Evoked Potentials and EEG Analysis in Rett Syndrome and Related Developmental Encephalopathies: Towards a Biomarker for Translational Research

Joni N Saby, Sarika U Peters, Timothy P L Roberts, Charles A Nelson, Eric D Marsh, Joni N Saby, Sarika U Peters, Timothy P L Roberts, Charles A Nelson, Eric D Marsh

Abstract

Rett syndrome is a debilitating neurodevelopmental disorder for which no disease-modifying treatment is available. Fortunately, advances in our understanding of the genetics and pathophysiology of Rett syndrome has led to the development of promising new therapeutics for the condition. Several of these therapeutics are currently being tested in clinical trials with others likely to progress to clinical trials in the coming years. The failure of recent clinical trials for Rett syndrome and other neurodevelopmental disorders has highlighted the need for electrophysiological or other objective biological markers of treatment response to support the success of clinical trials moving forward. The purpose of this review is to describe the existing studies of electroencephalography (EEG) and evoked potentials (EPs) in Rett syndrome and discuss the open questions that must be addressed before the field can adopt these measures as surrogate endpoints in clinical trials. In addition to summarizing the human work on Rett syndrome, we also describe relevant studies with animal models and the limited research that has been carried out on Rett-related disorders, particularly methyl-CpG binding protein 2 (MECP2) duplication syndrome, CDKL5 deficiency disorder, and FOXG1 disorder.

Keywords: EEG; Rett syndrome; biomarker; developmental encephalopathy; evoked potential.

Copyright © 2020 Saby, Peters, Roberts, Nelson and Marsh.

Figures

Figure 1
Figure 1
Example of visual and auditory evoked potential (AEP) waveforms and head locations. Sample (unpublished) auditory and visual evoked potentials (AEPs/VEPs) from a 16-year-old individual with Rett syndrome (dotted line) and an age-matched typically developing (TD) control (solid line) The primary positive (P) and negative (N) components are indicated. The schematic on the left shows the location of the electrodes used for the auditory (Cz) and visual (Oz) responses. The auditory response was elicited using a 500 Hz tone. The visual response was elicited using a reversing checkerboard. Negativity is plotted up.

References

    1. Aman M. G., Findling R. L., Hardan A. Y., Hendren R. L., Melmed R. D., Kehinde-Nelson O., et al. . (2017). Safety and efficacy of memantine in children with autism: randomized, placebo-controlled study and open-label extension. J. Child Adolesc. Psychopharmacol. 27, 403–412. 10.1089/cap.2015.0146
    1. Amir R. E., Van den Veyver I. B., Wan M., Tran C. Q., Francke U., Zoghbi H. Y. (1999). Rett syndrome is caused by mutations in X-linked MECP2, encoding methyl-CpG-binding protein 2. Nat. Genet. 23, 185–188. 10.1038/13810
    1. Ammanuel S., Chan W. C., Adler D. A., Lakshamanan B. M., Gupta S. S., Ewen J. B., et al. . (2015). Heightened delta power during slow-wave-sleep in patients with rett syndrome associated with poor sleep efficiency. PLoS One 10:e0138113. 10.1371/journal.pone.0138113
    1. Artoni P., Piffer A., Vinci V., LeBlanc J., Nelson C. A., Hensch T. K., et al. . (2019). Deep learning of spontaneous arousal fluctuations detects early cholinergic defects across neurodevelopmental mouse models and patients. Proc. Natl. Acad. Sci. U S A [Epub ahead of print]. 10.1073/pnas.1820847116
    1. Bader G. G., Witt-Engerström I., Hagberg B. (1987). Brain stem and spinal cord impairment in Rett syndrome: somatosensory and auditory evoked responses investigations. Brain Dev. 9, 517–522. 10.1016/s0387-7604(87)80076-1
