Polyphenols and Polysaccharides from Morus alba L. Fruit Attenuate High-Fat Diet-Induced Metabolic Syndrome Modifying the Gut Microbiota and Metabolite Profile

Meixia Wan, Qing Li, Qianya Lei, Dan Zhou, Shu Wang, Meixia Wan, Qing Li, Qianya Lei, Dan Zhou, Shu Wang

Abstract

Morus alba L. fruit, a medicinal and edible fruit in East Asia, showed potential health-promoting effects against metabolic syndrome (MetS). However, both the protective effects and mechanisms of different fractions extracted from Morus alba L. fruit against MetS remain unclear. Additionally, the gut microbiota and its metabolites are regarded as key factors in the development of MetS. This study aimed to investigate the potential role of polyphenols and polysaccharides derived from Morus alba L. fruit against MetS in high-fat diet (HFD)-fed mice, individually and in combination, focusing on remodeling effects on gut microbiota and metabolite profiles. In the study, polyphenols and polysaccharides derived from Morus alba L. fruit improved the traditional pharmacodynamic parameters of MetS, including reductions in body weight (BW) and fat accumulation, improvement in insulin resistance, regulation of dyslipidemia, prevention of pathological changes in liver, kidney and proximal colon tissue, and suppressive actions against oxidative stress. In particular, the group treated with polyphenols and polysaccharides in combination showed better efficacy. The relative abundance of beneficial bacterial genera Muribaculum and Lachnospiraceae_NK4A136_group were increased to various degrees, while opportunistic pathogens such as Prevotella_2, Bacteroides, Faecalibacterium and Fusobacterium were markedly decreased after treatments. Moreover, fecal metabolite profiles revealed 23 differential metabolites related to treatments with polyphenols and polysaccharides derived from Morus alba L. fruit, individually and in combination. Altogether, these results demonstrated that polyphenols and polysaccharides derived from Morus alba L. fruit attenuated MetS in HFD-fed mice, and improved the gut microbiota composition and fecal metabolite profiles.

Keywords: Morus alba L. fruit; gut microbiota; metabolic syndrome; polyphenols; polysaccharides; untargeted fecal metabolomics.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Identification analysis of MFP. (A) HPLC analysis of cyanidin-3-O-glucoside and rutin. (B) HPLC analysis of MFP.
Figure 2
Figure 2
The improvement of obesity and fat accumulation in HFD-fed mice after MFP, MFS and MFPS treatments. (A) Changes in body weight. (B) Body weight gain. (C) Epididymal fat index. (D) Epididymal adipose tissue and H&E-stained photomicrograph of epididymal adipose tissue (original magnification × 200). Data are expressed as the mean ± standard deviation (n = 12). # p < 0.05, ## p < 0.01 vs. NCD group; * p < 0.05, ** p < 0.01 vs. HFD group.
Figure 3
Figure 3
Prevention of HFD-induced hepatic fat deposition and oxidative stress after MFP, MFS and MFPS treatments (A) Liver index. (B,C) Liver function-related transaminase (AST and ALT in serum). (D) Macroscopic appearance of liver, H&E-stained photomicrograph of liver tissue and oil red O-stained photomicrograph of liver tissue (original magnification × 200). (E) Malondialdehyde (MDA). (F) Superoxide dismutase (SOD). (G) Glutathione peroxidase (GSH-Px). Black arrows indicate lipid droplets, blue arrows indicate steatosis with edema, and yellow arrows indicate inflammatory cell infiltration. Data are expressed as the mean ± standard deviation (n = 12). # p < 0.05, ## p < 0.01 vs. NCD group; * p < 0.05, ** p < 0.01 vs. HFD group.
Figure 4
Figure 4
The improvement of glucose tolerance and insulin resistance (IR) after MFP, MFS and MFPS treatments. (A) Oral glucose tolerance test (OGTT). (B) Area under the curve (AUC) of OGTT. (C) Fasting blood glucose. (D) Fasting serum insulin. (E) Homeostatic model assessment-insulin resistance (HOMA-IR) index. Data are expressed as the mean ± standard deviation (n = 12). ## p < 0.01 vs. NCD group; * p < 0.05, ** p < 0.01 vs. HFD group.
