Association of Cardiorespiratory Fitness With Long-term Mortality Among Adults Undergoing Exercise Treadmill Testing

Kyle Mandsager, Serge Harb, Paul Cremer, Dermot Phelan, Steven E Nissen, Wael Jaber, Kyle Mandsager, Serge Harb, Paul Cremer, Dermot Phelan, Steven E Nissen, Wael Jaber

Abstract

Importance: Adverse cardiovascular findings associated with habitual vigorous exercise have raised new questions regarding the benefits of exercise and fitness.

Objective: To assess the association of all-cause mortality and cardiorespiratory fitness in patients undergoing exercise treadmill testing.

Design, setting, and participants: This retrospective cohort study enrolled patients at a tertiary care academic medical center from January 1, 1991, to December 31, 2014, with a median follow-up of 8.4 years. Data analysis was performed from April 19 to July 17, 2018. Consecutive adult patients referred for symptom-limited exercise treadmill testing were stratified by age- and sex-matched cardiorespiratory fitness into performance groups: low (<25th percentile), below average (25th-49th percentile), above average (50th-74th percentile), high (75th-97.6th percentile), and elite (≥97.7th percentile).

Exposures: Cardiorespiratory fitness, as quantified by peak estimated metabolic equivalents on treadmill testing.

Main outcomes and measures: All-cause mortality.

Results: The study population included 122 007 patients (mean [SD] age, 53.4 [12.6] years; 72 173 [59.2%] male). Death occurred in 13 637 patients during 1.1 million person-years of observation. Risk-adjusted all-cause mortality was inversely proportional to cardiorespiratory fitness and was lowest in elite performers (elite vs low: adjusted hazard ratio [HR], 0.20; 95% CI, 0.16-0.24; P < .001; elite vs high: adjusted HR, 0.77; 95% CI, 0.63-0.95; P = .02). The increase in all-cause mortality associated with reduced cardiorespiratory fitness (low vs elite: adjusted HR, 5.04; 95% CI, 4.10-6.20; P < .001; below average vs above average: adjusted HR, 1.41; 95% CI, 1.34-1.49; P < .001) was comparable to or greater than traditional clinical risk factors (coronary artery disease: adjusted HR, 1.29; 95% CI, 1.24-1.35; P < .001; smoking: adjusted HR, 1.41; 95% CI, 1.36-1.46; P < .001; diabetes: adjusted HR, 1.40; 95% CI, 1.34-1.46; P < .001). In subgroup analysis, the benefit of elite over high performance was present in patients 70 years or older (adjusted HR, 0.71; 95% CI, 0.52-0.98; P = .04) and patients with hypertension (adjusted HR, 0.70; 95% CI, 0.50-0.99; P = .05). Extreme cardiorespiratory fitness (≥2 SDs above the mean for age and sex) was associated with the lowest risk-adjusted all-cause mortality compared with all other performance groups.

Conclusions and relevance: Cardiorespiratory fitness is inversely associated with long-term mortality with no observed upper limit of benefit. Extremely high aerobic fitness was associated with the greatest survival and was associated with benefit in older patients and those with hypertension. Cardiorespiratory fitness is a modifiable indicator of long-term mortality, and health care professionals should encourage patients to achieve and maintain high levels of fitness.

Conflict of interest statement

Conflict of Interest Disclosures: None reported.

Figures

Figure 1.. Patient Survival by Performance Group
Figure 1.. Patient Survival by Performance Group
Log-rank P < .001 for all groups, except elite vs high performers (log-rank P = .002). Performance group classifications by cardiorespiratory fitness are defined in Table 2.
Figure 2.. Risk-Adjusted All-Cause Mortality
Figure 2.. Risk-Adjusted All-Cause Mortality
Adjusted hazard ratios (HRs) for all-cause mortality compared with low performers in all patients (A) and by sex (B) (P values are for comparisons with low performers). C, Adjusted HRs for comorbidities and between performance groups. Error bars indicate 95% CIs. Performance group classifications by cardiorespiratory fitness are defined in Table 2. CAD indicates coronary artery disease; and ESRD, end-stage renal disease.
Figure 3.. Adjusted Mortality Risk in Elite…
Figure 3.. Adjusted Mortality Risk in Elite vs High Performers
Multivariable adjusted Cox proportional hazards regression model for specified subgroups. Adjusted hazard ratios (HRs) are for elite vs high performers. Error bars indicate 95% CIs. CAD indicates coronary artery disease. Performance group classifications by cardiorespiratory fitness are defined in Table 2.