    1. Bader G. G., Witt-Engerström I., Hagberg B. (1989a). Neurophysiological findings in the Rett syndrome, I: EMG, conduction velocity, EEG and somatosensory-evoked potential studies. Brain Dev. 11, 102–109. 10.1016/s0387-7604(89)80077-4
    1. Bader G. G., Witt-Engerström I., Hagberg B. (1989b). Neurophysiological findings in the Rett syndrome, II: visual and auditory brainstem, middle and late evoked responses. Brain Dev. 11, 110–114. 10.1016/s0387-7604(89)80078-6
    1. Bebbington A., Anderson A., Ravine D., Fyfe S., Pineda M., de Klerk N., et al. . (2008). Investigating genotype-phenotype relationships in Rett syndrome using an international data set. Neurology 70, 868–875. 10.1212/
    1. Berry-Kravis E., Des Portes V., Hagerman R., Jacquemont S., Charles P., Visootsak J., et al. . (2016). Mavoglurant in fragile X syndrome: results of two randomized, double-blind, placebo-controlled trials. Sci. Transl. Med. 8:321ra325. 10.1126/scitranslmed.aab4109
    1. Bick J., Nelson C. A. (2016). Early adverse experiences and the developing brain. Neuropsychopharmacology 41, 177–196. 10.1038/npp.2015.252
    1. Boggio E. M., Pancrazi L., Gennaro M., Lo Rizzo C., Mari F., Meloni I., et al. . (2016). Visual impairment in FOXG1-mutated individuals and mice. Neuroscience 324, 496–508. 10.1016/j.neuroscience.2016.03.027
    1. Chen Y., Yu J., Niu Y., Qin D., Liu H., Li G., et al. . (2017). Modeling rett syndrome using TALEN-edited MECP2 mutant cynomolgus monkeys. Cell 169, 945.e0–955.e0. 10.1016/j.cell.2017.04.035
    1. Clarke A. J., Abdala Sheikh A. P. (2018). A perspective on “cure” for Rett syndrome. Orphanet. J. Rare Dis. 13:44. 10.1186/s13023-018-0786-6
    1. Colic S., Lang M., Wither R. G., Liang Z., Eubanks J. H., Bardakjian B. L. (2014). Characterization of HFOs in short and long duration discharges recorded from in-vivo MeCP2-deficient mice. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2014, 4603–4606. 10.1109/embc.2014.6944649
    1. Colic S., Wither R. G., Min L., Zhang L., Eubanks J. H., Bardakjian B. L. (2015). Support vector machines using EEG features of cross-frequency coupling can predict treatment outcome in Mecp2-deficient mice. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2015, 5606–5609. 10.1109/embc.2015.7319663
    1. Collins A. L., Levenson J. M., Vilaythong A. P., Richman R., Armstrong D. L., Noebels J. L., et al. . (2004). Mild overexpression of MeCP2 causes a progressive neurological disorder in mice. Hum. Mol. Genet. 13, 2679–2689. 10.1093/hmg/ddh282
    1. Cuddapah V. A., Pillai R. B., Shekar K. V., Lane J. B., Motil K. J., Skinner S. A., et al. . (2014). Methyl-CpG-binding protein 2 (MECP2) mutation type is associated with disease severity in Rett syndrome. J. Med. Genet. 51, 152–158. 10.1136/jmedgenet-2013-102113
    1. D’Cruz J. A., Wu C., Zahid T., El-Hayek Y., Zhang L., Eubanks J. H. (2010). Alterations of cortical and hippocampal EEG activity in MeCP2-deficient mice. Neurobiol. Dis. 38, 8–16. 10.1016/j.nbd.2009.12.018
    1. Engineer C. T., Rahebi K. C., Borland M. S., Buell E. P., Centanni T. M., Fink M. K., et al. . (2015). Degraded neural and behavioral processing of speech sounds in a rat model of Rett syndrome. Neurobiol. Dis. 83, 26–34. 10.1016/j.nbd.2015.08.019
    1. Erickson C. A., Davenport M. H., Schaefer T. L., Wink L. K., Pedapati E. V., Sweeney J. A., et al. . (2017). Fragile X targeted pharmacotherapy: lessons learned and future directions. J. Neurodev. Disord. 9:7. 10.1186/s11689-017-9186-9
    1. Eubanks J. H. (2017). “Epilepsy in models of rett syndrome,” in Models of Seizures and Epilepsy: Second Edition, eds A. Pitkänen, P. S. Buckmaster, A. S. Galanopoulou and S. L. Moshé (Toronto, ON: Elsevier Inc.), 1079–1090.
