Lactoferrin for Prevention and Treatment of Anemia and Inflammation in Pregnant Women: A Comprehensive Review

Jolanta Artym, Michał Zimecki, Marian L Kruzel, Jolanta Artym, Michał Zimecki, Marian L Kruzel

Abstract

Pregnancy is a physiological state that demands higher level of nutrients, including vitamins and minerals, for the growth and maintenance of the fetus. Iron deficiency is a part of most common diet deficiencies in pregnancy and has high clinical significance leading to the development of syderopenic anemia and its consequences for mother and child, such as higher risk of perinatal death, susceptibility to infection, intra-uteral growth inhibition, prematurity and low birth weight. Hence, iron supplementation is recommended for pregnant women; however dietary intake of iron from most commercially available formulas is often insufficient due to iron-poor bioavailability, or have undesired side-effects in the gastrointestinal tract, resulting in a discouraging and distrustful attitude to such treatment. The results of numerous studies indicate that diet supplementation with lactoferrin (LTF), an iron-binding protein, may be advantageous in prophylaxis and treatment of iron deficiency anemia. LTF, administered orally, normalizes iron homeostasis, not only by facilitating iron absorption, but also by inhibiting inflammatory processes responsible for anemia of chronic diseases, characterized by a functional iron deficit for physiological processes. LTF also protects against infections and inflammatory complications, caused by diagnostic surgical interventions in pregnant women. Beneficial, multidirectional actions of LTF during pregnancy encompass, in addition, inhibition of oxidative stress, normalization of intestine and genital tract microbiota and carbohydrate-lipid metabolism, protection of intestine barrier function, promotion of wound healing, as well as hypotensive, analgesic and antistress actions. Bovine lactoferrin (BLTF) is readily available on the nutritional market and generally recognized as safe (GRAS) for use in human diet.

Keywords: anemia of inflammation; iron deficiency; iron deficiency anemia; lactoferrin; pregnancy.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Turnover of iron in the human body. Given values indicate amounts of absorbed, used, stored and expelled iron.
Figure 2
Figure 2
Processes of iron absorption in small intestine enterocytes and release from hepatic/spleen macrophages. For uptake of non heme Fe3+ ions, their reduction to Fe2+ is essential, involving Dcytb. Fe2+ ions are transported into cells by means of DMT-1 transporter and here may be stored in a form of ferritin (after prior oxidation) or released into circulation by FPN transporter (after prior oxidation by membrane hephaestin or serum Cp). In circulation, Fe3+ ions bind to TF that transports them to all tissues; in the left upper corner (in the circle) a possible participation of LTF in the process of iron absorption is presented. Iron from waste, recycled erythrocytes, is accumulated in hepatic/splenic macrophages (reticuloendothelial system) as ferritin or, as necessary, released from cells by means of FPN, bound to TF and transported into tissues. In both cases, hepatic hepcidin (induced among other by proinflammatory cytokines) inhibits activity of FPN and iron release into circulation. LTF inhibits expression of proinflammatory cytokines and in this way inhibits expression of hepcidin, ensuring activity of FPN and iron absorption and its release from body resources (in the middle of figure, in the circle). Cp–ceruloplasmin, Dcytb–duodenal cytochrome b, DMT-1–divalent metal transporter 1, Fe–iron ions, FPN–ferroportin, HCP-1–heme carrier protein 1, IL–interleukin, LTF–lactoferrin, RBC–red blood cells, TF–transferrin.
Figure 3
Figure 3
Dangerous consequences of coexisting iron deficiency anemia (IDA) and anemia of inflammation (AI) during pregnancy. Inadequate delivery of iron from diet is responsible for “true” deficit (IDA), which is aggravated by simultaneous inflammation responsible for “functional” deficiency (AI). IDA and AI are dangerous to mother and her offspring. Fe—iron ions, IL—interleukin, IFN—interferon.
Figure 4
Figure 4
Immune response in normal pregnancy. Pregnancy may be divided into three immunologically different phases: the first trimester with inflammatory processes conditioned by proinflammatory cytokines and chemokines (IL-6, IL-8, MCP-1, RANTES, G-CSF), the second trimester with silencing of inflammatory reactions thanks to anti-inflammatory cytokines (IL-4, IL-10, IL-13) and the third trimester with the inflammation intensified again due to the activity of proinflammatory factors conditioning the proper course of delivery and childbirth.
Figure 5
Figure 5
Lactoferrin (BLTF) isolated from bovine milk.

References

    1. Milman N., Paszkowski T., Cetin I., Castelo-Branco C. Supplementation during pregnancy: Beliefs and science. Gynecol. Endocrinol. 2016;32:509–516. doi: 10.3109/09513590.2016.1149161.