Figure 5
Figure 5
The improvement of hyperlipemia in HFD-fed mice after MFP, MFS and MFPS treatments. (A) Levels of total triglyceride (TG). (B) Total cholesterol (TC). (C) Low-density lipoprotein cholesterol (LDL-C). (D) Very low-density lipoprotein cholesterol (VLDL-C). (E) High-density lipoprotein cholesterol (HDL-C). Data are expressed as the mean ± standard deviation (n = 12). ## p < 0.01 vs. NCD group; * p < 0.05, ** p < 0.01 vs. HFD group.
Figure 6
Figure 6
The improvement of renal injury phenotypes in HFD-fed mice after MFP, MFS and MFPS treatments. (A) Serum creatinine (Scr). (B) Serum uric acid (SUA). (C) Blood urea nitrogen (BUN). (D) The renal index (%). (E) H&E-stained photomicrograph of kidney tissue (original magnification × 200). Black arrows indicate diffuse swelling. Data are expressed as the mean ± standard deviation (n = 12). # p < 0.05, ## p < 0.01 vs. NCD group; * p < 0.05, ** p < 0.01 vs. HFD group.
Figure 7
Figure 7
Effects of MFP, MFS and MFPS on inflammatory mediators and colonic lesion phenotypes in HFD-fed mice. Serum levels of pro-inflammatory cytokines by ELISA, including interleukin-1β (IL-1β) (A), interleukin-6 (IL-6) (B), tumor necrosis factor-α (TNF-α) (C). (D) The renal index (%). (E)The colon tissues and H&E-stained photomicrograph of colon tissue (Original magnification × 200). Black arrows indicate inflammatory cell infiltration, green arrows indicate colonic muscle layer. Data were expressed as the mean ± standard deviation (n = 12). ## p < 0.01 vs. NCD group; * p < 0.05, ** p < 0.01 vs. HFD group.
Figure 8
Figure 8
The improvement of gut microbiota dysbiosis in HFD-fed mice after MFP, MFS and MFPS treatments (n = 4). (A) Boxplots for Chao 1 index and Simpson index. (B) OPLS-DA plot. (C) PCoA plot. (D) Relative abundance of the main phyla and genera of the intestinal microbiota in different groups. (E) Spearman’s correlation analysis between gut microbiota genera and pharmacodynamic parameters (The color scale represents the Spearman r value, with red and blue indicating positive and negative correlations, respectively. # p < 0.05, * p < 0.05 and ** p < 0.01). (F) LEfSe (linear discriminant analysis effect size) (LDA score >3.5).
Figure 9
Figure 9
The changes in fecal metabolites in HFD-fed mice after MFP, MFS and MFPS treatments (n = 4). (A) PCA score plot. (B) Cluster heatmap (color bars showing green to red indicate the relative content of metabolites, with red representing high expression and green representing low expression). (C) Pathway enrichment analysis (HFD vs. NCD). (D) Spearman’s correlation analysis between gut microbiota and different metabolites (color scale represents the Spearman r value, with red and blue indicating positive and negative correlations, respectively. * p < 0.05, ** p < 0.01). (E) Spearman’s correlation analysis between pharmacodynamic parameters and different metabolites (color scale represents the Spearman r value, with pink and green indicating positive and negative correlations, respectively. * p < 0.05, ** p < 0.01).

References

    1. Mccracken E., Monaghan M., Sreenivasan S. Pathophysiology of the metabolic syndrome. Clin. Dermatol. 2018;36:14–20. doi: 10.1016/j.clindermatol.2017.09.004.
    1. Grundy S.M. Metabolic syndrome pandemic. Arterioscler. Thromb. Vasc. Biol. 2008;28:629–636. doi: 10.1161/ATVBAHA.107.151092.
