The Impact of Higher Protein Intake in Patients with Prolonged Mechanical Ventilation

Shih-Wei Huang, Horng-Chyuan Lin, Yu-Feng Chou, Ting-Yu Lin, Chun-Yu Lo, Hung-Yu Huang, Yueh-Fu Fang, Meng-Heng Hsieh, Shu-Min Lin, Yu-Lun Lo, Meng-Jer Hsieh, Kuo-Chin Kao, Chun-Yu Lin, Chung-Chi Huang, Shih-Wei Huang, Horng-Chyuan Lin, Yu-Feng Chou, Ting-Yu Lin, Chun-Yu Lo, Hung-Yu Huang, Yueh-Fu Fang, Meng-Heng Hsieh, Shu-Min Lin, Yu-Lun Lo, Meng-Jer Hsieh, Kuo-Chin Kao, Chun-Yu Lin, Chung-Chi Huang

Abstract

Prolonged mechanical ventilation (PMV) is associated with poor outcomes and a high economic cost. The association between protein intake and PMV has rarely been investigated in previous studies. This study aimed to investigate the impact of protein intake on weaning from mechanical ventilation. Patients with the PMV (mechanical ventilation ≥6 h/day for ≥21 days) at our hospital between December 2020 and April 2022 were included in this study. Demographic data, nutrition records, laboratory data, weaning conditions, and survival data were retrieved from the patient’s electronic medical records. A total of 172 patients were eligible for analysis. The patients were divided into two groups: weaning success (n = 109) and weaning failure (n = 63). Patients with daily protein intake greater than 1.2 g/kg/day had significant shorter median days of ventilator use than those with less daily protein intake (36.5 vs. 114 days, respectively, p < 0.0001). Daily protein intake ≥1.065 g/kg/day (odds ratio: 4.97, p = 0.033), daily protein intake ≥1.2 g/kg/day (odds ratio: 89.07, p = 0.001), improvement of serum albumin (odds ratio: 3.68, p = 0.027), and BMI (odds ratio: 1.235, p = 0.014) were independent predictor for successful weaning. The serum creatinine level in the 4th week remained similar in patients with daily protein intake either >1.065 g/kg/day or >1.2 g/kg/day (p = 0.5219 and p = 0.7796, respectively). Higher protein intake may have benefits in weaning in patients with PMV and had no negative impact on renal function.

Keywords: albumin; calories; patients with PMV; prolonged mechanical ventilation; protein; whey protein.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flowchart of the study design.
Figure 2
Figure 2
ROC curve of weaning outcomes with nutritional parameters. ROC, receiver operating characteristic; AUC, area under curve; Δ albumin, difference between the 4th week and baseline serum albumin levels.
Figure 3
Figure 3
Kaplan–Meier survival curve of weaning outcomes with different nutritional parameters. (A) Daily protein intake, g/kg/day; (B) daily protein intake, g/kg/day; (C) daily calorie intake, kcal/kg/day; (D) Δ albumin, difference between the 4th week and baseline serum albumin levels, g/dL; (E) daily whey protein intake, g/kg/day.
Figure 4
Figure 4
Kaplan–Meier survival curve of survival outcomes for different nutritional parameters. (A) Daily protein intake, g/kg/day; (B) daily protein intake, g/kg/day; (C) daily calorie intake, kcal/kg/day; (D) Δ albumin, difference between the 4th week and baseline serum albumin levels, g/dL; (E) daily whey protein intake, g/kg/day.
Figure 5
Figure 5
Comparison of baseline, 2nd week, and 4th week serum creatinine levels with different daily protein intakes. (A) Daily protein intake ≥1.065 g/kg/day; (B) daily protein intake ≥1.2 g/kg/day.

