Benefits and Risks of IgG Transplacental Transfer

Anca Marina Ciobanu, Andreea Elena Dumitru, Nicolae Gica, Radu Botezatu, Gheorghe Peltecu, Anca Maria Panaitescu, Anca Marina Ciobanu, Andreea Elena Dumitru, Nicolae Gica, Radu Botezatu, Gheorghe Peltecu, Anca Maria Panaitescu

Abstract

Maternal passage of immunoglobulin G (IgG) is an important passive mechanism for protecting the infant while the neonatal immune system is still immature and ineffective. IgG is the only antibody class capable of crossing the histological layers of the placenta by attaching to the neonatal Fc receptor expressed at the level of syncytiotrophoblasts, and it offers protection against neonatal infectious pathogens. In pregnant women with autoimmune or alloimmune disorders, or in those requiring certain types of biological therapy, transplacental passage of abnormal antibodies may cause fetal or neonatal harm. In this review, we will discuss the physiological mechanisms and benefits of transplacental transfer of maternal antibodies as well as pathological maternal situations where this system is hijacked, potentially leading to adverse neonatal outcomes.

Keywords: alloimmune disorders; autoimmune disorders; immunoglobulin G; pregnancy; transplacental transfer; vaccine.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Transplacental passage of immunoglobulin G (IgG) and the neonatal Fc receptor. IgG from the maternal blood (left) is transferred by transcytosis at the level of syncytiotrophoblasts (STB); it is internalized within endosomes and binds to FcRn on the internal surface; the complex is then carried towards the basal cell membrane of STB and released into the fetal circulation (right). Purple arrows indicates IgG transport to the fetal blood.
Figure 2
Figure 2
Timing of IgG transfer across the placenta in pregnancy (adapted from Malek A et al., Evolution of maternofetal transport of immunoglobulins during human pregnancy, Am J Reprod Immunol, 1996) [24].
Figure 3
Figure 3
Fetal thyroid goiter (arrow) in gray-scale and power Doppler (courtesy of the Fetal Medicine Foundation).
Figure 4
Figure 4
Fetal arthrogryposis with talipes (collection of Filantropia Hospital).
Figure 5
Figure 5
Pulsed Doppler examination showing increased peak systolic velocity on the middle cerebral artery (left); When plotted on the graph (right), the peak systolic velocity on the middle cerebral artery in this case (red dot) is higher than the limit of 1.5 standard deviation (red line); the green line represents the median peak systolic velocity for gestational age (collection of Filantropia Hospital).
Figure 6
Figure 6
Pemphigoid gestationis: cutaneous bullous lesions on the upper thigh of a third trimester pregnant patient (courtesy of Prof. Călin Giurcăneanu).
Figure 7
Figure 7
Fetal ventriculomegaly due to intraventricular hemorrhage (arrow) (collection of Filantropia Hospital).

References

    1. Chaouat G., Petitbarat M., Dubanchet S., Rahmati M., Ledee N. Tolerance to the Foetal Allograft? Am. J. Reprod. Immunol. 2010;63:624–636. doi: 10.1111/j.1600-0897.2010.00832.x.
    1. Lannaman K., Romero R., Chaiworapongsa T., Kim Y.M., Korzeniewski S.J., Maymon E., Gomez-Lopez N., Panaitescu B., Hassan S.S., Yeo L., et al. Fetal death: An extreme manifestation of maternal anti-fetal rejection. J. Perinat. Med. 2017;45:851–868. doi: 10.1515/jpm-2017-0073.
    1. Wang Y., Zhao S. Integrated Systems Physiology: From Molecules to Function to Disease. Morgan & Claypool Life Sciences; San Rafael, CA, USA: 2010. Vascular biology of the placenta. Morgan & Claypool Life Sciences Copyright (c) 2010.
    1. Vidarsson G., Dekkers G., Rispens T. IgG Subclasses and Allotypes: From Structure to Effector Functions. Front. Immunol. 2014;5:520. doi: 10.3389/fimmu.2014.00520.
    1. Hashira S., Okitsu-Negishi S., Yoshino K. Placental transfer of IgG subclasses in a Japanese population. Pediatr. Int. 2000;42:337–342. doi: 10.1046/j.1442-200x.2000.01245.x.
    1. Challa D.K., Velmurugan R., Ober R.J., Ward E.S. FcRn: From Molecular Interactions to Regulation of IgG Pharmacokinetics and Functions. Curr. Top. Microbiol. Immunol. 2014;382:249–272. doi: 10.1007/978-3-319-07911-0_12.
    1. Palmeira P., Quinello C., Silveira-Lessa A.L., Zago C.A., Carneiro-Sampaio M. IgG Placental Transfer in Healthy and Pathological Pregnancies. Clin. Dev. Immunol. 2012;2012:985646. doi: 10.1155/2012/985646.
    1. Simister N.E., Mostov K.E. An Fc receptor structurally related to MHC class I antigens. Nature. 1989;337:184–187. doi: 10.1038/337184a0.