    1. Ma H., Hu Y., Zhang B., Shao Z., Roura E., Wang S. Tea polyphenol-gut microbiota interactions: Hints on improving the metabolic syndrome in a multi-element and multi-target manner. Food Sci. Hum. Wellness. 2022;11:11–21. doi: 10.1016/j.fshw.2021.07.002.
    1. Bovolini A., Garcia J., Andrade M.A., Duarte J.A. Metabolic syndrome pathophysiology and predisposing factors. Int. J. Sports Med. 2021;42:199–214. doi: 10.1055/a-1263-0898.
    1. Kasprzak-Drozd K., Oniszczuk T., Stasiak M., Oniszczuk A. Beneficial effects of phenolic compounds on gut microbiota and metabolic syndrome. Int. J. Mol. Sci. 2021;22:3715. doi: 10.3390/ijms22073715.
    1. Hess P.L., Al-Khalidi H.R., Friedman D.J., Mulder H., Kucharska-Newton A., Rosamond W.R., Lopes R.D., Gersh B.J., Mark D.B., Curtis L.H., et al. The metabolic syndrome and risk of sudden cardiac death: The atherosclerosis risk in communities study. J. Am. Heart Assoc. 2017;6:e006103. doi: 10.1161/JAHA.117.006103.
    1. Aron-Wisnewsky J., Clement K. The gut microbiome, diet, and links to cardiometabolic and chronic disorders. Nat. Rev. Nephrol. 2016;12:169–181. doi: 10.1038/nrneph.2015.191.
    1. Villard A., Boursier J., Andriantsitohaina R. Microbiota-derived extracellular vesicles and metabolic syndrome. Acta Physiol. 2021;231:e13600. doi: 10.1111/apha.13600.
    1. Levy M., Kolodziejczyk A.A., Thaiss C.A., Elinav E. Dysbiosis and the immune system. Nat. Rev. Immunol. 2017;17:219–232. doi: 10.1038/nri.2017.7.
    1. Chen M., Zheng J., Zou X., Ye C., Xia H., Yang M., Gao Q., Yang Q., Liu H. Ligustrum robustum (Roxb.) blume extract modulates gut microbiota and prevents metabolic syndrome in high-fat diet-fed mice. J. Ethnopharmacol. 2021;268:113695. doi: 10.1016/j.jep.2020.113695.
    1. Chang B., Koo B., Kim S. Pharmacological Activities for Morus alba L., Focusing on the Immunostimulatory Property from the Fruit Aqueous Extract. Foods. 2021;10:1966. doi: 10.3390/foods10081966.
    1. Wei H., Liu S., Liao Y., Ma C., Wang D., Tong J., Feng J., Yi T., Zhu L. A systematic review of the medicinal potential of mulberry in treating diabetes mellitus. Am. J. Chin. Med. 2019;46:1743–1770. doi: 10.1142/S0192415X1850088X.
    1. Chinese Pharmacopoeia Commission . The Pharmacopoeia of the People’s Republic of China. 2020 ed. Chinese Medical Science Press; Beijing, China: 2020. p. 313.
    1. Rodrigues E.L., Marcelino G., Silva G.T., Figueiredo P.S., Garcez W.S., Corsino J., Guimaraes R., Freitas K.C. Nutraceutical and medicinal potential of the morus species in metabolic dysfunctions. Int. J. Mol. Sci. 2019;20:301. doi: 10.3390/ijms20020301.
    1. Kim I., Lee J. Variations in Anthocyanin Profiles and Antioxidant Activity of 12 Genotypes of Mulberry (Morus spp.) Fruits and their Changes during Processing. Antioxidants. 2020;9:242. doi: 10.3390/antiox9030242.
    1. Chen T., Shuang F., Fu Q., Ju Y., Zong C., Zhao W., Zhang D., Yao X., Cao F. Evaluation of the Chemical Composition and Antioxidant Activity of Mulberry (Morus alba L.) Fruits from Different Varieties in China. Molecules. 2022;27:2688. doi: 10.3390/molecules27092688.
