021.
    1. Sayin SI, Wahlström A, Felin J, Jäntti S, Marschall HU, Bamberg K, et al. Gut microbiota regulates bile acid metabolism by reducing the levels of tauro-beta-muricholic acid, a naturally occurring FXR antagonist. Cell Metabolism. 2013;17:225–35. Available from: . Accessed 15 Mar 2021.
    1. Keitel V, Stindt J, Häussinger D. Bile acid-activated receptors: GPBAR1 (TGR5) and other G protein-coupled receptors. Handb Exp Pharmacol. 2019:19–49 Available from: .
    1. Sannasiddappa TH, Lund PA, Clarke SR. In vitro antibacterial activity of unconjugated and conjugated bile salts on Staphylococcus aureus. Front Microbiol. 2017;8 Available from: .
    1. Stacey M, Webb M. Studies on the antibacterial properties of the bile acids and some compounds derived from cholanic acid. Proc R Soc Med. 1947;134:523–37. Available from: . Accessed 23 Oct 2020.
    1. Kurdi P, Kawanishi K, Mizutani K, Yokota A. Mechanism of growth inhibition by free bile acids in Lactobacilli and Bifidobacteria. J Bacteriol. 2006;188:1979–86. Available from: . Accessed 8 Dec 2020.
    1. Urdaneta V, Casadesús J. Interactions between bacteria and bile salts in the gastrointestinal and hepatobiliary tracts. Front Med. 2017:163 Available from: .
    1. Ridlon JM, Harris SC, Bhowmik S, Kang DJ, Hylemon PB. Consequences of bile salt biotransformations by intestinal bacteria. Gut Microbes. 2016:22–39 Available from: .
    1. Gustafsson BE, Midtvedt T, Norman A. Isolated fecal microorganisms capable of 7-alpha-dehydroxylating bile acids. J Exp Med. 1966;123:413–432. doi: 10.1084/jem.123.2.413.
    1. Jones BV, Begley M, Hill C, CGM G, Marchesi JR. Functional and comparative metagenomic analysis of bile salt hydrolase activity in the human gut microbiome. Proc Natl Acad Sci USA. 2008;105:13580–13585. doi: 10.1073/pnas.0804437105.
    1. Joyce SA, Gahan CGM. Disease-associated changes in bile acid profiles and links to altered gut microbiota. Dig Dis. 2017;35:169–177. doi: 10.1159/000450907.
    1. Doden H, Sallam LA, Devendran S, Ly L, Doden G, Daniel SL, et al. Metabolism of oxo-bile acids and characterization of recombinant 12α- hydroxysteroid dehydrogenases from bile acid 7α-dehydroxylating human gut bacteria. Appl Environ Microbiol. 2018;84:235–253. doi: 10.1128/AEM.00235-18.
    1. Ovadia C, Perdones-Montero A, Spagou K, Smith A, Sarafian MH, Gomez-Romero M, et al. Enhanced Microbial Bile Acid Deconjugation and Impaired Ileal Uptake in Pregnancy Repress Intestinal Regulation of Bile Acid Synthesis. Hepatology. 2019;70:276–293.
    1. Kim GB, Yi SH, Lee BH. Purification and characterization of three different types of bile salt hydrolases from Bifidobacterium strains. J Dairy Sci. 2004;87:258–66. Available from: 10.3168/jds.S0022-0302(04)73164-1.
    1. Elkins CA, Moser SA, Savage DC. Genes encoding bile salt hydrolases and conjugated bile salt transporters in Lactobacillus johnsonii 100-100 and other Lactobacillus species. Microbiol. 2001;147:3403–3412. doi: 10.1099/00221287-147-12-3403.
    1. Corzo G, Gilliland SE. Bile salt hydrolase activity of three strains of Lactobacillus acidophilus. J Dairy Sci. 1999;82:472–480. doi: 10.3168/jds.S0022-0302(99)75256-2.
    1. Coleman JP, Hudson LL. Cloning and characterization of a conjugated bile acid hydrolase gene from Clostridium perfringens. Appl Environ Microbiol. 1995;61:2514–2520. doi: 10.1128/aem.61.7.2514-2520.1995.