References

    1. Cox C.E., Carson S.S., Lindquist J.H., Olsen M.K., Govert J.A., Chelluri L. Differences in one-year health outcomes and resource utilization by definition of prolonged mechanical ventilation: A prospective cohort study. Crit. Care. 2007;11:R9. doi: 10.1186/cc5667.
    1. Cox C.E., Carson S.S., Govert J.A., Chelluri L., Sanders G.D. An economic evaluation of prolonged mechanical ventilation. Crit. Care Med. 2007;35:1918–1927. doi: 10.1097/01.CCM.0000275391.35834.10.
    1. Damuth E., Mitchell J.A., Bartock J.L., Roberts B.W., Trzeciak S. Long-term survival of critically ill patients treated with prolonged mechanical ventilation: A systematic review and meta-analysis. Lancet Respir. Med. 2015;3:544–553. doi: 10.1016/S2213-2600(15)00150-2.
    1. Dettmer M.R., Damuth E., Zarbiv S., Mitchell J.A., Bartock J.L., Trzeciak S. Prognostic Factors for Long-Term Mortality in Critically Ill Patients Treated with Prolonged Mechanical Ventilation: A Systematic Review. Crit. Care Med. 2017;45:69–74. doi: 10.1097/CCM.0000000000002022.
    1. Peñuelas O., Frutos-Vivar F., Fernández C., Anzueto A., Epstein S.K., Apezteguía C., González M., Nin N., Raymondos K., Tomicic V., et al. Characteristics and outcomes of ventilated patients according to time to liberation from mechanical ventilation. Am. J. Respir. Crit. Care Med. 2011;184:430–437. doi: 10.1164/rccm.201011-1887OC.
    1. Ghiani A., Paderewska J., Sainis A., Crispin A., Walcher S., Neurohr C. Variables predicting weaning outcome in prolonged mechanically ventilated tracheotomized patients: A retrospective study. J. Intensive Care. 2020;8:19. doi: 10.1186/s40560-020-00437-4.
    1. Baptistella A.R., Sarmento F.J., da Silva K.R., Baptistella S.F., Taglietti M., Zuquello R.A., Nunes Filho J.R. Predictive factors of weaning from mechanical ventilation and extubation outcome: A systematic review. J. Crit. Care. 2018;48:56–62. doi: 10.1016/j.jcrc.2018.08.023.
    1. Leonov Y., Kisil I., Perlov A., Stoichev V., Ginzburg Y., Nazarenko A., Gimelfarb Y. Predictors of successful weaning in patients requiring extremely prolonged mechanical ventilation. Adv. Respir. Med. 2020;88:477–484. doi: 10.5603/ARM.a2020.0151.
    1. Sharma K., Mogensen K.M., Robinson M.K. Pathophysiology of Critical Illness and Role of Nutrition. Nutr. Clin. Pract. 2019;34:12–22. doi: 10.1002/ncp.10232.
    1. Van Zanten A.R.H., De Waele E., Wischmeyer P.E. Nutrition therapy and critical illness: Practical guidance for the ICU, post-ICU, and long-term convalescence phases. Crit. Care. 2019;23:368. doi: 10.1186/s13054-019-2657-5.
    1. Reignier J., Boisramé-Helms J., Brisard L., Lascarrou J.B., Ait Hssain A., Anguel N., Argaud L., Asehnoune K., Asfar P., Bellec F., et al. Enteral versus parenteral early nutrition in ventilated adults with shock: A randomised, controlled, multicentre, open-label, parallel-group study (NUTRIREA-2) Lancet. 2018;391:133–143. doi: 10.1016/S0140-6736(17)32146-3.
    1. Weijs P.J., Looijaard W.G., Beishuizen A., Girbes A.R., Oudemans-van Straaten H.M. Early high protein intake is associated with low mortality and energy overfeeding with high mortality in non-septic mechanically ventilated critically ill patients. Crit. Care. 2014;18:701. doi: 10.1186/s13054-014-0701-z.