    1. Sun C., Zheng Z., Chen C., Lu B., Liu D. Targeting gut microbiota with natural polysaccharides: Effective interventions against High-Fat Diet-Induced metabolic diseases. Front. Microbiol. 2022;13:859206. doi: 10.3389/fmicb.2022.859206.
    1. Zhang H., Ma Z., Luo X., Li X. Effects of Mulberry Fruit (Morus alba L.) Consumption on Health Outcomes: A Mini-Review. Antioxidants. 2018;7:69. doi: 10.3390/antiox7050069.
    1. Mahboubi M. Morus alba (mulberry), a natural potent compound in management of obesity. Pharmacol. Res. 2019;146:104341. doi: 10.1016/j.phrs.2019.104341.
    1. Jiao Y., Wang X., Jiang X., Kong F., Wang S., Yan C. Antidiabetic effects of Morus alba fruit polysaccharides on high-fat diet- and streptozotocin-induced type 2 diabetes in rats. J. Ethnopharmacol. 2017;199:119–127. doi: 10.1016/j.jep.2017.02.003.
    1. Long X.S., Liao S.T., Wen P., Zou Y.X., Liu F., Shen W.Z., Hu T.G. Superior hypoglycemic activity of mulberry lacking monosaccharides is accompanied by better activation of the PI3K/Akt and AMPK signaling pathways. Food Funct. 2020;11:4249–4258. doi: 10.1039/D0FO00427H.
    1. Wu T., Yin J., Zhang G., Long H., Zheng X. Mulberry and cherry anthocyanin consumption prevents oxidative stress and inflammation in diet-induced obese mice. Mol. Nutr. Food Res. 2016;60:687–694. doi: 10.1002/mnfr.201500734.
    1. Zhang T., Yang Y., Liang Y., Jiao X., Zhao C. Beneficial effect of intestinal fermentation of natural polysaccharides. Nutrients. 2018;10:1055. doi: 10.3390/nu10081055.
    1. Jiang X., Li X., Zhu C., Sun J., Tian L., Chen W., Bai W. The target cells of anthocyanins in metabolic syndrome. Crit. Rev. Food Sci. Nutr. 2019;59:921–946. doi: 10.1080/10408398.2018.1491022.
    1. Hu T., Wen P., Fu H., Lin G., Liao S., Zou Y. Protective effect of mulberry (Morus atropurpurea) fruit against diphenoxylate-induced constipation in mice through the modulation of gut microbiota. Food Funct. 2019;1:1513–1528. doi: 10.1039/C9FO00132H.
    1. Palachai N., Wattanathorn J., Muchimapura S., Thukham-Mee W. Antimetabolic syndrome effect of phytosome containing the combined extracts of mulberry and ginger in an animal model of metabolic syndrome. Oxid. Med. Cell. Longev. 2019;2019:1–19. doi: 10.1155/2019/5972575.
    1. Han H., Qiu F., Zhao H., Tang H., Li X., Shi D. Dietary flaxseed oil prevents Western-Type Diet-Induced nonalcoholic fatty liver disease in Apolipoprotein-E knockout mice. Oxid. Med. Cell. Longev. 2017;2017:3256241. doi: 10.1155/2017/3256241.
    1. Lu H., Lai Y., Huang H., Lee I., Lin L., Liu H., Tien H., Huang C. Ginseng-plus-Bai-Hu-Tang ameliorates diet-induced obesity, hepatic steatosis, and insulin resistance in mice. J. Ginseng. Res. 2020;44:238–246. doi: 10.1016/j.jgr.2018.10.005.
    1. Watanabe H., Obata H., Watanabe T., Sasaki S., Nagai K., Aizawa Y. Metabolic syndrome and risk of development of chronic kidney disease: The Niigata preventive medicine study. Diabetes/Metab. Res. Rev. 2010;26:26–32. doi: 10.1002/dmrr.1058.