    1. Wijaya A, Hermann A, Abriouel H, Specht I, Yousif NMK, Holzapfel WH, et al. Cloning of the bile salt hydrolase (bsh) gene from Enterococcus faecium FAIR-E 345 and chromosomal location of bsh genes in food Enterococci. J Food Protect. 2004;67:2772–2778. doi: 10.4315/0362-028X-67.12.2772.
    1. Dussurget O, Cabanes D, Dehoux P, Lecuit M, Buchrieser C, Glaser P, et al. Listeria monocytogenes bile salt hydrolase is a PrfA-regulated virulence factor involved in the intestinal and hepatic phases of listeriosis. Mol Microbiol. 2002;45:1095–1106. doi: 10.1046/j.1365-2958.2002.03080.x.
    1. Dean M, Cervellati C, Casanova E, Squerzanti M, Lanzara V, Medici A, et al. Characterization of cholylglycine hydrolase from a bile-adapted strain of Xanthomonas maltophilia and its application for quantitative hydrolysis of conjugated bile salts. Appl Environ Microbiol. 2002;68:3126–3128. doi: 10.1128/AEM.68.6.3126-3128.2002.
    1. Kawamoto K, Horibe I, Uchida K. Purification and characterization of a new hydrolase for conjugated bile acids, chenodeoxycholyltaurine hydrolase, from Bacteroides vulgatus. J Biochem. 1989;106:1049–1053. doi: 10.1093/oxfordjournals.jbchem.a122962.
    1. Delpino MV, Marchesini MI, Estein SM, Comerci DJ, Cassataro J, Fossati CA, et al. A bile salt hydrolase of Brucella abortus contributes to the establishment of a successful infection through the oral route in mice. Infect Immun. 2007;75:299–305 Available from: . Accessed 8 Dec 2020.
    1. Song Z, Cai Y, Lao X, Wang X, Lin X, Cui Y, et al. Taxonomic profiling and populational patterns of bacterial bile salt hydrolase (BSH) genes based on worldwide human gut microbiome. Microbiome. 2019;7:9. doi: 10.1186/s40168-019-0628-3.
    1. Humphrey W, Dalke A, Schulten K. VMD: Visual molecular dynamics. J Mol Graphics. 1996; Available from: .
    1. Percy-Robb IW. Bile Acids: A pH Dependent Antibacterial System in the Gut? Br Med J. 1972;3:813–815. doi: 10.1136/bmj.3.5830.813.
    1. Stellwag EJ, Hylemon PB. Purification and characterization of bile salt hydrolase from Bacteroides fragilis subsp. fragilis. Biochim Biophys Acta. 1976;452:165–176. doi: 10.1016/0005-2744(76)90068-1.
    1. Xu F, Guo F, Hu XJ, Lin J. Crystal structure of bile salt hydrolase from Lactobacillus salivarius. Acta Crystallogr F Struct Biol Commun. 2016;72:376–381. doi: 10.1107/S2053230X16005707.
    1. Hu X-J. bile salt hydrolase from Lactobacillus salivarius. 2016.
    1. Kumar RS, Brannigan JA, Prabhune AA, Pundle AV, Dodson GG, Dodson EJ, et al. Structural and functional analysis of a conjugated bile salt hydrolase from Bifidobacterium longum reveals an evolutionary relationship with penicillin V acylase. J Biol Chem. 2006;281:32516–32525. doi: 10.1074/jbc.M604172200.
    1. Suresh CG, Kumar RS, Brannigan JA. Bifidobacterium longum bile salt hydrolase. 2006.
    1. Seegar TCM. B. theta Bile Salt Hydrolase; 2019. 10.2210/pdb6UFY/pdb.
    1. Adhikari AA, Seegar TCM, Ficarro SB, McCurry MD, Ramachandran D, Yao L, et al. Development of a covalent inhibitor of gut bacterial bile salt hydrolases. Nat Chem Biol. 2020;16:318–326. doi: 10.1038/s41589-020-0467-3.
    1. Rossocha M, Schultz-Heienbrok R, von Moeller H, Coleman JP, Saenger W. Crystal structure of conjugated bile acid hydrolase from Clostridium perfringens in complex with reaction products taurine and deoxycholate. 2005.