    1. Koekkoek W., van Setten C.H.C., Olthof L.E., Kars J., van Zanten A.R.H. Timing of PROTein INtake and clinical outcomes of adult critically ill patients on prolonged mechanical VENTilation: The PROTINVENT retrospective study. Clin. Nutr. 2019;38:883–890. doi: 10.1016/j.clnu.2018.02.012.
    1. Kao K.C., Hu H.C., Fu J.Y., Hsieh M.J., Wu Y.K., Chen Y.C., Chen Y.H., Huang C.C., Yang C.T., Tsai Y.H. Renal replacement therapy in prolonged mechanical ventilation patients with renal failure in Taiwan. J. Crit. Care. 2011;26:600–607. doi: 10.1016/j.jcrc.2011.03.005.
    1. Huang H.Y., Lee C.S., Chiu T.H., Chen H.H., Chan L.Y., Chang C.J., Chang S.C., Hu H.C., Kao K.C., Chen N.H., et al. Clinical outcomes and prognostic factors for prolonged mechanical ventilation in patients with acute stroke and brain trauma. Pt 1J. Formos. Med. Assoc. 2022;121:162–169. doi: 10.1016/j.jfma.2021.02.011.
    1. Plauth M., Bernal W., Dasarathy S., Merli M., Plank L.D., Schutz T., Bischoff S.C. ESPEN guideline on clinical nutrition in liver disease. Clin. Nutr. 2019;38:485–521. doi: 10.1016/j.clnu.2018.12.022.
    1. McClave S.A., Taylor B.E., Martindale R.G., Warren M.M., Johnson D.R., Braunschweig C., McCarthy M.S., Davanos E., Rice T.W., Cresci G.A., et al. Guidelines for the Provision and Assessment of Nutrition Support Therapy in the Adult Critically Ill Patient: Society of Critical Care Medicine (SCCM) and American Society for Parenteral and Enteral Nutrition (A.S.P.E.N.) JPEN J. Parenter. Enter. Nutr. 2016;40:159–211. doi: 10.1177/0148607115621863.
    1. Allingstrup M.J., Esmailzadeh N., Wilkens Knudsen A., Espersen K., Hartvig Jensen T., Wiis J., Perner A., Kondrup J. Provision of protein and energy in relation to measured requirements in intensive care patients. Clin. Nutr. 2012;31:462–468. doi: 10.1016/j.clnu.2011.12.006.
    1. Nicolo M., Heyland D.K., Chittams J., Sammarco T., Compher C. Clinical Outcomes Related to Protein Delivery in a Critically Ill Population: A Multicenter, Multinational Observation Study. JPEN J. Parenter. Enter. Nutr. 2016;40:45–51. doi: 10.1177/0148607115583675.
    1. Zusman O., Theilla M., Cohen J., Kagan I., Bendavid I., Singer P. Resting energy expenditure, calorie and protein consumption in critically ill patients: A retrospective cohort study. Crit. Care. 2016;20:367. doi: 10.1186/s13054-016-1538-4.
    1. Song J.H., Lee H.S., Kim S.Y., Kim E.Y., Jung J.Y., Kang Y.A., Park M.S., Kim Y.S., Kim S.K., Chang J., et al. The influence of protein provision in the early phase of intensive care on clinical outcomes for critically ill patients on mechanical ventilation. Asia Pac. J. Clin. Nutr. 2017;26:234–240.
    1. Singer P., Blaser A.R., Berger M.M., Alhazzani W., Calder P.C., Casaer M.P., Hiesmayr M., Mayer K., Montejo J.C., Pichard C., et al. ESPEN guideline on clinical nutrition in the intensive care unit. Clin. Nutr. 2019;38:48–79. doi: 10.1016/j.clnu.2018.08.037.
    1. Matejovic M., Huet O., Dams K., Elke G., Vaquerizo Alonso C., Csomos A., Krzych Ł.J., Tetamo R., Puthucheary Z., Rooyackers O., et al. Medical nutrition therapy and clinical outcomes in critically ill adults: A European multinational, prospective observational cohort study (EuroPN) Crit. Care. 2022;26:143. doi: 10.1186/s13054-022-03997-z.