    1. Niewiadomska J., Gajek-Marecka A., Gajek J., Noszczyk-Nowak A. Biological potential of polyphenols in the context of metabolic syndrome: An analysis of studies on animal models. Biology. 2022;11:559. doi: 10.3390/biology11040559.
    1. Hu B., Ye C., Leung E.L., Zhu L., Hu H., Zhang Z., Zheng J., Liu H. Bletilla striata oligosaccharides improve metabolic syndrome through modulation of gut microbiota and intestinal metabolites in high fat diet-fed mice. Pharmacol. Res. 2020;159:104942. doi: 10.1016/j.phrs.2020.104942.
    1. Wang Y., Gao X., Zhang X., Xiao F., Hu H., Li X., Dong F., Sun M., Xiao Y., Ge T., et al. Microbial and metabolic features associated with outcome of infliximab therapy in pediatric Crohn’s disease. Gut. Microbes. 2021;13:1865708. doi: 10.1080/19490976.2020.1865708.
    1. Fraga C.G., Croft K.D., Kennedy D.O., Tomás-Barberán F.A. The effects of polyphenols and other bioactives on human health. Food Funct. 2019;10:514–528. doi: 10.1039/C8FO01997E.
    1. Crozier A., Del Rio D., Clifford M.N. Bioavailability of dietary flavonoids and phenolic compounds. Mol. Asp. Med. 2010;31:446–467. doi: 10.1016/j.mam.2010.09.007.
    1. Tang C., Ding R., Sun J., Liu J., Kan J., Jin C. The impacts of natural polysaccharides on intestinal microbiota and immune responses—A review. Food Funct. 2019;10:2290–2312. doi: 10.1039/C8FO01946K.
    1. Chan A.M.L., Ng A.M.H., Mohd Yunus M.H., Idrus R.B.H., Law J.X., Yazid M.D., Chin K., Shamsuddin S.A., Lokanathan Y. Recent developments in rodent models of High-Fructose Diet-Induced metabolic syndrome: A systematic review. Nutrients. 2021;13:2497. doi: 10.3390/nu13082497.
    1. Wainwright P., Byrne C. Bidirectional relationships and disconnects between NAFLD and features of the metabolic syndrome. Int. J. Mol. Sci. 2016;17:367. doi: 10.3390/ijms17030367.
    1. Declèves A., Mathew A.V., Armando A.M., Han X., Dennis E.A., Quehenberger O., Sharma K. AMP-activated protein kinase activation ameliorates eicosanoid dysregulation in high-fat-induced kidney disease in mice. J. Lipid. Res. 2019;60:937–952. doi: 10.1194/jlr.M088690.
    1. Hansel B., Giral P., Nobecourt E., Chantepie S., Bruckert E., Chapman M.J., Kontush A. Metabolic syndrome is associated with elevated oxidative stress and dysfunctional dense high-density lipoprotein particles displaying impaired antioxidative activity. J. Clin. Endocrinol. Metab. 2004;89:4963–4971. doi: 10.1210/jc.2004-0305.
    1. Szeto H.H., Liu S., Soong Y., Seshan S.V., Cohen-Gould L., Manichev V., Feldman L.C., Gustafsson T. Mitochondria protection after acute ischemia prevents prolonged upregulation of IL-1beta and IL-18 and arrests CKD. J. Am. Soc. Nephrol. 2017;28:1437–1449. doi: 10.1681/ASN.2016070761.
    1. Henao-Mejia J., Elinav E., Jin C., Hao L., Mehal W.Z., Strowig T., Thaiss C.A., Kau A.L., Eisenbarth S.C., Jurczak M.J., et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature. 2012;482:179–185. doi: 10.1038/nature10809.