    1. Rossocha M, Schultz-Heienbrok R, von Moeller H, Coleman JP, Saenger W. Conjugated bile acid hydrolase is a tetrameric N-terminal thiol hydrolase with specific recognition of its cholyl but not of its tauryl product. Biochemistry. 2005;44:5739–5748. doi: 10.1021/bi0473206.
    1. Ramasamy S, Chand D, Suresh C. Crystal structure determination of Bile Salt Hydrolase from Enterococcus feacalis. 2015.
    1. Ridlon JM, Hylemon PB. Identification and characterization of two bile acid coenzyme A transferases from Clostridium scindens, a bile acid 7α-dehydroxylating intestinal bacterium. J Lipid Res. 2012;53:66–76. doi: 10.1194/jlr.M020313.
    1. Mallonee DH, Hylemon PB. Sequencing and expression of a gene encoding a bile acid transporter from Eubacterium sp. strain VPI 12708. J Bacteriol. 1996;178:7053–7058. doi: 10.1128/jb.178.24.7053-7058.1996.
    1. Bhowmik S, Chiu HP, Jones DH, Chiu HJ, Miller MD, Xu Q, et al. Structure and functional characterization of a bile acid 7α dehydratase BaiE in secondary bile acid synthesis. Proteins. 2016;84:316–331. doi: 10.1002/prot.24971.
    1. Joint Center for Structural Genomics . RCSB PDB - 4LEH: Crystal structure of a bile-acid 7-alpha dehydratase (CLOSCI_03134) from Clostridium scindens ATCC 35704 at 2.90 A resolution. 2013.
    1. Joint Center for Structural Genomics . RCSB PDB - 4L8O: Crystal structure of a bile-acid 7-alpha dehydratase (CLOHYLEM_06634) from Clostridium hylemonae DSM 15053 at 2.20 A resolution. 2013.
    1. Joint Center for Structural Genomics . RCSB PDB - 4L8P: Crystal structure of a bile-acid 7-alpha dehydratase (CLOHIR_00079) from Clostridium hiranonis DSM 13275 at 1.60 A resolution. 2013.
    1. Harris SC, Devendran S, Méndez- García C, Mythen SM, Wright CL, Fields CJ, et al. Bile acid oxidation by Eggerthella lenta strains C592 and DSM 2243 T. Gut Microbes. 2018;9:523–39. Available from: . [cited 2021 Apr 18]
    1. Funabashi M, Grove TL, Wang M, Varma Y, McFadden ME, Brown LC, et al. A metabolic pathway for bile acid dehydroxylation by the gut microbiome. Nature. 2020;582:566–570. doi: 10.1038/s41586-020-2396-4.
    1. Bhowmik S, Jones DH, Chiu HP, Park IH, Chiu HJ, Axelrod HL, et al. Structural and functional characterization of BaiA, an enzyme involved in secondary bile acid synthesis in human gut microbe. Proteins. 2014;82:216–229. doi: 10.1002/prot.24353.
    1. Kang DJ, Ridlon JM, Moore DR, Barnes S, Hylemon PB. Clostridium scindens baiCD and baiH genes encode stereo-specific 7α/7β-hydroxy-3-oxo-Δ4-cholenoic acid oxidoreductases. Biochim Biophys Acta. 2008;1781:16–25. doi: 10.1016/j.bbalip.2007.10.008.
    1. Hirano S, Masuda N. Epimerization of the 7-hydroxy group of bile acids by the combination of two kinds of microorganisms with 7 alpha- and 7 beta-hydroxysteroid dehydrogenase activity, respectively. J Lipid Res. 1981;22:1060–1068. doi: 10.1016/S0022-2275(20)40663-7.
    1. Pedrini P, Andreotti E, Guerrini A, Dean M, Fantin G, Giovannini PP. Xanthomonas maltophilia CBS 897.97 as a source of new 7β- and 7α-hydroxysteroid dehydrogenases and cholylglycine hydrolase: Improved biotransformations of bile acids. Steroids. 2006;71:189–198. doi: 10.1016/j.steroids.2005.10.002.
    1. Wang S, Martins R, Sullivan MC, Friedman ES, Misic AM, El-Fahmawi A, et al. Diet-induced remission in chronic enteropathy is associated with altered microbial community structure and synthesis of secondary bile acids. Microbiome. 2019;7:1–20. doi: 10.1186/s40168-018-0604-3.