    1. Puthucheary Z.A., Rawal J., McPhail M., Connolly B., Ratnayake G., Chan P., Hopkinson N.S., Phadke R., Dew T., Sidhu P.S., et al. Acute skeletal muscle wasting in critical illness. JAMA. 2013;310:1591–1600. doi: 10.1001/jama.2013.278481.
    1. Supinski G.S., Morris P.E., Dhar S., Callahan L.A. Diaphragm Dysfunction in Critical Illness. Chest. 2018;153:1040–1051. doi: 10.1016/j.chest.2017.08.1157.
    1. Braunschweig C.A., Sheean P.M., Peterson S.J., Gomez Perez S., Freels S., Lateef O., Gurka D., Fantuzzi G. Intensive nutrition in acute lung injury: A clinical trial (INTACT) JPEN J. Parenter. Enter. Nutr. 2015;39:13–20. doi: 10.1177/0148607114528541.
    1. Heyland D.K., Cahill N., Day A.G. Optimal amount of calories for critically ill patients: Depends on how you slice the cake! Crit. Care Med. 2011;39:2619–2626. doi: 10.1097/CCM.0b013e318226641d.
    1. Crosara I.C., Mélot C., Preiser J.C. A J-shaped relationship between caloric intake and survival in critically ill patients. Ann. Intensive Care. 2015;5:37. doi: 10.1186/s13613-015-0079-3.
    1. Marik P.E., Hooper M.H. Normocaloric versus hypocaloric feeding on the outcomes of ICU patients: A systematic review and meta-analysis. Intensive Care Med. 2016;42:316–323. doi: 10.1007/s00134-015-4131-4.
    1. Peterson S.J., Lateef O.B., Freels S., McKeever L., Fantuzzi G., Braunschweig C.A. Early Exposure to Recommended Calorie Delivery in the Intensive Care Unit Is Associated with Increased Mortality in Patients with Acute Respiratory Distress Syndrome. JPEN J. Parenter. Enter. Nutr. 2018;42:739–747. doi: 10.1177/0148607117713483.
    1. Hartl W.H., Bender A., Scheipl F., Kuppinger D., Day A.G., Küchenhoff H. Calorie intake and short-term survival of critically ill patients. Clin. Nutr. 2019;38:660–667. doi: 10.1016/j.clnu.2018.04.005.
    1. Boirie Y., Dangin M., Gachon P., Vasson M.P., Maubois J.L., Beaufrère B. Slow and fast dietary proteins differently modulate postprandial protein accretion. Proc. Natl. Acad. Sci. USA. 1997;94:14930–14935. doi: 10.1073/pnas.94.26.14930.
    1. Tang J.E., Moore D.R., Kujbida G.W., Tarnopolsky M.A., Phillips S.M. Ingestion of whey hydrolysate, casein, or soy protein isolate: Effects on mixed muscle protein synthesis at rest and following resistance exercise in young men. J. Appl. Physiol. 2009;107:987–992. doi: 10.1152/japplphysiol.00076.2009.
    1. Luiking Y.C., Abrahamse E., Ludwig T., Boirie Y., Verlaan S. Protein type and caloric density of protein supplements modulate postprandial amino acid profile through changes in gastrointestinal behaviour: A randomized trial. Clin. Nutr. 2016;35:48–58. doi: 10.1016/j.clnu.2015.02.013.
    1. Brenner B.M., Lawler E.V., Mackenzie H.S. The hyperfiltration theory: A paradigm shift in nephrology. Kidney Int. 1996;49:1774–1777. doi: 10.1038/ki.1996.265.
    1. Ko G.J., Rhee C.M., Kalantar-Zadeh K., Joshi S. The Effects of High-Protein Diets on Kidney Health and Longevity. J. Am. Soc. Nephrol. 2020;31:1667–1679. doi: 10.1681/ASN.2020010028.
    1. Fiaccadori E., Sabatino A., Barazzoni R., Carrero J.J., Cupisti A., De Waele E., Jonckheer J., Singer P., Cuerda C. ESPEN guideline on clinical nutrition in hospitalized patients with acute or chronic kidney disease. Clin. Nutr. 2021;40:1644–1668. doi: 10.1016/j.clnu.2021.01.028.

Source: PubMed

3
Sottoscrivi