    1. Vidarsson G., Stemerding A.M., Stapleton N.M., Spliethoff S.E., Janssen H., Rebers F.E., De Haas M., Van De Winkel J.G. FcRn: An IgG receptor on phagocytes with a novel role in phagocytosis. Blood. 2006;108:3573–3579. doi: 10.1182/blood-2006-05-024539.
    1. Akilesh S., Christianson G.J., Roopenian D.C., Shaw A.S. Neonatal FcR expression in bone marrow-derived cells functions to protect serum IgG from catabolism. J. Immunol. 2007;179:4580–4588. doi: 10.4049/jimmunol.179.7.4580.
    1. Pyzik M., Sand K.M.K. Hubbard JJ The Neonatal Fc Receptor (FcRn): A Misnomer? Front. Immunol. 2019;10:1540. doi: 10.3389/fimmu.2019.01540.
    1. Roopenian D.C., Akilesh S. FcRn: The neonatal Fc receptor comes of age. Nat. Rev. Immunol. 2007;7:715–725. doi: 10.1038/nri2155.
    1. Leach J.L., Sedmak D.D., Osborne J.M., Rahill B., Lairmore M.D., Anderson C.L. Isolation from human placenta of the IgG transporter, FcRn, and localization to the syncytiotrophoblast: Implications for maternal-fetal antibody transport. J. Immunol. 1996;157:3317–3322.
    1. Kristoffersen E.K., Matre R. Co-localization of the neonatal Fc gamma receptor and IgG in human placental term syncytiotrophoblasts. Eur. J. Immunol. 1996;26:1668–1671. doi: 10.1002/eji.1830260741.
    1. Kiskova T., Mytsko Y., Schepelmann M.W., Helmer H., Fuchs R., Miedl H., Wadsack C., Ellinger I., Heidi M. Expression of the neonatal Fc-receptor in placental-fetal endothelium and in cells of the placental immune system. Placenta. 2019;78:36–43. doi: 10.1016/j.placenta.2019.02.012.
    1. Simister N.E. Human placental Fc receptors and the trapping of immune complexes. Vaccine. 1998;16:1451–1455. doi: 10.1016/S0264-410X(98)00107-8.
    1. Simister N.E. Placental transport of immunoglobulin G. Vaccine. 2003;21:3365–3369. doi: 10.1016/S0264-410X(03)00334-7.
    1. Chaudhury C., Mehnaz S., Robinson J.M., Hayton W.L., Pearl D.K., Roopenian D.C., Anderson C.L. The Major Histocompatibility Complex–related Fc Receptor for IgG (FcRn) Binds Albumin and Prolongs Its Lifespan. J. Exp. Med. 2003;197:315–322. doi: 10.1084/jem.20021829.
    1. Junghans R.P., Anderson C.L. The protection receptor for IgG catabolism is the β2-microglobulin containing neonatal intestinal transport receptor. Proc. Natl. Acad. Sci. USA. 1996;93:5512–5516. doi: 10.1073/pnas.93.11.5512.
    1. Shields R.L., Namenuk A.K., Hong K., Meng Y.G., Rae J., Briggs J., Xie D., Lai J., Stadlen A., Li B., et al. High Resolution Mapping of the Binding Site on Human IgG1 for FcγRI, FcγRII, FcγRIII, and FcRn and Design of IgG1 Variants with Improved Binding to the FcγR. J. Biol. Chem. 2000;276:6591–6604. doi: 10.1074/jbc.M009483200.
    1. Aloulou M., Mkaddem S.B., Biarnes-Pelicot M., Boussetta T., Souchet H., Rossato E., Benhamou M., Crestani B., Zhu Z., Blank U., et al. IgG1 and IVIg induce inhibitory ITAM signaling through FcγRIII controlling inflammatory responses. Blood. 2012;119:3084–3096. doi: 10.1182/blood-2011-08-376046.
    1. Gable K.L., Guptill J.T. Antagonism of the Neonatal Fc Receptor as an Emerging Treatment for Myasthenia Gravis. Front. Immunol. 2020;10:3052. doi: 10.3389/fimmu.2019.03052.
    1. Jauniaux E., Jurkovic D., Liesnard C., Lees C., Campbell S., Gulbis B. Materno-fetal immunoglobulin transfer and passive immunity during the first trimester of human pregnancy. Hum. Reprod. 1995;10:3297–3300. doi: 10.1093/oxfordjournals.humrep.a135906.
    1. Malek A., Sager R., Kuhn P., Nicolaides K.H., Schneider H. Evolution of Maternofetal Transport of Immunoglobulins During Human Pregnancy. Am. J. Reprod. Immunol. 1996;36:248–255. doi: 10.1111/j.1600-0897.1996.tb00172.x.
    1. Lessa A.L.S., Brasil T.B., Pontes G.N., Carneiro-Sampaio M., Palmeira P., Krebs V.L.J. Preterm and term neonates transplacentally acquire IgG antibodies specific to LPS from Klebsiella pneumoniae, Escherichia coli and Pseudomonas aeruginosa. FEMS Immunol. Med. Microbiol. 2011;62:236–243. doi: 10.1111/j.1574-695X.2011.00807.x.