    1. Black R.E., Victora C.G., Walker S.P., Bhutta Z.A., Christian P., de Onis M., Ezzati M., Grantham-McGregor S., Katz J., Martorell R., et al. Maternal and child undernutrition and overweight in low-income and middle-income countries. Lancet. 2013;382:427–451. doi: 10.1016/S0140-6736(13)60937-X.
    1. World Health Organization . The Global Prevalence of Anaemia in 2011. WHO Library Cataloguing-in-Publication Data; Geneva, Switzerland: 2015.
    1. Georgieff M.K., Krebs N.F., Cusick S.E. The Benefits and Risks of Iron Supplementation in Pregnancy and Childhood. Annu. Rev. Nutr. 2019;39:121–146. doi: 10.1146/annurev-nutr-082018-124213.
    1. Georgieff M.K. Iron deficiency in pregnancy. Am. J. Obstet. Gynecol. 2020;223:516–524. doi: 10.1016/j.ajog.2020.03.006.
    1. Scholl T.O., Reilly T. Anemia, Iron and Pregnancy Outcome. J. Nutr. 2000;130:443S–447S. doi: 10.1093/jn/130.2.443S.
    1. O’Scholl T. Maternal iron status: Relation to fetal growth, length of gestation, and iron endowment of the neonate. Nutr. Rev. 2011;69:S23–S29. doi: 10.1111/j.1753-4887.2011.00429.x.
    1. Kumar N., Chandhiok N., Dhillon B.S., Kumar P. Role of oxidative stress while controlling iron deficiency anemia during pregnancy—Indian scenario. Indian J. Clin. Biochem. 2009;24:5–14. doi: 10.1007/s12291-009-0002-5.
    1. Fu S., Li F., Zhou J., Liu Z. The Relationship between Body Iron Status, Iron Intake and Gestational Diabetes: A Systematic Review and Meta-Analysis. Medicine. 2016;95:e2383. doi: 10.1097/md.0000000000002383.
    1. Brannon P.M., Stover P.J., Taylor C.L. Integrating themes, evidence gaps, and research needs identified by workshop on iron screening and supplementation in iron-replete pregnant women and young children. Am. J. Clin. Nutr. 2017;106:1703S–1712S. doi: 10.3945/ajcn.117.156083.
    1. Wessling-Resnick M. Excess iron: Considerations related to development and early growth. Am. J. Clin. Nutr. 2017;106:1600S–1605S. doi: 10.3945/ajcn.117.155879.
    1. Zimmer M., Sieroszewski P., Oszukowski P., Huras H., Fuchs T., Pawlosek A. Polish Society of Gynecologists and Obstetricians recommendations on supplementation in pregnancy. Ginekol. Pol. 2020;91:644–653. doi: 10.5603/gp.2020.0159.
    1. Lönnerdal B., Bryant A., Liu X., Theil E.C. Iron absorption from soybean ferritin in nonanemic women. Am. J. Clin. Nutr. 2006;83:103–107. doi: 10.1093/ajcn/83.1.103.
    1. Lönnerdal B. Alternative pathways for absorption of iron from foods. Pure Appl. Chem. 2010;82:429–436. doi: 10.1351/pac-con-09-06-04.
    1. Abbaspour N., Hurrell R., Kelishadi R. Review on iron and its importance for human health. J. Res. Med. Sci. 2014;19:164–174.
    1. Gozzelino R., Arosio P. Iron Homeostasis in Health and Disease. Int. J. Mol. Sci. 2016;17:130. doi: 10.3390/ijms17010130.
    1. Ganz T., Nemeth E. Hepcidin and iron homeostasis. Biochim. Biophys. Acta Mol. Cell Res. 2012;1823:1434–1443. doi: 10.1016/j.bbamcr.2012.01.014.
    1. Naranjo-Arcos M.A., Bauer P. Iron nutrition, oxidative stress, and pathogen defense. In: Erkekoglu P., editor. Nutritional Deficiency. IntechOpen; London, UK: 2016. pp. 63–98.
    1. Artym J. Lactoferrin—A sensor and regulator of iron absorption. Post. Biol. Kom. 2015;42:283–308.
    1. Prentica A.M. Clinical Implications of New Insights into Hepcidin-Mediated Regulation of Iron Absorption and Metabolism. Ann. Nutr. Metab. 2017;71:40–48. doi: 10.1159/000480743.
    1. Weiss G., Ganz T., Goodnough L.T. Anemia of inflammation. Blood. 2019;133:40–50. doi: 10.1182/blood-2018-06-856500.
    1. Fisher A.L., Sangkhae V., Presicce P., Chougnet C.A., Jobe A.H., Kallapur S.G., Tabbah S., Buhimschi C.S., Buhimschi I.A., Ganz T., et al. Fetal and amniotic fluid iron homeostasis in healthy and complicated murine, macaque, and human pregnancy. JCI Insight. 2020;5:135321. doi: 10.1172/jci.insight.135321.