    1. Fabio R. A., Billeci L., Crifaci G., Troise E., Tortorella G., Pioggia G. (2016). Cognitive training modifies frequency EEG bands and neuropsychological measures in Rett syndrome. Res. Dev. Disabil. 53–54, 73–85. 10.1016/j.ridd.2016.01.009
    1. Fehr S., Wilson M., Downs J., Williams S., Murgia A., Sartori S., et al. . (2013). The CDKL5 disorder is an independent clinical entity associated with early-onset encephalopathy. Eur. J. Hum. Genet. 21, 266–273. 10.1038/ejhg.2012.156
    1. Foxe J. J., Burke K. M., Andrade G. N., Djukic A., Frey H. P., Molholm S. (2016). Automatic cortical representation of auditory pitch changes in Rett syndrome. J. Neurodev. Disord. 8:34. 10.1186/s11689-016-9166-5
    1. Gabard-Durnam L. J., Mendez Leal A. S., Wilkinson C. L., Levin A. R. (2018). The harvard automated processing pipeline for electroencephalography (HAPPE): standardized processing software for developmental and high-artifact data. Front. Neurosci. 12:97. 10.3389/fnins.2018.00097
    1. Garofalo E. A., Drury I., Goldstein G. W. (1988). EEG abnormalities aid diagnosis of Rett syndrome. Pediatr. Neurol. 4, 350–353. 10.1016/0887-8994(88)90081-1
    1. Glaze D. G. (2002). Neurophysiology of Rett syndrome. Ment. Retard. Dev. Disabil. Res. Rev. 8, 66–71. 10.1002/mrdd.10024
    1. Glaze D. G. (2005). Neurophysiology of Rett syndrome. J. Child Neurol. 20, 740–746. 10.1177/08830738050200090801
    1. Glaze D. G., Frost J. D., Jr., Zoghbi H. Y., Percy A. K. (1987). Rett’s syndrome. Correlation of electroencephalographic characteristics with clinical staging. Arch. Neurol. 44, 1053–1056. 10.1001/archneur.1987.00520220051016
    1. Glaze D. G., Neul J. L., Percy A., Feyma T., Beisang A., Yaroshinsky A., et al. . (2017). A double-blind, randomized, placebo-controlled clinical study of trofinetide in the treatment of rett syndrome. Pediatr. Neurol. 76, 37–46. 10.1016/j.pediatrneurol.2017.07.002
    1. Glaze D. G., Percy A. K., Motil K. J., Lane J. B., Isaacs J. S., Schultz R. J., et al. . (2009). A study of the treatment of Rett syndrome with folate and betaine. J. Child Neurol. 24, 551–556. 10.1177/0883073808327827
    1. Goffin D., Brodkin E. S., Blendy J. A., Siegel S. J., Zhou Z. (2014). Cellular origins of auditory event-related potential deficits in Rett syndrome. Nat. Neurosci. 17, 804–806. 10.1038/nn.3710
    1. Goffin D., Zhou Z. J. (2012). The neural circuit basis of Rett syndrome. Front. Biol. 7, 428–435. 10.1007/s11515-012-1248-5
    1. Guerrini R., Bonanni P., Parmeggiani L., Santucci M., Parmeggiani A., Sartucci F. (1998). Cortical reflex myoclonus in Rett syndrome. Ann. Neurol. 43, 472–479. 10.1002/ana.410430410
    1. Guy J., Hendrich B., Holmes M., Martin J. E., Bird A. (2001). A mouse Mecp2-null mutation causes neurological symptoms that mimic Rett syndrome. Nat. Genet. 27, 322–326. 10.1038/85899