    1. Eggert T, Bakonyi D, Hummel W. Enzymatic routes for the synthesis of ursodeoxycholic acid. J Biotechnol. 2014;191:11–21. doi: 10.1016/j.jbiotec.2014.08.006.
    1. Giovannini PP, Grandini A, Perrone D, Pedrini P, Fantin G, Fogagnolo M. 7α- and 12α-Hydroxysteroid dehydrogenases from Acinetobacter calcoaceticus lwoffii: a new integrated chemo-enzymatic route to ursodeoxycholic acid. Steroids. 2008;73:1385–90 Available from: . Accessed 24 Apr 2021.
    1. Mythen SM, Devendran S, Méndez-García C, Cann I, Ridlon JM. Targeted synthesis and characterization of a gene cluster encoding NAD(P)H-dependent 3α-, 3β-, and 12α-hydroxysteroid dehydrogenases from Eggerthella CAG:298, a gut metagenomic sequence. Appl Environ Microbiol. 2018:84 Available from: .
    1. Lepercq P, Gérard P, Béguet F, Raibaud P, Grill J-P, Relano P, et al. Epimerization of chenodeoxycholic acid to ursodeoxycholic acid by Clostridium baratii isolated from human feces. FEMS Microbiol Lett. 2004;235:65–72. doi: 10.1111/j.1574-6968.2004.tb09568.x.
    1. Edenharder R, Knaflic T. Epimerization of chenodeoxycholic acid to ursodeoxycholic acid by human intestinal lecithinase-lipase-negative Clostridia. J Lipid Res. 1981;22:652–658. doi: 10.1016/S0022-2275(20)37375-2.
    1. Lee JY, Arai H, Nakamura Y, Fukiya S, Wada M, Yokota A. Contribution of the 7β-hydroxysteroid dehydrogenase from Ruminococcus gnavus N53 to ursodeoxycholic acid formation in the human colon. J Lipid Res. 2013;54:3062–3069. doi: 10.1194/jlr.M039834.
    1. Ferrandi EE, Bertolesi GM, Polentini F, Negri A, Riva S, Monti D. In search of sustainable chemical processes: Cloning, recombinant expression, and functional characterization of the 7α- and 7β-hydroxysteroid dehydrogenases from Clostridium absonum. Appl Microbiol Biotechnol. 2012;95:1221–1233. doi: 10.1007/s00253-011-3798-x.
    1. Liu L, Aigner A, Schmid RD. Identification, cloning, heterologous expression, and characterization of a NADPH-dependent 7β-hydroxysteroid dehydrogenase from Collinsella aerofaciens. Appl Microbiol Biotechnol. 2011;90:127–135. doi: 10.1007/s00253-010-3052-y.
    1. MacDonald IA, Jellett JF, Mahony DE, Holdeman LV. Bile salt 3α- and 12α-hydroxysteroid dehydrogenases from Eubacterium lentum and related organisms. Appl Environ Microbiol. 1979;37:992–1000. doi: 10.1128/aem.37.5.992-1000.1979.
    1. MacDonald IA, Mahony DE, Jellet JF, Meier CE. Nad-dependent 3α- and 12α-hydroxysteroid dehydrogenase activities from Eubacterium lentum ATCC no. 25559. Biochimica et Biophysica Acta (BBA)/Lipids and Lipid. Metabolism. 1977;489:466–76. Available from: .
    1. Wegner K, Just S, Gau L, Mueller H, Gérard P, Lepage P, et al. Rapid analysis of bile acids in different biological matrices using LC-ESI-MS/MS for the investigation of bile acid transformation by mammalian gut bacteria. Anal Bioanal Chem. 2017;409:1231–1245. doi: 10.1007/s00216-016-0048-1.
    1. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T, Kyrpides NC, et al. Genome-based taxonomic classification of the phylum actinobacteria. Front Microbiol. 2018;9:2007. doi: 10.3389/fmicb.2018.02007.
    1. Edenharder R, Schneider J. 12β-Dehydrogenation of bile acids by Clostridium paraputrificum, C. tertium, and C. difficle and epimerization at carbon-12 of deoxycholic acid by cocultivation with 12α-dehydrogenating Eubacterium lentum. Appl Environ Microbiol. 1985;49:964–968. doi: 10.1128/aem.49.4.964-968.1985.