    1. Fisher A., Nemeth E., Goodnough L.T. Iron homeostasis during pregnancy. Am. J. Clin. Nutr. 2017;106:1567S–1574S. doi: 10.3945/ajcn.117.155812.
    1. Cao C., O’Brien K.O. Pregnancy and iron homeostasis: An update. Nutr. Rev. 2013;71:35–51. doi: 10.1111/j.1753-4887.2012.00550.x.
    1. Cerami C. Iron Nutriture of the Fetus, Neonate, Infant, and Child. Ann. Nutr. Metab. 2017;71:8–14. doi: 10.1159/000481447.
    1. Milman N.T. Dietary Iron Intake in Pregnant Women in Europe: A Review of 24 Studies from 14 Countries in the Period 1991–2014. J. Nutr. Metab. 2020;2020:7102190. doi: 10.1155/2020/7102190.
    1. Smoter K., Bomba-Opoń D., Wielgoś M. Żywienie ciężarnych i kobietka karmiących piersą a zdrowie dzieci. In: Szajewska H., Horvath A., editors. Żywienie i Leczenie Żywieniowe Dzieci i Młodzieży. Medycyna Praktyczna; Warszawa, Poland: 2017.
    1. Adam I., Ali A.A. Anemia during pregnancy. In: Erkekoglu P., editor. Nutritional Deficiency. IntechOpen; London, UK: 2016. pp. 111–116.
    1. Pietrzak B., Seremak-Mrozikiewicz A., Marciniak B., Witek A., Leszczyńska-Gorzelak B. Iron deficiency anemia in obstetrics and gynecology. Ginekol. Perinatol. Prakt. 2016;1:115–121.
    1. Mor G., Cardenas I., Abrahams V., Guller S. Inflammation and pregnancy: The role of the immune system at the implantation site. Ann. N. Y. Acad. Sci. 2011;1221:80–87. doi: 10.1111/j.1749-6632.2010.05938.x.
    1. Kalagiri R.R., Carder T., Choudhury S., Vora N., Ballard A.R., Govande V., Drever N., Beeram M.R., Uddin M.N. Inflammation in Complicated Pregnancy and Its Outcome. Am. J. Perinatol. 2016;33:1337–1356. doi: 10.1055/s-0036-1582397.
    1. Pendyala S., Walker J.M., Holt P.R. A high-fat diet is associated with endotoxemia that originates from the gut. Gastroenterology. 2012;142:1100–1101.e2. doi: 10.1053/j.gastro.2012.01.034.
    1. Garcia-Valdes L., Campoy C., Hayes H., Florido J., Rusanova I., Miranda M.T., McArdle H.J. The impact of maternal obesity on iron status, placental transferrin receptor expression and hepcidin expression in human pregnancy. Int. J. Obes. 2015;39:571–578. doi: 10.1038/ijo.2015.3.
    1. Karowicz-Bilińska A., Nowak-Markwitz E., Opala T., Oszukowski P., Poręba R., Spaczyński M. Reccommendations of Polish Gynecological Society in the field of use of vitamins and microelements in women planning a pregnancy, pregnant and feeding mother. Ginekol. Pol. 2014;85:395–399.
    1. Tiwari A.K.M., Mahdi A.A., Zahra F., Chandyan S., Srivastava V.K., Negi M.P.S. Evaluation of Oxidative Stress and Antioxidant Status in Pregnant Anemic Women. Indian J. Clin. Biochem. 2010;25:411–418. doi: 10.1007/s12291-010-0067-1.
    1. Doherty C.P. Host-Pathogen Interactions: The Role of Iron. J. Nutr. 2007;137:1341–1344. doi: 10.1093/jn/137.5.1341.
    1. Weinberg E. Iron withholding: A defense against viral infections. BioMetals. 1996;9:393–399. doi: 10.1007/BF00140609.
    1. Mayeur S., Spahis S., Pouliot Y., Levy E. Lactoferrin, a Pleiotropic Protein in Health and Disease. Antioxid. Redox Signal. 2016;24:813–836. doi: 10.1089/ars.2015.6458.
    1. Kruzel M.L., Zimecki M., Actor J.K. Lactoferrin in a Context of Inflammation-Induced Pathology. Front. Immunol. 2017;8:1438. doi: 10.3389/fimmu.2017.01438.
    1. Wang B., Timilsena Y.P., Blanch E., Adhikari B. Lactoferrin: Structure, function, denaturation and digestion. Crit. Rev. Food Sci. Nutr. 2019;59:580–596. doi: 10.1080/10408398.2017.1381583.