References

    1. Sui X, Laditka JN, Hardin JW, Blair SN. Estimated functional capacity predicts mortality in older adults. J Am Geriatr Soc. 2007;55(12):-. doi:10.1111/j.1532-5415.2007.01455.x
    1. Spin JM, Prakash M, Froelicher VF, et al. . The prognostic value of exercise testing in elderly men. Am J Med. 2002;112(6):453-459. doi:10.1016/S0002-9343(02)01065-3
    1. Goraya TY, Jacobsen SJ, Pellikka PA, et al. . Prognostic value of treadmill exercise testing in elderly persons. Ann Intern Med. 2000;132(11):862-870. doi:10.7326/0003-4819-132-11-200006060-00003
    1. Blair SN, Kohl HW III, Paffenbarger RS Jr, Clark DG, Cooper KH, Gibbons LW. Physical fitness and all-cause mortality: a prospective study of healthy men and women. JAMA. 1989;262(17):2395-2401. doi:10.1001/jama.1989.03430170057028
    1. Gulati M, Pandey DK, Arnsdorf MF, et al. . Exercise capacity and the risk of death in women: the St James Women Take Heart Project. Circulation. 2003;108(13):1554-1559. doi:10.1161/01.CIR.0000091080.57509.E9
    1. Al-Mallah MH, Juraschek SP, Whelton S, et al. . Sex differences in cardiorespiratory fitness and all-cause mortality: the Henry Ford Exercise Testing (FIT) Project. Mayo Clin Proc. 2016;91(6):755-762. doi:10.1016/j.mayocp.2016.04.002
    1. Kokkinos P, Myers J, Kokkinos JP, et al. . Exercise capacity and mortality in black and white men. Circulation. 2008;117(5):614-622. doi:10.1161/CIRCULATIONAHA.107.734764
    1. Ehrman JK, Brawner CA, Al-Mallah MH, Qureshi WT, Blaha MJ, Keteyian SJ. Cardiorespiratory fitness change and mortality risk among black and white patients: Henry Ford Exercise Testing (FIT) Project. Am J Med. 2017;130(10):1177-1183. doi:10.1016/j.amjmed.2017.02.036
    1. Kokkinos P, Manolis A, Pittaras A, et al. . Exercise capacity and mortality in hypertensive men with and without additional risk factors. Hypertension. 2009;53(3):494-499. doi:10.1161/HYPERTENSIONAHA.108.127027
    1. Kokkinos P, Myers J, Nylen E, et al. . Exercise capacity and all-cause mortality in African American and Caucasian men with type 2 diabetes. Diabetes Care. 2009;32(4):623-628. doi:10.2337/dc08-1876
    1. Wei M, Kampert JB, Barlow CE, et al. . Relationship between low cardiorespiratory fitness and mortality in normal-weight, overweight, and obese men. JAMA. 1999;282(16):1547-1553. doi:10.1001/jama.282.16.1547
    1. Church TS, LaMonte MJ, Barlow CE, Blair SN. Cardiorespiratory fitness and body mass index as predictors of cardiovascular disease mortality among men with diabetes. Arch Intern Med. 2005;165(18):2114-2120. doi:10.1001/archinte.165.18.2114
    1. Desai MY, Bhonsale A, Patel P, et al. . Exercise echocardiography in asymptomatic HCM: exercise capacity, and not LV outflow tract gradient predicts long-term outcomes. JACC Cardiovasc Imaging. 2014;7(1):26-36. doi:10.1016/j.jcmg.2013.08.010
    1. Shah RV, Murthy VL, Colangelo LA, et al. . Association of fitness in young adulthood with survival and cardiovascular risk: the Coronary Artery Risk Development in Young Adults (CARDIA) Study. JAMA Intern Med. 2016;176(1):87-95. doi:10.1001/jamainternmed.2015.6309
    1. Juraschek SP, Blaha MJ, Whelton SP, et al. . Physical fitness and hypertension in a population at risk for cardiovascular disease: the Henry Ford Exercise Testing (FIT) Project. J Am Heart Assoc. 2014;3(6):e001268. doi:10.1161/JAHA.114.001268