    1. Edenharder R, Pfützner A. Characterization of NADP-dependent 12β-hydroxysteroid dehydrogenase from Clostridium paraputrificum. Biochim Biophys Acta. 1988;962:362–370. doi: 10.1016/0005-2760(88)90266-4.
    1. Doden HL, Wolf PG, Gaskins HR, Anantharaman K, Alves JMP, Ridlon JM. Completion of the gut microbial epi-bile acid pathway. Gut Microbes. 2021;13:1–20. doi: 10.1080/19490976.2021.1907271.
    1. Sfakianos MK, Wilson L, Sakalian M, Falany CN, Barnes S. Conserved residues in the putative catalytic triad of human bile acid coenzyme A:Amino acid N-acyltransferase. J Biol Chem. 2002;277:47270–5. Available from: . Accessed 19 Oct 2020.
    1. van de Waterbeemd H, Karajiannis H, el Tayar N. Lipophilicity of amino acids. Amino Acids. 1994:129–45 Available from: .
    1. Ambrogelly A, Palioura S, Söll D. Natural expansion of the genetic code. Nat Chem Biol. 2007;3:29–35. doi: 10.1038/nchembio847.
    1. Tamari M, Ogawa M, Kametaka M. A new bile acid conjugate, ciliatocholic acid, from bovine gall bladder bile. J Biochem. 1976;80:371–7.
    1. Chiang JYL. Bile acids: Regulation of synthesis. J Lipid Res. 2009:1955–66. Available from: .
    1. Chiang JYL. Recent advances in understanding bile acid homeostasis [version 1; peer review: 2 approved]. F1000Res. 2017;6(F1000 Faculty Rev):2029. 10.12688/f1000research.12449.1.
    1. Roda A, Minutello A, Angellotti MA, Fini A. Bile acid structure-activity relationship: Evaluation of bile acid lipophilicity using 1-octanol/water partition coefficient and reverse phase HPLC. J Lipid Res. 1990;31:1433–1443. doi: 10.1016/S0022-2275(20)42614-8.
    1. Mullish BH, McDonald JAK, Pechlivanis A, Allegretti JR, Kao D, Barker GF, et al. Microbial bile salt hydrolases mediate the efficacy of faecal microbiota transplant in the treatment of recurrent Clostridioides difficile infection. Gut. 2019;68:1791–1800. doi: 10.1136/gutjnl-2018-317842.
    1. Pickard JM, Zeng MY, Caruso R. Núñez G. Gut microbiota: Role in pathogen colonization, immune responses, and inflammatory disease. Immunol Rev. 2017:70–89. 10.1111/imr.12567.
    1. Ward JBJ, Lajczak NK, Kelly OB, O’Dwyer AM, Giddam AK, Ní Gabhann J, et al. Ursodeoxycholic acid and lithocholic acid exert anti-inflammatory actions in the colon. Am J Physiol. 2017;312:G550–8 Available from: . Accessed 23 Nov 2020.
    1. Bernstein H, Bernstein C, Payne CM, Dvorakova K, Garewal H. Bile acids as carcinogens in human gastrointestinal cancers. Mutat Res. 2005:47–65 Available from: . Accessed 24 Apr 2021.
    1. Bernstein C, Holubec H, Bhattacharyya AK, Nguyen H, Payne CM, Zaitlin B, et al. Carcinogenicity of deoxycholate, a secondary bile acid. Arch Toxicol. 2011:863–71 Available from: .
    1. Goossens JF, Bailly C. Ursodeoxycholic acid and cancer: From chemoprevention to chemotherapy. Pharmacol Ther. 2019;203:107396 Available from: . Accessed 15 Mar 2021.
    1. Eaton JE, Silveira MG, Pardi DS, Sinakos E, Kowdley KV, VAC L, et al. High-dose ursodeoxycholic acid is associated with the development of colorectal neoplasia in patients with ulcerative colitis and primary sclerosing cholangitis. Am J Gastroenterol. 2011:1638–45 Available from: .
    1. Lloyd-Price J, Arze C, Ananthakrishnan AN, Schirmer M, Avila-Pacheco J, Poon TW, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases. Nature. 2019;569:655–662. doi: 10.1038/s41586-019-1237-9.

Source: PubMed

3
Sottoscrivi