    1. Sienkiewicz M., Jaśkiewicz A., Tarasiuk A., Fichna J. Lactoferrin: An overview of its main functions, immunomodulatory and antimicrobial role, and clinical significance. Crit. Rev. Food Sci. Nutr. 2021 doi: 10.1080/10408398.2021.1895063.
    1. Baker H.M., Baker E. Lactoferrin and Iron: Structural and dynamic aspects of binding and release. BioMetals. 2004;17:209–216. doi: 10.1023/B:BIOM.0000027694.40260.70.
    1. Jenssen H., Hancock R. Antimicrobial properties of lactoferrin. Biochimie. 2009;91:19–29. doi: 10.1016/j.biochi.2008.05.015.
    1. Fischer R., Debbabi H., Dubarry M., Boyaka P., Tomé D. Regulation of physiological and pathological Th1 and Th2 responses by lactoferrin. Biochem. Cell Biol. 2006;84:303–311. doi: 10.1139/o06-058.
    1. Lepanto M.S., Rosa L., Paesano R., Valenti P., Cutone A. Lactoferrin in Aseptic and Septic Inflammation. Molecules. 2019;24:1323. doi: 10.3390/molecules24071323.
    1. Kruzel M.L., Actor J.K., Boldogh I., Zimecki M. Lactoferrin in health and disease. Postępy Hig. i Med. Dośw. 2007;61:261–267.
    1. Hayashida K.-I., Kaneko T., Takeuchi T., Shimizu H., Ando K., Harada E. Oral Administration of Lactoferrin Inhibits Inflammation and Nociception in Rat Adjuvant-Induced Arthritis. J. Vet. Med. Sci. 2004;66:149–154. doi: 10.1292/jvms.66.149.
    1. Kruzel M., Artym J., Chodaczek G., Kocięba M., Kochanowska I., Kruzel T., Zimecki M. Effects of Lactoferrin on Stress-Related Immune Dysfunction in Mice and Humans; Proceedings of the 4th International Whey Conference: The Wonders of Whey Catch the Powder; Chicago, IL, USA. 11–14 September 2005; Elmhurst, IL, USA: American Dairy Products Institute; 2005. pp. 121–132.
    1. Saraceno R., Gramiccia T., Chimenti S., Valenti P., Pietropaoli M., Bianchi L. Topical lactoferrin can improve stable psoriatic plaque. G. Ital. Dermatol. Venereol. 2014;149:335–340.
    1. MacManus C.F., Collins C.B., Nguyen T.T., Alfano R.W., Jedlicka P., De Zoeten E.F. VEN-120, a Recombinant Human Lactoferrin, Promotes a Regulatory T Cell [Treg] Phenotype and Drives Resolution of Inflammation in Distinct Murine Models of Inflammatory Bowel Disease. J. Crohn’s Colitis. 2017;11:1101–1112. doi: 10.1093/ecco-jcc/jjx056.
    1. Zimecki M., Wieczorek Z., Mazurier J., Spik G. Lactoferrin lowers the incidence of positive Coombs’ test in New Zealand black mice. Arch. Immunol. Ther. Exp. 1995;43:207–209.
    1. Shoji H., Oguchi S., Shinohara K., Shimizu T., Yamashiro Y. Effects of Iron-Unsaturated Human Lactoferrin on Hydrogen Peroxide-Induced Oxidative Damage in Intestinal Epithelial Cells. Pediatr. Res. 2007;61:89–92. doi: 10.1203/01.pdr.0000250198.22735.20.
    1. Kruzel M.L., Actor J.K., Radak Z., Bacsi A., Saavedra-Molina A., Boldogh I. Lactoferrin decreases LPS-induced mitochondrial dysfunction in cultured cells and in animal endotoxemia model. Innate Immun. 2010;16:67–79. doi: 10.1177/1753425909105317.
    1. Kruzel M.L., Actor J.K., Zimecki M., Wise J., Płoszaj P., Mirza S., Kruzel M., Hwang S.-A., Ba X., Boldogh I. Novel recombinant human lactoferrin: Differential activation of oxidative stress related gene expression. J. Biotechnol. 2013;168:666–675. doi: 10.1016/j.jbiotec.2013.09.011.
    1. Maneva A., Taleva B., Maneva L. Lactoferrin-Protector against Oxidative Stress and Regulator of Glycolysis in Human Erythrocytes. Z. Naturforsch. 2003;58:256–262. doi: 10.1515/znc-2003-3-420.
    1. Pulina M.O., Sokolov A.V., Zakharova E.T., Kostevich V.A., Vasilyev V.B. Effect of Lactoferrin on Consequences of Acute Experimental Hemorrhagic Anemia in Rats. Bull. Exp. Biol. Med. 2010;149:219–222. doi: 10.1007/s10517-010-0911-6.