    1. Juraschek SP, Blaha MJ, Blumenthal RS, et al. . Cardiorespiratory fitness and incident diabetes: the FIT (Henry Ford Exercise Testing) project. Diabetes Care. 2015;38(6):1075-1081. doi:10.2337/dc14-2714
    1. Hussain N, Gersh BJ, Gonzalez Carta K, et al. . Impact of cardiorespiratory fitness on frequency of atrial fibrillation, stroke, and all-cause mortality. Am J Cardiol. 2018;121(1):41-49. doi:10.1016/j.amjcard.2017.09.021
    1. Vainshelboim B, Müller J, Lima RM, et al. . Cardiorespiratory fitness and cancer incidence in men. Ann Epidemiol. 2017;27(7):442-447. doi:10.1016/j.annepidem.2017.06.003
    1. Abdulla J, Nielsen JR. Is the risk of atrial fibrillation higher in athletes than in the general population? a systematic review and meta-analysis. Europace. 2009;11(9):1156-1159. doi:10.1093/europace/eup197
    1. Aengevaeren VL, Mosterd A, Braber TL, et al. . Relationship between lifelong exercise volume and coronary atherosclerosis in athletes. Circulation. 2017;136(2):138-148. doi:10.1161/CIRCULATIONAHA.117.027834
    1. van de Schoor FR, Aengevaeren VL, Hopman MTE, et al. . Myocardial fibrosis in athletes. Mayo Clin Proc. 2016;91(11):1617-1631. doi:10.1016/j.mayocp.2016.07.012
    1. Gentry JL III, Carruthers D, Joshi PH, et al. . Ascending aortic dimensions in former National Football League athletes. Circ Cardiovasc Imaging. 2017;10(11):e006852. doi:10.1161/CIRCIMAGING.117.006852
    1. Merghani A, Malhotra A, Sharma S. The U-shaped relationship between exercise and cardiac morbidity. Trends Cardiovasc Med. 2016;26(3):232-240. doi:10.1016/j.tcm.2015.06.005
    1. Arem H, Moore SC, Patel A, et al. . Leisure time physical activity and mortality: a detailed pooled analysis of the dose-response relationship. JAMA Intern Med. 2015;175(6):959-967. doi:10.1001/jamainternmed.2015.0533
    1. Lee DC, Pate RR, Lavie CJ, Sui X, Church TS, Blair SN. Leisure-time running reduces all-cause and cardiovascular mortality risk. J Am Coll Cardiol. 2014;64(5):472-481. doi:10.1016/j.jacc.2014.04.058
    1. Schnohr P, O’Keefe JH, Marott JL, Lange P, Jensen GB. Dose of jogging and long-term mortality: the Copenhagen City Heart Study. J Am Coll Cardiol. 2015;65(5):411-419. doi:10.1016/j.jacc.2014.11.023
    1. Prince SA, Adamo KB, Hamel ME, Hardt J, Connor Gorber S, Tremblay M. A comparison of direct versus self-report measures for assessing physical activity in adults: a systematic review. Int J Behav Nutr Phys Act. 2008;5:56. doi:10.1186/1479-5868-5-56
    1. Vandenbroucke JP, von Elm E, Altman DG, et al. ; STROBE Initiative . Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): explanation and elaboration. PLoS Med. 2007;4(10):e297. doi:10.1371/journal.pmed.0040297
    1. Gibbons RJ, Balady GJ, Bricker JT, et al. ; American College of Cardiology/American Heart Association Task Force on Practice Guidelines; Committee to Update the 1997 Exercise Testing Guidelines . ACC/AHA 2002 guideline update for exercise testing: summary article: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Committee to Update the 1997 Exercise Testing Guidelines) [published correction appears in J Am Coll Cardiol. 2006;48(8):1731]. J Am Coll Cardiol. 2002;40(8):1531-1540. doi:10.1016/S0735-1097(02)02164-2