    1. Hagberg B. (1985). Rett’s syndrome: prevalence and impact on progressive severe mental retardation in girls. Acta Paediatr. Scand. 74, 405–408. 10.1111/j.1651-2227.1985.tb10993.x
    1. Hagberg B., Aicardi J., Dias K., Ramos O. (1983). A progressive syndrome of autism, dementia, ataxia and loss of purposeful hand use in girls: Rett’s syndrome: report of 35 cases. Ann. Neurol. 14, 471–479. 10.1002/ana.410140412
    1. Hagne I., Witt-Engerström I., Hagberg B. (1989). EEG development in Rett syndrome. A study of 30 cases. Electroencephalogr. Clin. Neurophysiol. 72, 1–6. 10.1016/0013-4694(89)90025-4
    1. Heinen F., Korinthenberg R. (1996). Does transcranial magnetic stimulation allow early diagnosis of Rett syndrome? Neuropediatrics 27, 223–224. 10.1055/s-2007-973794
    1. Heinen F., Petersen H., Fietzek U., Mall V., Schulte-Mönting J., Korinthenberg R. (1997). Transcranial magnetic stimulation in patients with Rett syndrome: preliminary results. Eur. Child Adolesc. Psychiatry 6, 61–63. 10.1016/s0013-4694(97)88197-0
    1. Heunis T. M., Aldrich C., de Vries P. J. (2016). Recent advances in resting-state electroencephalography biomarkers for autism spectrum disorder-a review of methodological and clinical challenges. Pediatr. Neurol. 61, 28–37. 10.1016/j.pediatrneurol.2016.03.010
    1. Ip J. P. K., Mellios N., Sur M. (2018). Rett syndrome: insights into genetic, molecular and circuit mechanisms. Nat. Rev. Neurosci. 19, 368–382. 10.1038/s41583-018-0006-3
    1. Ishizaki A., Inoue Y., Sasaki H., Fukuyama Y. (1989). Longitudinal observation of electroencephalograms in the Rett syndrome. Brain Dev. 11, 407–412. 10.1016/s0387-7604(89)80025-7
    1. Jeste S. S., Geschwind D. H. (2016). Clinical trials for neurodevelopmental disorders: at a therapeutic frontier. Sci. Transl. Med. 8:321fs321. 10.1126/scitranslmed.aad9874
    1. Kálmánchey R. (1990). Evoked potentials in the Rett syndrome. Brain Dev. 12, 73–76. 10.1016/s0387-7604(12)80181-1
    1. Keogh C., Pini G., Dyer A. H., Bigoni S., DiMarco P., Gemo I., et al. . (2018). Clinical and genetic Rett syndrome variants are defined by stable electrophysiological profiles. BMC Pediatr. 18:333. 10.1186/s12887-018-1304-7
    1. Key A. P., Jones D., Peters S. (2019). Spoken word processing in Rett syndrome: evidence from event-related potentials. Int. J. Dev. Neurosci. 73, 26–31. 10.1016/j.ijdevneu.2019.01.001
    1. Khwaja O. S., Ho E., Barnes K. V., O’Leary H. M., Pereira L. M., Finkelstein Y., et al. . (2014). Safety, pharmacokinetics, and preliminary assessment of efficacy of mecasermin (recombinant human IGF-1) for the treatment of Rett syndrome. Proc. Natl. Acad. Sci. U S A 111, 4596–4601. 10.1073/pnas.1311141111
    1. Kimura K., Nomura Y., Segawa M. (1992). Middle and short latency somatosensory evoked potentials (SEPm, SEPs) in the Rett syndrome: chronological changes of cortical and subcortical involvements. Brain Dev. 14, S37–S42.