    1. Valenti P., Rosa L., Capobianco D., Lepanto M.S., Schiavi E., Cutone A., Paesano R., Mastromarino P. Role of Lactobacilli and Lactoferrin in the Mucosal Cervicovaginal Defense. Front. Immunol. 2018;9:376. doi: 10.3389/fimmu.2018.00376.
    1. Artym J., Zimecki M. Beneficial effect of lactoferrin on the microbiota from gastrointestinal tract. Adv. Microbiol. 2020;59:277–290. doi: 10.21307/PM-2020.59.3.20.
    1. Wu J., Chen J., Wu W., Shi J., Zhong Y., Van Tol E.A.F., Tang Q., Cai W. Enteral supplementation of bovine lactoferrin improves gut barrier function in rats after massive bowel resection. Br. J. Nutr. 2014;112:486–492. doi: 10.1017/S000711451400107X.
    1. Wang J., Li Y., Zhao L., Ren F., Guo H. Lactoferrin stimulates the expression of vitamin D receptor in vitamin D deficient mice. J. Funct. Foods. 2019;55:48–56. doi: 10.1016/j.jff.2019.02.012.
    1. Ochoa T.J., Sizonenko S.V. Lactoferrin and prematurity: A promising milk protein? Biochem. Cell Biol. 2017;95:22–30. doi: 10.1139/bcb-2016-0066.
    1. Pammi M., Gautham K.S. Enteral lactoferrin supplementation for prevention of sepsis and necrotizing enterocolitis in preterm infants. Cochrane Database Syst. Rev. 2020;2020:CD007137. doi: 10.1002/14651858.CD007137.pub6.
    1. Embleton N.D., Berrington J.E. Clinical Trials of Lactoferrin in the Newborn: Effects on Infection and the Gut Microbiome. Nestlé Nutr. Inst. Workshop Ser. 2020;94:141–151. doi: 10.1159/000505334.
    1. Artym J. A remedy against obesity? The role of lactoferrin in the metabolism of glucose and lipids. Postępy Hig. i Med. Dośw. 2012;66:937–953. doi: 10.5604/17322693.1021110.
    1. Takayama Y., Aoki R. Roles of lactoferrin on skin wound healing. Biochem. Cell Biol. 2012;90:497–503. doi: 10.1139/o11-054.
    1. Cutone A., Rosa L., Ianiro G., Lepanto M.S., Di Patti M.C.B., Valenti P., Musci G. Lactoferrin’s Anti-Cancer Properties: Safety, Selectivity, and Wide Range of Action. Biomolecules. 2020;10:456. doi: 10.3390/biom10030456.
    1. Icriverzi M., Dinca V., Moisei M., Evans R.W., Trif M., Roseanu A. Lactoferrin in Bone Tissue Regeneration. Curr. Med. Chem. 2020;27:838–853. doi: 10.2174/0929867326666190503121546.
    1. Guzmán-Mejía F., Vega-Bautista A., Molotla-Torres D.E., Aguirre-Garrido J.F., Drago-Serrano M.E. Bovine lactoferrin as a modulator of neuroendocrine components of stress. Curr. Mol. Pharmacol. 2021 doi: 10.2174/1874467214999210111211947.
    1. Suzuki Y.A., Lopez V., Lönnerdal B. Mammalian lactoferrin receptors; structure and function. Cell. Mol. Life Sci. 2005;62:2560–2575. doi: 10.1007/s00018-005-5371-1.
    1. Artym J. The role of lactoferrin in the iron metabolism. Part I. Effect of lactofferin on intake, transport and iron storage. Postępy Hig. i Med. Dośw. 2008;62:599–611.
    1. Rosa L., Cutone A., Lepanto M.S., Paesano R., Valenti P. Lactoferrin: A Natural Glycoprotein Involved in Iron and Inflammatory Homeostasis. Int. J. Mol. Sci. 2017;18:1985. doi: 10.3390/ijms18091985.
    1. Artym J., Zimecki M. Iron metabolism in neonates and infants with regard to the role of lactoferrin. Postępy Neonatol. 2020;4:15–21.
    1. Ashida K., Sasaki H., Suzuki Y.A., Lönnerdal B. Cellular internalization of lactoferrin in intestinal epithelial cells. BioMetals. 2004;17:311–315. doi: 10.1023/B:BIOM.0000027710.13543.3f.
    1. Lönnerdal B., Georgieff M.K., Hernell O. Developmental Physiology of Iron Absorption, Homeostasis, and Metabolism in the Healthy Term Infant. J. Pediatr. 2015;167:S8–S14. doi: 10.1016/j.jpeds.2015.07.014.