    1. Berg J.P.V.D., Westerbeek E.A.M., Berbers G.A.M., Van Gageldonk P., Van Der Klis F.R.M., Van Elburg R.M. Transplacental Transport of IgG Antibodies Specific for Pertussis, Diphtheria, Tetanus, Haemophilus influenzae Type b, and Neisseria meningitidis Serogroup C Is Lower in Preterm Compared with Term Infants. Pediatr. Infect. Dis. J. 2010;29:801–805. doi: 10.1097/INF.0b013e3181dc4f77.
    1. Lozano N.A., Lozano A., Marini V., Saranz R.J., Blumberg R.S., Baker K., Agresta M.F., Ponzio M. Expression of FcRn receptor in placental tissue and its relationship with IgG levels in term and preterm newborns. Am. J. Reprod. Immunol. 2018;80:e12972. doi: 10.1111/aji.12972.
    1. Berg J.V.D., Westerbeek E., Van Der Klis F., Berbers G., Van Elburg R. Transplacental transport of IgG antibodies to preterm infants: A review of the literature. Early Hum. Dev. 2011;87:67–72. doi: 10.1016/j.earlhumdev.2010.11.003.
    1. Ohlsson A., Lacy J.B. Intravenous immunoglobulin for preventing infection in preterm and/or low birth weight infants. Cochrane Database Syst. Rev. 2020;1 doi: 10.1002/14651858.CD000361.pub4.
    1. Malek A., Sager R., Schneider H. Maternal-Fetal Transport of Immunoglobulin G and Its Subclasses During the Third Trimester of Human Pregnancy. Am. J. Reprod. Immunol. 1994;32:8–14. doi: 10.1111/j.1600-0897.1994.tb00873.x.
    1. Jennewein M.F., Goldfarb I., Dolatshahi S., Cosgrove C., Noelette F.J., Krykbaeva M., Das J., Sarkar A., Gorman M.J., Fischinger S., et al. Fc Glycan-Mediated Regulation of Placental Antibody Transfer. Cell. 2019;178:202–215. doi: 10.1016/j.cell.2019.05.044.
    1. Hartter H.K., Oyedele O.I., Dietz K., Kreis S., Hoffman J.P., Muller C.P. Placental transfer and decay of maternally acquired antimeasles antibodies in Nigerian children. Pediatr. Infect. Dis. J. 2000;19:635–641. doi: 10.1097/00006454-200007000-00010.
    1. Jones C., Naidoo S., De Beer C., Esser M., Kampmann B., Hesseling A.C. Maternal HIV Infection and Antibody Responses Against Vaccine-Preventable Diseases in Uninfected Infants. JAMA. 2011;305:576–584. doi: 10.1001/jama.2011.100.
    1. De Moraes-Pinto M.I., Verhoeff F., Chimsuku L., Milligan P., Wesumperuma L., Broadhead R.L., Brabin B.J., Johnson P.M., Hart C.A. Placental antibody transfer: Influence of maternal HIV infection and placental malaria. Arch. Dis. Child. Fetal Neonatal Ed. 1998;79:F202–F205. doi: 10.1136/fn.79.3.F202.
    1. Palmeira P., Costa-Carvalho B.T., Arslanian C., Pontes G.N., Nagao A.T., Carneiro-Sampaio M.M.S. Transfer of antibodies across the placenta and in breast milk from mothers on intravenous immunoglobulin. Pediatr. Allergy Immunol. 2009;20:528–535. doi: 10.1111/j.1399-3038.2008.00828.x.
    1. Omer S.B., Jamieson D.J. Maternal Immunization. Plotkin’s Vaccines. 2018;133:567–578. doi: 10.1016/b978-0-323-35761-6.00036-5.
    1. Sperling R.S., Riley L.E. Immunization and Emerging Infections Expert Work Group. Influenza vaccination, pregnancy safety, and risk of early pregnancy loss. Obstet. Gynecol. 2018;131:799–802. doi: 10.1097/AOG.0000000000002573.
    1. Omer S.B., Clark D.R., Aqil A.R., Tapia M.D., Nunes M.C., Kozuki N., Steinhoff M.C., Madhi S.A., Wairagkar N. BMGF Supported Maternal Influenza Immunization Trials Investigators Group Maternal Influenza Immunization and Prevention of Severe Clinical Pneumonia in Young Infants. Pediatr. Infect. Dis. J. 2018;37:436–440. doi: 10.1097/INF.0000000000001914.
    1. Jones C., Pollock L., Barnett S.M., Battersby A., Kampmann B. Specific antibodies against vaccine-preventable infections: A mother–infant cohort study. BMJ Open. 2013;3:e002473. doi: 10.1136/bmjopen-2012-002473.
    1. Centers for Disease Control and Prevention Updated recommendations for use of tetanus toxoid, reduced diphtheria toxoid, and acellular pertussis vaccine (Tdap) in pregnant women—Advisory committee on immunization practices (ACIP) Morb. Mortal. Wkly. Rep. 2013;62:131–135.
    1. Raya B.A., Srugo I., Kessel A., Peterman M., Bader D., Gonen R., Bamberger E. The effect of timing of maternal tetanus, diphtheria, and acellular pertussis (Tdap) immunization during pregnancy on newborn pertussis antibody levels—A prospective study. Vaccine. 2014;32:5787–5793. doi: 10.1016/j.vaccine.2014.08.038.
