Implications for Neuromodulation Therapy to Control Inflammation and Related Organ Dysfunction in COVID-19

Marat Fudim, Yawar J Qadri, Kamrouz Ghadimi, David B MacLeod, Jeroen Molinger, Jonathan P Piccini, John Whittle, Paul E Wischmeyer, Manesh R Patel, Luis Ulloa, Marat Fudim, Yawar J Qadri, Kamrouz Ghadimi, David B MacLeod, Jeroen Molinger, Jonathan P Piccini, John Whittle, Paul E Wischmeyer, Manesh R Patel, Luis Ulloa

Abstract

COVID-19 is a syndrome that includes more than just isolated respiratory disease, as severe acute respiratory syndrome-coronavirus 2 (SARS-CoV2) also interacts with the cardiovascular, nervous, renal, and immune system at multiple levels, increasing morbidity in patients with underlying cardiometabolic conditions and inducing myocardial injury or dysfunction. Emerging evidence suggests that patients with the highest rate of morbidity and mortality following SARS-CoV2 infection have also developed a hyperinflammatory syndrome (also termed cytokine release syndrome). We lay out the potential contribution of a dysfunction in autonomic tone to the cytokine release syndrome and related multiorgan damage in COVID-19. We hypothesize that a cholinergic anti-inflammatory pathway could be targeted as a therapeutic avenue. Graphical Abstract .

Keywords: ACE2; COVID-19; SARS-CoV2; Vagus; Vagus nerve stimulation.

Conflict of interest statement

Marat Fudim consults for AxonTherapies, Daxor, Edwards, and Galvani, and received non-monetary support from Parasym. Kamrouz Ghadimi consults for Uptodate® for coagulation and blood management; receives grant support from NIH T32GM008600 and Duke Health; has previous support from Octapharma. Jonathan Piccini receives grants for clinical research from Abbott, American Heart Association, Association for the Advancement of Medical Instrumentation, Bayer, Boston Scientific, NHLBI, and Philips, and serves as a consultant to Abbott, Allergan, ARCA Biopharma, Biotronik, Boston Scientific, LivaNova, Medtronic, Milestone, Myokardia, Sanofi, Philips, and Up-to-Date. Manesh Patel receives grant support from Medtronic, Bayer, Janssen, and Heartflow, and consults for Bayer, Janssen, and Heartflow. All other authors report no relevant conflicts of interest.

Figures

Graphical Abstract
Graphical Abstract
.
Figure 1
Figure 1
Connection between the vagus nerve and immune system. ACh, acetylcholine; nAChR, nicotinic acetylcholine receptor; RAAS, renin angiotensin aldosterone system; ACE2, angiotensin-converting enzyme 2; SARS-CoV2, severe acute respiratory syndrome–coronavirus