    1. Abu Hashim H., Foda O., Ghayaty E. Lactoferrin or ferrous salts for iron deficiency anemia in pregnancy: A meta-analysis of randomized trials. Eur. J. Obstet. Gynecol. Reprod. Biol. 2017;219:45–52. doi: 10.1016/j.ejogrb.2017.10.003.
    1. Paesano R., Torcia F., Berlutti F., Pacifici E., Ebano V., Moscarini M., Valenti P. Oral administration of lactoferrin increases hemoglobin and total serum iron in pregnant women. Biochem. Cell Biol. 2006;84:377–380. doi: 10.1139/o06-040.
    1. Paesano R., Pietropaoli M., Gessani S., Valenti P. The influence of lactoferrin, orally administered, on systemic iron homeostasis in pregnant women suffering of iron deficiency and iron deficiency anaemia. Biochimie. 2009;91:44–51. doi: 10.1016/j.biochi.2008.06.004.
    1. Nappi C., Tommaselli G.A., Morra I., Massaro M., Formisano C., Di Carlo C. Efficacy and tolerability of oral bovine lactoferrin compared to ferrous sulfate in pregnant women with iron deficiency anemia: A prospective controlled randomized study. Acta Obstet. Gynecol. Scand. 2009;88:1031–1035. doi: 10.1080/00016340903117994.
    1. Paesano R., Berlutti F., Pietropaoli M., Goolsbee W., Pacifici E., Valenti P. Lactoferrin Efficacy versus Ferrous Sulfate in Curing Iron Disorders in Pregnant and Non-Pregnant Women. Int. J. Immunopathol. Pharmacol. 2010;23:577–587. doi: 10.1177/039463201002300220.
    1. Cianci A., Giunta G., Giuffrida L., Mangano K., Fagone P. Influence of lactoferrin in preventing preterm delivery: A pilot study. Mol. Med. Rep. 2012;5:162–166. doi: 10.3892/mmr.2011.584.
    1. Paesano R., Pietropaoli M., Berlutti F., Valenti P. Bovine lactoferrin in preventing preterm delivery associated with sterile inflammation. Biochem. Cell Biol. 2012;90:468–475. doi: 10.1139/o11-060.
    1. Paesano R., Pacifici E., Benedetti S., Berlutti F., Frioni A., Polimeni A., Valenti P. Safety and efficacy of lactoferrin versus ferrous sulphate in curing iron deficiency and iron deficiency anaemia in hereditary thrombophilia pregnant women: An interventional study. BioMetals. 2014;27:999–1006. doi: 10.1007/s10534-014-9723-x.
    1. Cignini P., Mangiafico L., Padula F., D’Emidio L., Dugo N., Aloisi A., Giorlandino C., Vitale S.G. Supplementation with a dietary multicomponent (Lafergin®) based on Ferric Sodium EDTA (Ferrazone®): Results of an observational study. J. Prenat. Med. 2015;9 doi: 10.11138/jpm/2015.9.1.001.
    1. Mehedintu C., Ionescu O.M., Ionescu S., Cirstoiu M.M., Dumitrascu M.C., Bratila E., Dumitrescu R., Oprescu D.U., Tataru C.P., Vladareanu S. Iron deficiency and iron-deficiency anaemia in pregnant women corrected by oral bovine lactoferrin administration. Farmacia. 2015;63:922–926.
    1. Rezk M., Dawood R., Abo-Elnasr M., Al Halaby A., Marawan H. Lactoferrin versus ferrous sulphate for the treatment of iron deficiency anemia during pregnancy: A randomized clinical trial. J. Matern. Fetal Neonatal Med. 2016;29:1387–1390. doi: 10.3109/14767058.2015.1049149.
    1. Lepanto M.S., Rosa L., Cutone A., Conte M.P., Paesano R., Valenti P. Efficacy of Lactoferrin Oral Administration in the Treatment of Anemia and Anemia of Inflammation in Pregnant and Non-pregnant Women: An Interventional Study. Front. Immunol. 2018;9:2123. doi: 10.3389/fimmu.2018.02123.
    1. Rateb A.M., Mamdouh A.M., Balsha K.M. The effect of orally administered iron-saturated lactoferrin on systemic iron homeostasis in pregnant women suffering from iron deficiency and iron deficiency anaemia. Egypt. J. Hosp. Med. 2018;71:2851–2857.
    1. Darwish A.M., Fouly H.A., Saied W.H., Farah E. Lactoferrin plus health education versus total dose infusion (TDI) of low-molecular weight (LMW) iron dextran for treating iron deficiency anemia (IDA) in pregnancy: A randomized controlled trial. J. Matern. Fetal Neonatal Med. 2019;32:2214–2220. doi: 10.1080/14767058.2018.1429396.