    1. Hillier S.L., Ferrieri P., Edwards M.S., Ewell M., Ferris D., Fine P., Carey V., Meyn L., Hoagland D., Kasper D.L., et al. A Phase 2, Randomized, Control Trial of Group B Streptococcus (GBS) Type III Capsular Polysaccharide-tetanus Toxoid (GBS III-TT) Vaccine to Prevent Vaginal Colonization with GBS III. Clin. Infect. Dis. 2018;68:2079–2086. doi: 10.1093/cid/ciy838.
    1. Muñoz F.M., Bond N.H., Maccato M., Pinell P., Hammill H.A., Swamy G.K., Walter E.B., Jackson L.A., Englund J.A., Edwards M.S., et al. Safety and Immunogenicity of Tetanus Diphtheria and Acellular Pertussis (Tdap) Immunization During Pregnancy in Mothers and Infants. JAMA. 2014;311:1760–1769. doi: 10.1001/jama.2014.3633.
    1. Siegrist C.A. Mechanisms by which maternal antibodies influence infant vaccine responses: Review of hypotheses and definition of main determinants. Vaccine. 2003;21:3406–3412. doi: 10.1016/S0264-410X(03)00342-6.
    1. Gans H. Measles and mumps vaccination as a model to investigate the developing immune system: Passive and active immunity during the first year of life. Vaccine. 2003;21:3398–3405. doi: 10.1016/S0264-410X(03)00341-4.
    1. Lochlainn L.M.N., De Gier B., Van Der Maas N., Strebel P.M., Goodman T., Van Binnendijk R.S., De Melker H.E., Hahné S.J.M. Immunogenicity, effectiveness, and safety of measles vaccination in infants younger than 9 months: A systematic review and meta-analysis. Lancet Infect. Dis. 2019;19:1235–1245. doi: 10.1016/S1473-3099(19)30395-0.
    1. Sauerbrei A., Wutzler P. Placental boost to varicella-zoster antibodies in the newborn. J. Perinat. Med. 2002;30:345–348. doi: 10.1515/JPM.2002.052.
    1. Leineweber B., Grote V., Schaad B., Heininger U. Transplacentally acquired immunoglobulin G antibodies against measles, mumps, rubella and varicella-zoster virus in preterm and full term newborns. Pediatr. Infect. Dis. J. 2004;23:361–363. doi: 10.1097/00006454-200404000-00019.
    1. Plans-Rubió P., De Ory F., Campins M., Álvarez E., Payà T., Guisasola E., Compte C., Vellbé K., Sanchez C., Lozano M.J., et al. Prevalence of anti-rubella, anti-measles and anti-mumps IgG antibodies in neonates and pregnant women in Catalonia (Spain) in 2013: Susceptibility to measles increased from 2003 to 2013. Eur. J. Clin. Microbiol. Infect. Dis. 2015;34:1161–1171. doi: 10.1007/s10096-015-2339-4.
    1. McLean H.Q., Fiebelkorn A.P., Temte J.L., Wallace G.S. Prevention of measles, rubella, congenital rubella syndrome, and mumps, 2013: Summary recommendations of the Advisory Committee on Immunization Practices (ACIP) MMWR Recomm. Rep. 2013;62:1–34.
    1. Van Savage J., Decker M.D., Edwards K.M., Sell S.H., Karzon D.T. Natural History of Pertussis Antibody in the Infant and Effect on Vaccine Response. J. Infect. Dis. 1990;161:487–492. doi: 10.1093/infdis/161.3.487.
    1. Novavax . Novavax Announces Topline Results from Phase 3 PrepareTM Trial of ResVaxTM for Prevention of RSV Disease in Infants via Maternal Immunization. Novavax; Gaithersburg, MD, USA: 2019.
    1. Madhi S.A., Cutland C., Jose L., Koen A., Govender N., Wittke F., Olugbosi M., Meulen A.S.-T., Baker S., Dull P.M., et al. Safety and immunogenicity of an investigational maternal trivalent group B streptococcus vaccine in healthy women and their infants: A randomised phase 1b/2 trial. Lancet Infect. Dis. 2016;16:923–934. doi: 10.1016/S1473-3099(16)00152-3.
    1. Heyderman R.S., Madhi S.A., French N., Cutland C.L., Ngwira B., Kayambo D., Mboizi R., Koen A., Jose L., Olugbosi M., et al. Group B streptococcus vaccination in pregnant women with or without HIV in Africa: A non-randomised phase 2, open-label, multicentre trial. Lancet Infect. Dis. 2016;16:546–555. doi: 10.1016/S1473-3099(15)00484-3.
    1. Barrett A.D. Current status of Zika vaccine development: Zika vaccines advance into clinical evaluation. NPJ Vaccines. 2018;3:24. doi: 10.1038/s41541-018-0061-9.