    1. King B. H., Hollander E., Sikich L., McCracken J. T., Scahill L., Bregman J. D., et al. . (2009). Lack of efficacy of citalopram in children with autism spectrum disorders and high levels of repetitive behavior: citalopram ineffective in children with autism. Arch. Gen. Psychiatry 66, 583–590. 10.1001/archgenpsychiatry.2009.30
    1. Krajnc N., Zidar J. (2016). The role of transcranial magnetic stimulation in evaluation of motor cortex excitability in Rett syndrome. Eur. J. Paediatr. Neurol. 20, 597–603. 10.1016/j.ejpn.2016.03.010
    1. LeBlanc J. J., DeGregorio G., Centofante E., Vogel-Farley V. K., Barnes K., Kaufmann W. E., et al. . (2015). Visual evoked potentials detect cortical processing deficits in Rett syndrome. Ann. Neurol. 78, 775–786. 10.1002/ana.24513
    1. Leonard H., Cobb S., Downs J. (2017). Clinical and biological progress over 50 years in Rett syndrome. Nat. Rev. Neurol. 13, 37–51. 10.1038/nrneurol.2016.186
    1. Levin A. R., Nelson C. A. (2015). Inhibition-based biomarkers for autism spectrum disorder. Neurotherapeutics 12, 546–552. 10.1007/s13311-015-0350-1
    1. Liao W., Gandal M. J., Ehrlichman R. S., Siegel S. J., Carlson G. C. (2012). MeCP2+/− mouse model of RTT reproduces auditory phenotypes associated with Rett syndrome and replicate select EEG endophenotypes of autism spectrum disorder. Neurobiol. Dis. 46, 88–92. 10.1016/j.nbd.2011.12.048
    1. Lim Z., Downs J., Wong K., Ellaway C., Leonard H. (2017). Expanding the clinical picture of the MECP2 Duplication syndrome. Clin. Genet. 91, 557–563. 10.1111/cge.12814
    1. Liu Z., Li X., Zhang J. T., Cai Y. J., Cheng T. L., Cheng C., et al. . (2016). Autism-like behaviours and germline transmission in transgenic monkeys overexpressing MeCP2. Nature 530, 98–102. 10.1038/nature16533
    1. Lupori L., Sagona G., Fuchs C., Mazziotti R., Stefanov A., Putignano E., et al. . (2019). Site-specific abnormalities in the visual system of a mouse model of CDKL5 deficiency disorder. Hum. Mol. Genet. 28, 2851–2861. 10.1093/hmg/ddz102
    1. Mazziotti R., Lupori L., Sagona G., Gennaro M., Della Sala G., Putignano E., et al. . (2017). Searching for biomarkers of CDKL5 disorder: early-onset visual impairment in CDKL5 mutant mice. Hum. Mol. Genet. 26, 2290–2298. 10.1093/hmg/ddx119
    1. McLeod F., Ganley R., Williams L., Selfridge J., Bird A., Cobb S. R. (2013). Reduced seizure threshold and altered network oscillatory properties in a mouse model of Rett syndrome. Neuroscience 231, 195–205. 10.1016/j.neuroscience.2012.11.058
    1. McPartland J. C. (2016). Considerations in biomarker development for neurodevelopmental disorders. Curr. Opin. Neurol. 29, 118–122. 10.1097/wco.0000000000000300
    1. Ness S. L., Manyakov N. V., Bangerter A., Lewin D., Jagannatha S., Boice M., et al. . (2017). JAKE°ledR multimodal data capture system: insights from an observational study of autism spectrum disorder. Front. Neurosci. 11:517. 10.3389/fnins.2017.00517
    1. Neul J. L., Fang P., Barrish J., Lane J., Caeg E. B., Smith E. O., et al. . (2008). Specific mutations in methyl-CpG-binding protein 2 confer different severity in Rett syndrome. Neurology 70, 1313–1321. 10.1212/01.wnl.0000291011.54508.aa
    1. Neul J. L., Kaufmann W. E., Glaze D. G., Christodoulou J., Clarke A. J., Bahi-Buisson N., et al. . (2010). Rett syndrome: revised diagnostic criteria and nomenclature. Ann. Neurol. 68, 944–950. 10.1002/ana.22124
    1. Neul J. L., Lane J. B., Lee H. S., Geerts S., Barrish J. O., Annese F., et al. . (2014). Developmental delay in Rett syndrome: data from the natural history study. J. Neurodev. Disord. 6:20. 10.1186/1866-1955-6-20