    1. Cutone A., Frioni A., Berlutti F., Valenti P., Musci G., Di Patti M.C.B. Lactoferrin prevents LPS-induced decrease of the iron exporter ferroportin in human monocytes/macrophages. BioMetals. 2014;27:807–813. doi: 10.1007/s10534-014-9742-7.
    1. Cutone A., Rosa L., Lepanto M.S., Scotti M.J., Berlutti F., Di Patti M.C.B., Musci G., Valenti P. Lactoferrin Efficiently Counteracts the Inflammation-Induced Changes of the Iron Homeostasis System in Macrophages. Front. Immunol. 2017;8:705. doi: 10.3389/fimmu.2017.00705.
    1. Lönnerdal B., Bryant A. Absorption of iron from recombinant human lactoferrin in young US women. Am. J. Clin. Nutr. 2006;83:305–309. doi: 10.1093/ajcn/83.2.305.
    1. Koikawa N., Nagaoka I., Yamaguchi M., Hamano H., Yamauchi K., Sawaki K. Preventive Effect of Lactoferrin Intake on Anemia in Female Long Distance Runners. Biosci. Biotechnol. Biochem. 2008;72:931–935. doi: 10.1271/bbb.70383.
    1. Motouri M., Yoshise R.E., Matsuyama H., Hosoya T., Kadooka Y., Asada C., Uchida T., Kawakami H. Effect of Iron Solubilized by Lactoferrin on Iron Status in Adult Women. Nippon Shokuhin Kagaku Kogaku Kaishi. 2007;54:442–446. doi: 10.3136/nskkk.54.442.
    1. Macciň A., Madeddu C., Gramignano G., Mulas C., Sanna E., Mantovani G. Efficacy and Safety of Oral Lactoferrin Supplementation in Combination with rHuEPO-β for the Treatment of Anemia in Advanced Cancer Patients Undergoing Chemotherapy: Open-Label, Randomized Controlled Study. Oncologist. 2010;15:894–902. doi: 10.1634/theoncologist.2010-0020.
    1. Vesce F., Giugliano E., Bignardi S., Cagnazzo E., Colamussi C., Marci R., Valente N., Seraceni S., Maritati M., Contini C. Vaginal Lactoferrin Administration before Genetic Amniocentesis Decreases Amniotic Interleukin-6 Levels. Gynecol. Obstet. Investig. 2014;77:245–249. doi: 10.1159/000358877.
    1. Otsuki K., Yakuwa K., Sawada M., Hasegawa A., Sasaki Y., Mitsukawa K., Chiba H., Nagatsuka M., Saito H., Okai T. Recombinant human lactoferrin has preventive effects on lipopolysaccharide-induced preterm delivery and production of inflammatory cytokines in mice. J. Perinat. Med. 2005;33:320–323. doi: 10.1515/JPM.2005.057.
    1. Nakayama K., Otsuki K., Yakuwa K., Hasegawa A., Sawada M., Mitsukawa K., Chiba H., Nagatsuka M., Okai T. Recombinant human lactoferrin inhibits matrix metalloproteinase (MMP-2, MMP-3, and MMP-9) activity in a rabbit preterm delivery model. J. Obstet. Gynaecol. Res. 2008;34:931–934. doi: 10.1111/j.1447-0756.2008.00827.x.
    1. Otsuki K., Tokunaka M., Oba T., Nakamura M., Shirato N., Okai T. Administration of oral and vaginal prebiotic lactoferrin for a woman with a refractory vaginitis recurring preterm delivery: Appearance of lactobacillus in vaginal flora followed by term delivery. J. Obstet. Gynaecol. Res. 2014;40:583–585. doi: 10.1111/jog.12171.
    1. Trentini A., Maritati M., Cervellati C., Manfrinato M.C., Gonelli A., Volta C.A., Vesce F., Greco P., Dallocchio F., Bellini T., et al. Vaginal Lactoferrin Modulates PGE2, MMP-9, MMP-2, and TIMP-1 Amniotic Fluid Concentrations. Mediat. Inflamm. 2016;2016:3648719. doi: 10.1155/2016/3648719.
    1. Sessa R., Di Pietro M., Filardo S., Bressan A., Rosa L., Cutone A., Frioni A., Berlutti F., Paesano R., Valenti P. Effect of bovine lactoferrin on Chlamydia trachomatis infection and inflammation. Biochem. Cell Biol. 2017;95:34–40. doi: 10.1139/bcb-2016-0049.
    1. Maritati M., Comar M., Zanotta N., Seraceni S., Trentini A., Corazza F., Vesce F., Contini C. Influence of vaginal lactoferrin administration on amniotic fluid cytokines and its role against inflammatory complications of pregnancy. J. Inflamm. 2017;14:5. doi: 10.1186/s12950-017-0152-9.