    1. Zhang Q., Fan X., Ye R., Hu Y., Zheng T., Shi R., Cheng W., Lv X., Chen L., Liang P. The effect of simvastatin on gut microbiota and lipid metabolism in hyperlipidemic rats induced by a High-Fat diet. Front. Pharmacol. 2020;11:522. doi: 10.3389/fphar.2020.00522.
    1. Backhed F., Ley R.E., Sonnenburg J.L., Peterson D.A., Gordon J.I. Host-bacterial mutualism in the human intestine. Science. 2005;307:1915–1920. doi: 10.1126/science.1104816.
    1. Canfora E.E., Meex R., Venema K., Blaak E.E. Gut microbial metabolites in obesity, NAFLD and T2DM. Nat. Rev. Endocrinol. 2019;15:261–273. doi: 10.1038/s41574-019-0156-z.
    1. Turnbaugh P.J., Ridaura V.K., Faith J.J., Rey F.E., Knight R., Gordon J.I. The effect of diet on the human gut microbiome: A metagenomic analysis in humanized gnotobiotic mice. Sci. Transl. Med. 2009;1:6r–14r. doi: 10.1126/scitranslmed.3000322.
    1. Croci S., D Apolito L.I., Gasperi V., Catani M.V., Savini I. Dietary strategies for management of metabolic syndrome: Role of gut microbiota metabolites. Nutrients. 2021;13:1389. doi: 10.3390/nu13051389.
    1. Zeb F., Wu X., Chen L., Fatima S., Ijaz-Ul-Haq , Chen A., Xu C., Jianglei R., Feng Q., Li M. Time-restricted feeding is associated with changes in human gut microbiota related to nutrient intake. Nutrition. 2020;78:110797. doi: 10.1016/j.nut.2020.110797.
    1. Lim M.Y., You H.J., Yoon H.S., Kwon B., Lee J.Y., Lee S., Song Y., Lee K., Sung J., Ko G. The effect of heritability and host genetics on the gut microbiota and metabolic syndrome. Gut. 2017;66:1031–1038. doi: 10.1136/gutjnl-2015-311326.
    1. Chen W., Liu F., Ling Z., Tong X., Xiang C. Human intestinal lumen and mucosa-associated microbiota in patients with colorectal cancer. PLoS ONE. 2012;7:e39743. doi: 10.1371/journal.pone.0039743.
    1. Parker B.J., Wearsch P.A., Veloo A.C.M., Rodriguez-Palacios A. The genus alistipes: Gut bacteria with emerging implications to inflammation, cancer, and mental health. Front. Immunol. 2020;11:906. doi: 10.3389/fimmu.2020.00906.
    1. Rau M., Rehman A., Dittrich M., Groen A.K., Hermanns H.M., Seyfried F., Beyersdorf N., Dandekar T., Rosenstiel P., Geier A. Fecal SCFAs and SCFA-producing bacteria in gut microbiome of human NAFLD as a putative link to systemic T-cell activation and advanced disease. United Eur. Gastroenterol. J. 2018;6:1496–1507. doi: 10.1177/2050640618804444.
    1. Ma L., Ni Y., Wang Z., Tu W., Ni L., Zhuge F., Zheng A., Hu L., Zhao Y., Zheng L., et al. Spermidine improves gut barrier integrity and gut microbiota function in diet-induced obese mice. Gut Microbes. 2020;12:1832857. doi: 10.1080/19490976.2020.1832857.
    1. Zhang Z., Yang L., Wan Y., Liu C., Jiang S., Shang E., Duan J. Integrated gut microbiota and fecal metabolomics reveal the renoprotective effect of Rehmanniae Radix Preparata and Corni Fructus on adenine-induced CKD rats. J. Chromatogr. B. 2021;1174:122728. doi: 10.1016/j.jchromb.2021.122728.
    1. Huang S., Pang D., Li X., You L., Zhao Z., Cheung P.C., Zhang M., Liu D. A sulfated polysaccharide from Gracilaria Lemaneiformis regulates cholesterol and bile acid metabolism in high-fat diet mice. Food Funct. 2019;10:3224–3236. doi: 10.1039/C9FO00263D.