    1. Niedermeyer E., Rett A., Renner H., Murphy M., Naidu S. (1986). Rett syndrome and the electroencephalogram. Am. J. Med. Genet. Suppl. 1, 195–199. 10.1002/ajmg.1320250522
    1. Oberman L. M., Enticott P. G., Casanova M. F., Rotenberg A., Pascual-Leone A., McCracken J. T., et al. . (2016). Transcranial magnetic stimulation in autism spectrum disorder: challenges, promise, and roadmap for future research. Autism Res. 9, 184–203. 10.1002/aur.1567
    1. O’Leary H. M., Kaufmann W. E., Barnes K. V., Rakesh K., Kapur K., Tarquinio D. C., et al. . (2018). Placebo-controlled crossover assessment of mecasermin for the treatment of Rett syndrome. Ann. Clin. Transl. Neurol. 5, 323–332. 10.1002/acn3.533
    1. Paciorkowski A. R., Seltzer L. E., Neul J. L. (2018). “Developmental encephalopathies,” in Swaiman’s Pediatric Neurology Sixth Edition, eds Swaiman K. F., Ashwal S., Ferriero D. M., Schor N. F. (Philadelphia: Mosby; ), 242–248.
    1. Pelson R. O., Budden S. S. (1987). Auditory brainstem response findings in Rett syndrome. Brain Dev. 9, 514–516. 10.1016/s0387-7604(87)80075-x
    1. Peters S. U., Gordon R. L., Key A. P. (2015). Induced gamma oscillations differentiate familiar and novel voices in children with MECP2 duplication and Rett syndromes. J. Child Neurol. 30, 145–152. 10.1177/0883073814530503
    1. Peters S. U., Katzenstein A., Jones D., Key A. P. (2017). Distinguishing response to names in Rett and MECP2 Duplication syndrome: an ERP study of auditory social information processing. Brain Res. 1675, 71–77. 10.1016/j.brainres.2017.08.028
    1. Pillion J. P., Bibat G., Naidu S. (2010). Effects of sedation on auditory brainstem response in Rett syndrome. Pediatr. Neurol. 42, 331–334. 10.1016/j.pediatrneurol.2010.01.003
    1. Pillion J. P., Rawool V. W., Naidu S. (2000). Auditory brainstem responses in Rett syndrome: effects of hyperventilation, seizures, and tympanometric variables. Audiology 39, 80–87. 10.3109/00206090009073057
    1. Rett A. (1966). On a unusual brain atrophy syndrome in hyperammonemia in childhood. Wien. Med. Wochenschr. 116, 723–726.
    1. Roberts T. P., Khan S. Y., Rey M., Monroe J. F., Cannon K., Blaskey L., et al. . (2010). MEG detection of delayed auditory evoked responses in autism spectrum disorders: towards an imaging biomarker for autism. Autism Res. 3, 8–18. 10.1002/aur.111
    1. Roche K. J., LeBlanc J. J., Levin A. R., O’Leary H. M., Baczewski L. M., Nelson C. A. (2019). Electroencephalographic spectral power as a marker of cortical function and disease severity in girls with Rett syndrome. J. Neurodev. Disord. 11:15. 10.1186/s11689-019-9275-z
    1. Saby J. N., Marshall P. J. (2012). The utility of EEG band power analysis in the study of infancy and early childhood. Dev. Neuropsychol. 37, 253–273. 10.1080/87565641.2011.614663
    1. Sahin M., Jones S. R., Sweeney J. A., Berry-Kravis E., Connors B. W., Ewen J. B., et al. . (2018). Discovering translational biomarkers in neurodevelopmental disorders. Nat. Rev. Drug Discov. [Epub ahead of print]. 10.1038/d41573-018-00010-7
    1. Santosh P., Lievesley K., Fiori F., Singh J. (2017). Development of the tailored rett intervention and assessment longitudinal (TRIAL) database and the rett evaluation of symptoms and treatments (REST) questionnaire. BMJ Open 7:e015342. 10.1136/bmjopen-2016-015342
    1. Saunders K. J., McCulloch D. L., Kerr A. M. (1995). Visual function in Rett syndrome. Dev. Med. Child Neurol. 37, 496–504. 10.1111/j.1469-8749.1995.tb12037.x
    1. Stach B. A., Stoner W. R., Smith S. L., Jerger J. F. (1994). Auditory evoked potentials in Rett syndrome. J. Am. Acad. Audiol. 5, 226–230.