    1. Schwartz D.A. Being Pregnant during the Kivu Ebola Virus Outbreak in DR Congo: The rVSV-ZEBOV Vaccine and Its Accessibility by Mothers and Infants during Humanitarian Crises and in Conflict Areas. Vaccines. 2020;8:38. doi: 10.3390/vaccines8010038.
    1. Wang W., Xu Y., Gao R., Lu R., Han K., Wu G., Tan W. Detection of SARS-CoV-2 in Different Types of Clinical Specimens. JAMA. 2020 doi: 10.1001/jama.2020.3786.
    1. Kimberlin D.W., Stagno S. Can SARS-CoV-2 Infection Be Acquired in Utero? More Definitive Evidence Is Needed. JAMA. 2020;18:1788–1789.
    1. Zeng H., Xu C., Fan J., Tang Y., Deng Q., Zhang W., Long X. Antibodies in Infants Born to Mothers with COVID-19 Pneumonia. JAMA. 2020;323 doi: 10.1001/jama.2020.4861.
    1. Dong Y., Chi X., Hai H., Sun L., Zhang M., Xie W.F., Chen W., Huang H. Antibodies in the breast milk of a maternal woman with COVID-19. Emerg. Microbes Infect. 2020;9:1467–1469. doi: 10.1080/22221751.2020.1780952.
    1. Davanzo R., Moro G., Sandri F., Agosti M., Moretti C., Mosca F. Breastfeeding and coronavirus disease-2019: Ad interim indications of the Italian Society of Neonatology endorsed by the Union of European Neonatal & Perinatal Societies. Matern. Child Nutr. 2020;16:e13010. doi: 10.1111/mcn.13010.
    1. Donders F., Lonnée-Hoffmann R., Tsiakalos A., Mendling W., De Oliveira J.M., Judlin P., Xue F., Donders G., Workgroup G., Covid I. ISIDOG Recommendations Concerning COVID-19 and Pregnancy. Diagnostics. 2020;10:243. doi: 10.3390/diagnostics10040243.
    1. Huel C., Guibourdenche J., Vuillard E., Ouahba J., Piketty M., Oury J.F., Luton D. Use of ultrasound to distinguish between fetal hyperthyroidism and hypothyroidism on discovery of a goiter. Ultrasound Obstet. Gynecol. 2009;33:412–420. doi: 10.1002/uog.6315.
    1. Alexander E.K., Pearce E.N., Brent G.A., Brown R.S., Chen H., Dosiou C., Grobman W.A., Laurberg P., Lazarus J.H., Mandel S.J., et al. 2017 Guidelines of the American Thyroid Association for the Diagnosis and Management of Thyroid Disease During Pregnancy and the Postpartum. Thyroid. 2017;27:315–389. doi: 10.1089/thy.2016.0457.
    1. Panaitescu A.M., Nicolaides K.H. Maternal autoimmune disorders and fetal defects. J. Matern. Fetal Neonatal Med. 2017;31:1798–1806. doi: 10.1080/14767058.2017.1326904.
    1. Panaitescu A., Nicolaides K. Fetal Goitre in Maternal Graves’ Disease. Acta Endocrinol. (Buchar.) 2018;14:85–89. doi: 10.4183/aeb.2018.85.
    1. Kobayashi M., Yagasaki H., Saito T., Nemoto A., Naito A., Sugita K. Fetal goitrous hypothyroidism treated by intra-amniotic levothyroxine administration: Case report and review of the literature. J. Pediatr. Endocrinol. Metab. 2017;30:1001–1005. doi: 10.1515/jpem-2017-0094.
    1. Agmon-Levin N., Damoiseaux J., Kallenberg C., Sack U., Witte T., Herold M., Bossuyt X., Musset L., Cervera R., Plaza-Lopez A., et al. International recommendations for the assessment of autoantibodies to cellular antigens referred to as anti-nuclear antibodies. Ann. Rheum. Dis. 2013;73:17–23. doi: 10.1136/annrheumdis-2013-203863.
    1. Wainwright B., Bhan R., Trad C., Cohen R., Saxena A., Buyon J., Izmirly P. Autoimmune-mediated congenital heart block. Best Pract. Res. Clin. Obstet. Gynaecol. 2019;64:41–51. doi: 10.1016/j.bpobgyn.2019.09.001.
    1. Eftekhari P., Sallé L., Lezoualc’H F., Mialet J., Gastineau M., Briand J.P., Isenberg D.A., Fournié G.J., Argibay J., Fischmeister R., et al. Anti-SSA/Ro52 autoantibodies blocking the cardiac 5-HT4 serotoninergic receptor could explain neonatal lupus congenital heart block. Eur. J. Immunol. 2000;30:2782–2790. doi: 10.1002/1521-4141(200010)30:10<2782::AID-IMMU2782>;2-9.
    1. Gordon P.A., Khamashta M.A., Rosenthal E., Simpson J.M., Sharland G., Brucato A., Franceschini F., De Bosschere K., Meheus L., Meroni P.L., et al. Anti-52 kDa Ro, anti-60 kDa Ro, and anti-La antibody profiles in neonatal lupus. J. Rheumatol. 2004;31:2487.