    1. Otsuki K., Imai N. Effects of lactoferrin in 6 patients with refractory bacterial vaginosis. Biochem. Cell Biol. 2017;95:31–33. doi: 10.1139/bcb-2016-0051.
    1. Trentini A., Maritati M., Rosta V., Cervellati C., Manfrinato M.C., Hanau S., Greco P., Bonaccorsi G., Bellini T., Contini C. Vaginal Lactoferrin Administration Decreases Oxidative Stress in the Amniotic Fluid of Pregnant Women: An Open-Label Randomized Pilot Study. Front. Med. 2020;7:555. doi: 10.3389/fmed.2020.00555.
    1. EFSA Panel on Dietetic Products, Nutrition and Allergies Scientific Opinion on bovine lactoferrin. EFSA J. 2012;10:2701. doi: 10.2903/j.efsa.2012.2701.
    1. Wakabayashi H., Yamauchi K., Abe F. Quality control of commercial bovine lactoferrin. BioMetals. 2018;31:313–319. doi: 10.1007/s10534-018-0098-2.
    1. Johnston W.H., Ashley C., Yeiser M., Harris C.L., Stolz S.I., Wampler J.L., Wittke A., Cooper T.R. Growth and tolerance of formula with lactoferrin in infants through one year of age: Double-blind, randomized, controlled trial. BMC Pediatr. 2015;15:173. doi: 10.1186/s12887-015-0488-3.
    1. Ochoa T.J., Pezo A., Cruz K., Chea-Woo E., Cleary T.G. Clinical studies of lactoferrin in children. Biochem. Cell Biol. 2012;90:457–467. doi: 10.1139/o11-087.
    1. Tarnow-Mordi W.O., Abdel-Latif M.E., Martin A., Pammi M., Robledo K., Manzoni P., Osborn D., Lui K., Keech A., Hague W., et al. The effect of lactoferrin supplementation on death or major morbidity in very low birthweight infants (LIFT): A multicentre, double-blind, randomised controlled trial. Lancet Child. Adolesc. Health. 2020;4:444–454. doi: 10.1016/S2352-4642(20)30093-6.
    1. Kaufman D.A., Berenz A., Itell H.L., Conaway M., Blackman A., Nataro J.P., Permar S.R. Dose escalation study of bovine lactoferrin in preterm infants: Getting the dose right. Biochem. Cell Biol. 2021;99:7–13. doi: 10.1139/bcb-2020-0217.
    1. Rosa L., Cutone A., Lepanto M.S., Scotti M.J., Conte M.P., Paesano R., Valenti P. Physico-chemical properties influence the functions and efficacy of commercial bovine lactoferrins. BioMetals. 2018;31:301–312. doi: 10.1007/s10534-018-0092-8.
    1. Paulsson M.A., Svensson U., Kishore A.R., Naidu A.S. Thermal Behavior of Bovine Lactoferrin in Water and Its Relation to Bacterial Interaction and Antibacterial Activity. J. Dairy Sci. 1993;76:3711–3720. doi: 10.3168/jds.S0022-0302(93)77713-9.
    1. Shimizu H. Development of an enteric-coated lactoferrin tablet and its application. BioMetals. 2004;17:343–347. doi: 10.1023/B:BIOM.0000027715.72746.03.
    1. Kruzel M.L., Olszewska P., Pazdrak B., Krupinska A.M., Actor J.K. New insights into the systemic effects of oral lactoferrin: Transcriptome profiling. Biochem. Cell Biol. 2021;99:47–53. doi: 10.1139/bcb-2020-0069.
    1. Zimecki M., Właszczyk A., Cheneau P., Brunel A.S., Mazurier J., Spik G., Kübler A. Immunoregulatory effects of a nutritional preparation containing bovine lactoferrin taken orally by healthy individuals. Arch. Immunol. Ther. Exp. 1998;46:231–240.
    1. Zimecki M., Spiegel K., Właszczyk A., Kübler A., Kruzel M.L. Lactoferrin increases the output of neutrophil precursors and attenuates the spontaneous production of TNF-alpha and IL-6 by peripheral blood cells. Arch. Immunol. Ther. Exp. 1999;47:113–118.
    1. Zimecki M., Właszczyk A., Wojciechowski R., Dawiskiba J., Kruzel M. Lactoferrin regulates the immune responses in post-surgical patients. Arch. Immunol. Ther. Exp. 2001;49:325–333.
    1. Paesano R., Natalizi T., Berlutti F., Valenti P. Body iron delocalization: The serious drawback in iron disorders in both developing and developed countries. Pathog. Glob. Health. 2012;106:200–216. doi: 10.1179/2047773212Y.0000000043.

Source: PubMed

3
Sottoscrivi