    1. Stauder J. E., Smeets E. E., van Mil S. G., Curfs L. G. (2006). The development of visual- and auditory processing in Rett syndrome: an ERP study. Brain Dev. 28, 487–494. 10.1016/j.braindev.2006.02.011
    1. Thibodeau R., Jorgensen R. S., Kim S. (2006). Depression, anxiety, and resting frontal EEG asymmetry: a meta-analytic review. J. Abnorm. Psychol. 115, 715–729. 10.1037/0021-843x.115.4.715
    1. van Karnebeek C. D., Bowden K., Berry-Kravis E. (2016). Treatment of neurogenetic developmental conditions: from 2016 into the future. Pediatr. Neurol. 65, 1–13. 10.1016/j.pediatrneurol.2016.07.010
    1. Vashi N., Justice M. J. (2019). Treating Rett syndrome: from mouse models to human therapies. Mamm. Genome 30, 90–110. 10.1007/s00335-019-09793-5
    1. Veenstra-VanderWeele J., Cook E. H., King B. H., Zarevics P., Cherubini M., Walton-Bowen K., et al. . (2017). Arbaclofen in children and adolescents with autism spectrum disorder: a randomized, controlled, phase 2 trial. Neuropsychopharmacology 42, 1390–1398. 10.1038/npp.2016.237
    1. Verma N. P., Chheda R. L., Nigro M. A., Hart Z. H. (1986). Electroencephalographic findings in Rett syndrome. Electroencephalogr. Clin. Neurophysiol. 64, 394–401. 10.1016/0013-4694(86)90072-6
    1. Verma N. P., Nigro M. A., Hart Z. H. (1987). Rett syndrome—a gray matter disease? Electrophysiologic evidence. Electroencephalogr. Clin. Neurophysiol. 67, 327–329. 10.1016/0013-4694(87)90118-0
    1. Wang I. T., Allen M., Goffin D., Zhu X., Fairless A. H., Brodkin E. S., et al. . (2012). Loss of CDKL5 disrupts kinome profile and event-related potentials leading to autistic-like phenotypes in mice. Proc. Natl. Acad. Sci. U S A 109, 21516–21521. 10.1073/pnas.1216988110
    1. Wang J., Barstein J., Ethridge L. E., Mosconi M. W., Takarae Y., Sweeney J. A. (2013). Resting state EEG abnormalities in autism spectrum disorders. J. Neurodev. Disord. 5:24. 10.1186/1866-1955-5-24
    1. Wither R. G., Colic S., Bardakjian B. L., Snead O. C., III., Zhang L., Eubanks J. H. (2018). Electrographic and pharmacological characterization of a progressive epilepsy phenotype in female MeCP2-deficient mice. Epilepsy Res. 140, 177–183. 10.1016/j.eplepsyres.2018.01.015
    1. Yamanouchi H., Kaga M., Arima M. (1993). Abnormal cortical excitability in Rett syndrome. Pediatr. Neurol. 9, 202–206. 10.1016/0887-8994(93)90085-q
    1. Yoshikawa H., Kaga M., Suzuki H., Sakuragawa N., Arima M. (1991). Giant somatosensory evoked potentials in the Rett syndrome. Brain Dev. 13, 36–39. 10.1016/s0387-7604(12)80295-6

Source: PubMed

3
Sottoscrivi