    1. Tonello M., Hoxha A., Mattia E., Zambon A., Visentin S., Cerutti A., Ghirardello A., Milanesi O., Ruffatti A. Low titer, isolated anti Ro/SSA 60 kd antibodies is correlated with positive pregnancy outcomes in women at risk of congenital heart block. Clin. Rheumatol. 2017;36:1155–1160. doi: 10.1007/s10067-017-3572-2.
    1. Brito-Zerón P., Izmirly P.M., Ramos-Casals M., Buyon J.P., Khamashta M. The clinical spectrum of autoimmune congenital heart block. Nat. Rev. Rheumatol. 2015;11:301–312. doi: 10.1038/nrrheum.2015.29.
    1. Jaeggi E., Laskin C., Hamilton R., Kingdom J., Silverman E. The Importance of the Level of Maternal Anti-Ro/SSA Antibodies as a Prognostic Marker of the Development of Cardiac Neonatal Lupus Erythematosus. A Prospective Study of 186 Antibody-Exposed Fetuses and Infants. J. Am. Coll. Cardiol. 2010;55:2778–2784. doi: 10.1016/j.jacc.2010.02.042.
    1. Buyon J.P., Clancy R.M., Friedman D.M. Cardiac manifestations of neonatal lupus erythematosus: Guidelines to management, integrating clues from the bench and bedside. Nat. Rev. Rheumatol. 2009;5:139–148. doi: 10.1038/ncprheum1018.
    1. Jaeggi E., Hamilton R., Silverman E., Zamora S., Hornberger L. Outcome of children with fetal, neonatal, or childhood diagnosis of isolated congenital atrioventricular block: A single institution’s experience of 30 years. J. Am. Coll. Cardiol. 2002;39:130–137. doi: 10.1016/S0735-1097(01)01697-7.
    1. Clancy R.M., Neufing P.J., Zheng P., O’Mahony M., Nimmerjahn F., Gordon T.P., Buyon J.P. Impaired clearance of apoptotic cardiocytes is linked to anti-SSA/Ro and -SSB/La antibodies in the pathogenesis of congenital heart block. J. Clin. Investig. 2006;116:2413–2422. doi: 10.1172/JCI27803.
    1. Eliasson H., Sonesson S.E., Sharland G., Granath F., Simpson J.M., Carvalho J.S., Jicinska H., Tomek V., Dangel J., Zielinsky P., et al. Isolated atrioventricular block in the fetus: A retrospective, multinational, multicenter study of 175 patients. Circulation. 2011;124:1919–1926. doi: 10.1161/CIRCULATIONAHA.111.041970.
    1. Izmirly P.M., Saxena A., Kim M.Y., Wang D., Sahl S.K., Llanos C., Friedman D., Buyon J.P. Maternal and fetal factors associated with mortality and morbidity in a multi-racial/ethnic registry of anti-SSA/Ro-associated cardiac neonatal lupus. Circulation. 2011;124:1927–1935. doi: 10.1161/CIRCULATIONAHA.111.033894.
    1. Donofrio M.T., Moon-Grady A.J., Hornberger L.K., Copel J.A., Sklansky M.S., Abuhamad A., Cuneo B.F., Huhta J.C., Jonas R.A., Krishnan A., et al. Diagnosis and Treatment of Fetal Cardiac Disease: A Scientific Statement from the American Heart Association. Circulation. 2014;129:2183–2242. doi: 10.1161/01.cir.0000437597.44550.5d.
    1. Friedman D.M., Kim M.Y., Copel J.A., Llanos C., Davis C., Buyon J.P. Prospective Evaluation of Fetuses With Autoimmune-Associated Congenital Heart Block Followed in the PR Interval and Dexamethasone Evaluation (PRIDE) Study. Am. J. Cardiol. 2009;103:1102–1106. doi: 10.1016/j.amjcard.2008.12.027.
    1. Popescu M.R., Dudu A., Jurcut C., Ciobanu A.M., Zagrean A.-M., Panaitescu A.M. A Broader Perspective on Anti-Ro Antibodies and Their Fetal Consequences—A Case Report and Literature Review. Diagnostics. 2020;10:478. doi: 10.3390/diagnostics10070478.
    1. Lee L.A. Neonatal lupus: Clinical features, therapy, and pathogenesis. Curr. Rheumatol. Rep. 2001;3:391–395. doi: 10.1007/s11926-996-0009-3.
    1. Neiman A.R., Lee L.A., Weston W.L., Buyon J.P. Cutaneous manifestations of neonatal lupus without heart block: Characteristics of mothers and children enrolled in a national registry. J. Pediatr. 2000;137:674–680. doi: 10.1067/mpd.2000.109108.
    1. Segal J.B., Powe N.R. Prevalence of immune thrombocytopenia: Analyses of administrative data. J. Thromb. Haemost. 2006;4:2377–2383. doi: 10.1111/j.1538-7836.2006.02147.x.
    1. Lambert M.P., Gernsheimer T.B. Clinical updates in adult immune thrombocytopenia. Blood. 2017;129:2829–2835. doi: 10.1182/blood-2017-03-754119.
    1. Labarque V., Van Geet C. Clinical practice: Immune thrombocytopenia in paediatrics. Eur. J. Pediatr. 2014;173:163–172. doi: 10.1007/s00431-013-2254-6.