References

    1. Clerkin, K. J., Fried, J. A., Raikhelkar, J., et al. (2020). Coronavirus disease 2019 (COVID-19) and cardiovascular disease. Circulation.
    1. Zhou, F., Yu, T., Du, R., et al. (2020). Clinical course and risk factors for mortality of adult inpatients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet.
    1. Ruan, Q., Yang, K., Wang, W., Jiang, L., & Song, J. (2020). Clinical predictors of mortality due to COVID-19 based on an analysis of data of 150 patients from Wuhan, China. Intensive Care Med.
    1. Huang C, Wang Y, Li X, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020;395:497–506. doi: 10.1016/S0140-6736(20)30183-5.
    1. Liao, M., Liu, Y., Yuan, J. et al. (2020). The landscape of lung bronchoalveolar immune cells in COVID-19 revealed by single-cell RNA sequencing. medRxiv.
    1. Mehta P, McAuley DF, Brown M, et al. COVID-19: consider cytokine storm syndromes and immunosuppression. Lancet. 2020;395:1033–1034. doi: 10.1016/S0140-6736(20)30628-0.
    1. Potter EK. Angiotensin inhibits action of vagus nerve at the heart. British Journal of Pharmacology. 1982;75:9–11. doi: 10.1111/j.1476-5381.1982.tb08752.x.
    1. Xu Z, Li W, Han J, et al. Angiotensin II induces kidney inflammatory injury and fibrosis through binding to myeloid differentiation protein-2 (MD2) Scientific Reports. 2017;7:44911. doi: 10.1038/srep44911.
    1. Mukerjee S, Gao H, Xu J, Sato R, Zsombok A, Lazartigues E. ACE2 and ADAM17 Interaction regulates the activity of presympathetic neurons. Hypertension. 2019;74:1181–1191. doi: 10.1161/HYPERTENSIONAHA.119.13133.
    1. Xia H, Feng Y, Obr TD, Hickman PJ, Lazartigues E. Angiotensin II type 1 receptor-mediated reduction of angiotensin-converting enzyme 2 activity in the brain impairs baroreflex function in hypertensive mice. Hypertension. 2009;53:210–216. doi: 10.1161/HYPERTENSIONAHA.108.123844.
    1. Haga S, Yamamoto N, Nakai-Murakami C, et al. Modulation of TNF-alpha-converting enzyme by the spike protein of SARS-CoV and ACE2 induces TNF-alpha production and facilitates viral entry. Proceedings of the National Academy of Sciences of the United States of America. 2008;105:7809–7814. doi: 10.1073/pnas.0711241105.
    1. Kuba K, Imai Y, Rao S, et al. A crucial role of angiotensin converting enzyme 2 (ACE2) in SARS coronavirus-induced lung injury. Nature Medicine. 2005;11:875–879. doi: 10.1038/nm1267.
    1. Oakes JM, Fuchs RM, Gardner JD, Lazartigues E, Yue X. Nicotine and the renin-angiotensin system. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology. 2018;315:R895–R906. doi: 10.1152/ajpregu.00099.2018.
    1. Ferrari MF, Raizada MK, Fior-Chadi DR. Differential regulation of the renin-angiotensin system by nicotine in WKY and SHR glia. Journal of Molecular Neuroscience. 2008;35:151–160. doi: 10.1007/s12031-007-9025-7.
    1. Ferrari MF, Raizada MK, Fior-Chadi DR. Nicotine modulates the renin-angiotensin system of cultured neurons and glial cells from cardiovascular brain areas of Wistar Kyoto and spontaneously hypertensive rats. Journal of Molecular Neuroscience. 2007;33:284–293. doi: 10.1007/s12031-007-9006-x.
    1. Ulloa L. The vagus nerve and the nicotinic anti-inflammatory pathway. Nature Reviews. Drug Discovery. 2005;4:673–684. doi: 10.1038/nrd1797.
    1. Lotze MT, Tracey KJ. High-mobility group box 1 protein (HMGB1): nuclear weapon in the immune arsenal. Nature Reviews. Immunology. 2005;5:331–342. doi: 10.1038/nri1594.
    1. Tracey KJ. The inflammatory reflex. Nature. 2002;420:853–859. doi: 10.1038/nature01321.
    1. Bassi GS, Kanashiro A, Coimbra NC, Terrando N, Maixner W, Ulloa L. Anatomical and clinical implications of vagal modulation of the spleen. Neuroscience and Biobehavioral Reviews. 2020;112:363–373. doi: 10.1016/j.neubiorev.2020.02.011.
    1. Huston JM, Ochani M, Rosas-Ballina M, et al. Splenectomy inactivates the cholinergic antiinflammatory pathway during lethal endotoxemia and polymicrobial sepsis. The Journal of Experimental Medicine. 2006;203:1623–1628. doi: 10.1084/jem.20052362.
    1. Li W, Olshansky B. Inflammatory cytokines and nitric oxide in heart failure and potential modulation by vagus nerve stimulation. Heart Failure Reviews. 2011;16:137–145. doi: 10.1007/s10741-010-9184-4.
    1. Zhao YX, He W, Jing XH, et al. Transcutaneous auricular vagus nerve stimulation protects endotoxemic rat from lipopolysaccharide-induced inflammation. Evidence-based Complementary and Alternative Medicine. 2012;2012:627023.
    1. Song XM, Li JG, Wang YL, et al. The protective effect of the cholinergic anti-inflammatory pathway against septic shock in rats. Shock. 2008;30:468–472. doi: 10.1097/SHK.0b013e31816d5e49.