    1. Morris CK, Myers J, Froelicher VF, Kawaguchi T, Ueshima K, Hideg A. Nomogram based on metabolic equivalents and age for assessing aerobic exercise capacity in men. J Am Coll Cardiol. 1993;22(1):175-182. doi:10.1016/0735-1097(93)90832-L
    1. Kim ESH, Ishwaran H, Blackstone E, Lauer MS. External prognostic validations and comparisons of age- and gender-adjusted exercise capacity predictions. J Am Coll Cardiol. 2007;50(19):1867-1875. doi:10.1016/j.jacc.2007.08.003
    1. Newman TB, Brown AN. Use of commercial record linkage software and vital statistics to identify patient deaths. J Am Med Inform Assoc. 1997;4(3):233-237. doi:10.1136/jamia.1997.0040233
    1. Kaplan E, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc. 1958;53:457-481. doi:10.1080/01621459.1958.10501452
    1. Eijsvogels TMH, Molossi S, Lee DC, Emery MS, Thompson PD. Exercise at the extremes. J Am Coll Cardiol. 2016;67(3):316-329. doi:10.1016/j.jacc.2015.11.034
    1. Lemez S, Baker J. Do elite athletes live longer? a systematic review of mortality and longevity in elite athletes. Sports Med Open. 2015;1(1):16. doi:10.1186/s40798-015-0024-x
    1. Garatachea N, Santos-Lozano A, Sanchis-Gomar F, et al. . Elite athletes live longer than the general population: a meta-analysis. Mayo Clin Proc. 2014;89(9):1195-1200. doi:10.1016/j.mayocp.2014.06.004
    1. Sarna S, Sahi T, Koskenvuo M, Kaprio J. Increased life expectancy of world class male athletes. Med Sci Sports Exerc. 1993;25(2):237-244. doi:10.1249/00005768-199302000-00013
    1. Marijon E, Tafflet M, Antero-Jacquemin J, et al. . Mortality of French participants in the Tour de France (1947-2012). Eur Heart J. 2013;34(40):3145-3150. doi:10.1093/eurheartj/eht347
    1. Carey RM, Whelton PK; 2017 ACC/AHA Hypertension Guideline Writing Committee . Prevention, detection, evaluation, and management of high blood pressure in adults: synopsis of the 2017 American College of Cardiology/American Heart Association hypertension guideline. Ann Intern Med. 2018;168(5):351-358. doi:10.7326/M17-3203
    1. Kokkinos P, Myers J, Franklin B, Narayan P, Lavie CJ, Faselis C. Cardiorespiratory fitness and health outcomes: a call to standardize fitness categories. Mayo Clin Proc. 2018;93(3):333-336. doi:10.1016/j.mayocp.2017.10.011
    1. Fletcher GF, Balady GJ, Amsterdam EA, et al. . Exercise standards for testing and training: a statement for healthcare professionals from the American Heart Association. Circulation. 2001;104(14):1694-1740. doi:10.1161/hc3901.095960
    1. Carrick-Ranson G, Hastings JL, Bhella PS, et al. . The effect of lifelong exercise dose on cardiovascular function during exercise. J Appl Physiol (1985). 2014;116(7):736-745. doi:10.1152/japplphysiol.00342.2013
    1. Heath GW, Hagberg JM, Ehsani AA, Holloszy JO. A physiological comparison of young and older endurance athletes. J Appl Physiol Respir Environ Exerc Physiol. 1981;51(3):634-640. doi:10.1152/jappl.1981.51.3.634
    1. Kwon O, Park S, Kim Y-J, et al. . The exercise heart rate profile in master athletes compared to healthy controls. Clin Physiol Funct Imaging. 2016;36(4):286-292. doi:10.1111/cpf.12226

Source: PubMed

3
Sottoscrivi