    1. Del Vecchio A. Evaluation and management of thrombocytopenic neonates in the intensive care unit. Early Hum. Dev. 2014;90(Suppl. 2):S51–S55. doi: 10.1016/S0378-3782(14)50014-X.
    1. Jensen J., Wiedmeier S., Henry E., Silver R., Christensen R. Linking Maternal Platelet Counts with Neonatal Platelet Counts and Outcomes Using the Data Repositories of a Multihospital Health Care System. Am. J. Perinatol. 2011;28:597–604. doi: 10.1055/s-0031-1276733.
    1. Neunert C.E., Cooper N. Evidence-based management of immune thrombocytopenia: ASH guideline update. Hematology. 2018;2018:568–575. doi: 10.1182/asheducation-2018.1.568.
    1. McGrogan A., Sneddon S., De Vries C.S. The Incidence of Myasthenia Gravis: A Systematic Literature Review. Neuroepidemiology. 2010;34:171–183. doi: 10.1159/000279334.
    1. Gilhus N.E. Myasthenia Gravis Can Have Consequences for Pregnancy and the Developing Child. Front. Neurol. 2020;11:554. doi: 10.3389/fneur.2020.00554.
    1. Hoff J.M., Daltveit A.K., Gilhus N.E. Artrogryposis multiplex congenital—A rare fetal condition caused by maternal myasthenia gravis. Acta Neurol. Scand. 2006;183:26–27. doi: 10.1111/j.1600-0404.2006.00610.x.
    1. Vincent A., McConville J., Farrugia M.E., Bowen J., Plested P., Tang T., Evoli A., Matthews I., Sims G., Dalton P., et al. Antibodies in Myasthenia Gravis and Related Disorders. Ann. N. Y. Acad. Sci. 2003;998:324–335. doi: 10.1196/annals.1254.036.
    1. Stafford I.P., Dildy G. Myasthenia gravis and pregnancy. Clin. Obstet. Gynecol. 2004;48:48–56. doi: 10.1097/01.grf.0000153206.85996.07.
    1. Sokol R.J., Hewitt S. Stamps Barbara K Erythrocyte autoantibodies, autoimmune haemolysis and pregnancy. Vox Sang. 1982;43:169–176. doi: 10.1111/j.1423-0410.1982.tb00008.x.
    1. Dhingra S., Wiener J.J., Jackson H. Management of Cold Agglutinin–Immune Hemolytic Anemia in Pregnancy. Obstet. Gynecol. 2007;110:485–486. doi: 10.1097/01.AOG.0000259908.18243.f0.
    1. Gurpreet D., Cornett P.A., Tierney L. Hemolytic anemia. Am. Fam. Phys. 2004;69:2599–2607.
    1. Dongmei S., McLeod A., Gandhi S., Malinowski A.K., Shehata N. Anemia in pregnancy: A pragmatic approach. Obstet. Gynecol. Surv. 2017;72:730–737.
    1. Jaime-Pérez J.C., Aguilar-Calderón P., Salazar-Cavazos L., Gómez-Almaguer D. Evans syndrome: Clinical perspectives, biological insights and treatment modalities. J. Blood Med. 2018;9:171–184. doi: 10.2147/JBM.S176144.
    1. Lauzikiene D., Ramasauskaite D., Lūža T., Lenkutienė R. Pregnancy Induced Autoimmune Warm Antibodies Hemolytic Anemia: A Case Report. Geburtshilfe Frauenheilkde. 2015;75:1167–1171. doi: 10.1055/s-0035-1558131.
    1. Zhao C.Y. Murrell DF Blistering diseases in neonates. Curr. Opin. Pediatr. 2016;28:500–506. doi: 10.1097/MOP.0000000000000381.
    1. Zhao C.Y., Chiang Y.Z., Murrell D.F. Neonatal Autoimmune Blistering Disease: A Systematic Review. Pediatr. Dermatol. 2016;33:367–374. doi: 10.1111/pde.12859.
    1. Cohen S., Strowd L.C., Pichardo R.O. Pemphigoid gestationis: A case series and review of the literature. J. Dermatol. Treat. 2018;29:815–818. doi: 10.1080/09546634.2018.1459034.
    1. Semkova K., Black M. Pemphigoid gestationis: Current insights into pathogenesis and treatment. Eur. J. Obstet. Gynecol. Reprod. Biol. 2009;145:138–144. doi: 10.1016/j.ejogrb.2009.05.012.
    1. Singla A., Shree S., Mehta S. Pregnancy with Pemphigoid Gestationis: A Rare Entity. J. Clin. Diagn. Res. 2016;10:QD06–QD07. doi: 10.7860/JCDR/2016/19491.8215.
    1. Huilaja L., Mäkikallio K., Sormunen R., Lohi J., Hurskainen T., Tasanen K. Gestational Pemphigoid: Placental Morphology and Function. Acta Derm. Venereol. 2013;93:33–38. doi: 10.2340/00015555-1370.