    1. dos Santos CC, Shan Y, Akram A, Slutsky AS, Haitsma JJ. Neuroimmune regulation of ventilator-induced lung injury. American Journal of Respiratory and Critical Care Medicine. 2011;183:471–482. doi: 10.1164/rccm.201002-0314OC.
    1. Levy G, Fishman JE, Xu DZ, et al. Vagal nerve stimulation modulates gut injury and lung permeability in trauma-hemorrhagic shock. Journal of Trauma and Acute Care Surgery. 2012;73:338–342. doi: 10.1097/TA.0b013e31825debd3.
    1. van Westerloo DJ, Giebelen IA, Meijers JC, et al. Vagus nerve stimulation inhibits activation of coagulation and fibrinolysis during endotoxemia in rats. Journal of Thrombosis and Haemostasis. 2006;4:1997–2002. doi: 10.1111/j.1538-7836.2006.02112.x.
    1. Connors, J. M., & Levy, J. H. (2020). Thromboinflammation and the hypercoagulability of COVID-19. Journal of Thrombosis and Haemostasis.
    1. Ackland GL, Whittle J, Toner A, et al. Molecular mechanisms linking autonomic dysfunction and impaired cardiac contractility in critical illness. Critical Care Medicine. 2016;44:e614–e624. doi: 10.1097/CCM.0000000000001606.
    1. Huston JM, Tracey KJ. The pulse of inflammation: heart rate variability, the cholinergic anti-inflammatory pathway and implications for therapy. Journal of Internal Medicine. 2011;269:45–53. doi: 10.1111/j.1365-2796.2010.02321.x.
    1. with MMTFPVM-PCPJHJLiodatsip.
    1. Matsunaga K, Klein TW, Friedman H, Yamamoto Y. Involvement of nicotinic acetylcholine receptors in suppression of antimicrobial activity and cytokine responses of alveolar macrophages to Legionella pneumophila infection by nicotine. Journal of Immunology. 2001;167:6518–6524. doi: 10.4049/jimmunol.167.11.6518.
    1. Mamata Y, Hakki A, Yamamoto Y, et al. Nicotine modulates cytokine production by Chlamydia pneumoniae infected human peripheral blood cells. International Immunopharmacology. 2005;5:749–756. doi: 10.1016/j.intimp.2004.12.010.
    1. Estevez-Baez M, Carricarte-Naranjo C, Jas-Garcia JD, et al. Influence of heart rate, age, and gender on heart rate variability in adolescents and young adults. Advances in Experimental Medicine and Biology. 2019;1133:19–33. doi: 10.1007/5584_2018_292.
    1. Koopman FA, Chavan SS, Miljko S, et al. Vagus nerve stimulation inhibits cytokine production and attenuates disease severity in rheumatoid arthritis. Proceedings of the National Academy of Sciences of the United States of America. 2016;113:8284–8289. doi: 10.1073/pnas.1605635113.
    1. Bonaz B, Sinniger V, Hoffmann D, et al. Chronic vagus nerve stimulation in Crohn’s disease: a 6-month follow-up pilot study. Neurogastroenterology and Motility. 2016;28:948–953. doi: 10.1111/nmo.12792.
    1. Rossi P, Ricci A, De Paulis R, et al. Epicardial ganglionated plexus stimulation decreases postoperative inflammatory response in humans. Heart Rhythm: The Official Journal of the Heart Rhythm Society. 2012;9:943–950. doi: 10.1016/j.hrthm.2012.01.025.
    1. Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181:271–280. doi: 10.1016/j.cell.2020.02.052.
    1. Stavrakis S, Humphrey MB, Scherlag BJ, et al. Low-level transcutaneous electrical vagus nerve stimulation suppresses atrial fibrillation. Journal of the American College of Cardiology. 2015;65:867–875. doi: 10.1016/j.jacc.2014.12.026.
    1. Stavrakis S, Humphrey MB, Scherlag B, et al. Low-level vagus nerve stimulation suppresses post-operative atrial fibrillation and inflammation: a randomized study. JACC: Clinical Electrophysiology. 2017;3:929–938.
    1. Cjazrfm M. A nicotinic hypothesis for Covid-19 with preventive and therapeutic implications. 2020.
    1. Staats, P., Giannakopoulos, G., Blake, J., Liebler, E., & Levy, R. M. (2020). Use of non-invasive vagus nerve stimulation to treat respiratory symptoms associated with COVID-19: a theoretical hypothesis and early clinical experience. Neuromodulation.
    1. Vida G, Pena G, Deitch EA, Ulloa L. alpha7-cholinergic receptor mediates vagal induction of splenic norepinephrine. Journal of Immunology. 2011;186:4340–4346. doi: 10.4049/jimmunol.1003722.
    1. Simon, SPC., Lavergne, J., Srihar, A., Vervoordeldonk, M., Glaichenhaus, N., Blancou, P. Stimulation of Splenic Neurovascular Bundle Protect Mice from Developing Collagen-induced Arthritis. 2019 ACR/ARP Annual Meeting 2019.
    1. Zachs DP, Offutt SJ, Graham RS, et al. Noninvasive ultrasound stimulation of the spleen to treat inflammatory arthritis. Nature Communications. 2019;10:951. doi: 10.1038/s41467-019-08721-0.

Source: PubMed

3
Sottoscrivi