    1. Do M.H., Lee H.B., Lee E., Park H.Y. The effects of gelatinized wheat starch and high salt diet on gut microbiota and metabolic disorder. Nutrients. 2020;12:301. doi: 10.3390/nu12020301.
    1. Klaassen C.D., Cui J.Y. Review: Mechanisms of how the intestinal microbiota alters the effects of drugs and bile acids. Drug Metab. Dispos. 2015;43:1505–1521. doi: 10.1124/dmd.115.065698.
    1. Albillos A., de Gottardi A., Rescigno M. The gut-liver axis in liver disease: Pathophysiological basis for therapy. J. Hepatol. 2020;72:558–577. doi: 10.1016/j.jhep.2019.10.003.
    1. Mafra D., Lobo J.C., Barros A.F., Koppe L., Vaziri N.D., Fouque D. Role of altered intestinal microbiota in systemic inflammation and cardiovascular disease in chronic kidney disease. Future Microbiol. 2014;9:399–410. doi: 10.2217/fmb.13.165.
    1. Bao L., Yang C., Shi Z., Wang Z., Jiang D. Analysis of serum metabolomics in obese mice induced by High-Fat diet. Diabetes Metab. Syndr. Obes. 2021;14:4671–4678. doi: 10.2147/DMSO.S337979.
    1. Innes J.K., Calder P.C. Omega-6 fatty acids and inflammation. Prostaglandins Leukot. Essent. Fat. Acids. 2018;132:41–48. doi: 10.1016/j.plefa.2018.03.004.
    1. Chu H., Duan Y., Yang L., Schnabl B. Small metabolites, possible big changes: A microbiota-centered view of non-alcoholic fatty liver disease. Gut. 2019;68:359–370. doi: 10.1136/gutjnl-2018-316307.
    1. Poloncová K., Griač P. Phospholipid transport and remodeling in health and disease. Gen. Physiol. Biophys. 2011;30:25–35. doi: 10.4149/gpb_2011_SI1_25.
    1. Mehedint M.G., Zeisel S.H. Choline’s role in maintaining liver function: New evidence for epigenetic mechanisms. Curr. Opin. Clin. Nutr. Metab. Care. 2013;16:339–345. doi: 10.1097/MCO.0b013e3283600d46.
    1. Zhang F., Wang Q., Xia T., Fu S., Tao X., Wen Y., Chan S., Gao S., Xiong X., Chen W. Diagnostic value of plasma tryptophan and symmetric dimethylarginine levels for acute kidney injury among tacrolimus-treated kidney transplant patients by targeted metabolomics analysis. Sci. Rep. 2018;8:14688. doi: 10.1038/s41598-018-32958-2.
    1. Yokota A., Ikeda M. Amino Acid Fermentation. Springer; Tokyo, Japan: 2017.
    1. Xie G., Ma X., Zhao A., Wang C., Zhang Y., Nieman D., Nicholson J.K., Jia W., Bao Y., Jia W. The metabolite profiles of the obese population are Gender-Dependent. J. Proteome Res. 2014;13:4062–4073. doi: 10.1021/pr500434s.
    1. Iwasa M., Ishihara T., Mifuji-Moroka R., Fujita N., Kobayashi Y., Hasegawa H., Iwata K., Kaito M., Takei Y. Elevation of branched-chain amino acid levels in diabetes and NAFL and changes with antidiabetic drug treatment. Obes. Res. Clin. Pract. 2015;9:293–297. doi: 10.1016/j.orcp.2015.01.003.
    1. Bohler M., van den Berg E.H., Almanza M., Connelly M.A., Bakker S., de Meijer V.E., Dullaart R., Blokzijl H. Branched chain amino acids are associated with metabolic complications in liver transplant recipients. Clin. Biochem. 2022;102:26–33. doi: 10.1016/j.clinbiochem.2022.01.009.

Source: PubMed

3
Sottoscrivi