    1. Dean L. Medical Genetics Summaries [Internet] National Center for Biotechnology Information (US); Bethesda, MD, USA: 2012. [(accessed on 12 July 2020)]. ABO blood group 2012. Available online:
    1. Engelfriet C. Blood Transfusion in Clinical Medicine. Vox Sang. 1974;26:404. doi: 10.1159/000467780.
    1. Vaughan J.I., Warwick R., Letsky E., Nicolini U., Rodeck C.H., Fisk N.M. Erythropoietic suppression in fetal anemia because of Kell alloimmunization. Am. J. Obstet. Gynecol. 1994;171:247–252. doi: 10.1016/0002-9378(94)90477-4.
    1. Bussel J.B., Zacharoulis S., Kramer K., McFarland J.G., Pauliny J., Kaplan C. Neonatal Alloimmune Thrombocytopenia Registry Group Clinical and diagnostic comparison of neonatal alloimmune thrombocytopenia to non-immune cases of thrombocytopenia. Pediatr. Blood Cancer. 2005;45:176–183. doi: 10.1002/pbc.20282.
    1. Peterson J.A., McFarland J.G., Curtis B.R., Aster R.H. Neonatal alloimmune thrombocytopenia: Pathogenesis, diagnosis and management. Br. J. Haematol. 2013;161:3–14. doi: 10.1111/bjh.12235.
    1. Kjær M., Bertrand G., Bakchoul T., Massey E., Baker J.M., Lieberman L., Tanael S., Greinacher A., Murphy M.F., Arnold D.M., et al. Maternal HPA-1a antibody level and its role in predicting the severity of Fetal/Neonatal Alloimmune Thrombocytopenia: A systematic review. Vox Sang. 2018;114:79–94. doi: 10.1111/vox.12725.
    1. Van Der Lugt N.M., Kamphuis M.M., Paridaans N.P., Figee A., Oepkes D., Walther F.J., Lopriore E. Neonatal outcome in alloimmune thrombocytopenia after maternal treatment with intravenous immunoglobulin. High Speed Blood Transfus. Equip. 2014;13:66–71.
    1. Bertrand G., Blouin L., Boehlen F., Levine E., Minon J.-M., Winer N. Management of neonatal thrombocytopenia in a context of maternal antiplatelet alloimmunization: Expert opinion of the French-speaking working group. Arch. Pédiatr. 2019;26:191–197. doi: 10.1016/j.arcped.2019.02.006.
    1. Pacheco L.D., Berkowitz R.L., Moise K.J., Bussel J.B., McFarland J., Saade G.R. Fetal and Neonatal Alloimmune Thrombocytopenia: A management algorithm based on risk stratification. Obstet. Gynecol. 2011;118:1157–1163. doi: 10.1097/AOG.0b013e31823403f4.
    1. Pan X., Kelly S., Malladi P., Whitington P.F., Melin-Aldana H. Novel mechanism of fetal hepatocyte injury in congenital alloimmune hepatitis involves the terminal complement cascade. Hepatology. 2010;51:2061–2068. doi: 10.1002/hep.23581.
    1. Whitington P.F. Gestational Alloimmune Liver Disease and Neonatal Hemochromatosis. Semin. Liver Dis. 2013;32:325–332. doi: 10.1055/s-0032-1329901.
    1. Bonilla S., Prozialeck J.D., Malladi P., Pan X., Yu S., Melin-Aldana H., Whitington P.F. Neonatal iron overload and tissue siderosis due to gestational alloimmune liver disease. J. Hepatol. 2012;56:1351–1355. doi: 10.1016/j.jhep.2012.01.010.
    1. Taylor S.A., Kelly S., Alonso E.M., Whitington P.F. The Effects of Gestational Alloimmune Liver Disease on Fetal and Infant Morbidity and Mortality. J. Pediatr. 2018;196:123–128. doi: 10.1016/j.jpeds.2017.12.054.
    1. Lopriore E., Mearin M.L., Oepkes D., Devlieger R., Whitington P.F. Neonatal hemochromatosis: Management, outcome, and prevention. Prenat. Diagn. 2013;33:1221–1225. doi: 10.1002/pd.4232.
    1. Borba V.V., Zandman-Goddard G., Shoenfeld Y. Exacerbations of autoimmune diseases during pregnancy and postpartum. Best Prac. Res. Clin. Endocrinol. Metab. 2019;33:101321. doi: 10.1016/j.beem.2019.101321.
    1. Djelmis J., Sostarko M., Mayer D., Ivanisević M. Myasthenia gravis in pregnancy: Report on 69 cases. Eur. J. Obstet. Gynecol. Reprod. Biol. 2002;104:21–25. doi: 10.1016/S0301-2115(02)00051-9.
    1. Langer-Gould A., Beaber B.E. Effects of pregnancy and breastfeeding on the multiple sclerosis disease course. Clin. Immunol. 2013;149:244–250. doi: 10.1016/j.clim.2013.01.008.
    1. Brandt S.V.D., Zbinden A., Baeten D., Villiger P.M., Østensen M., Förger F. Risk factors for flare and treatment of disease flares during pregnancy in rheumatoid arthritis and axial spondyloarthritis patients. Arthritis Res. Ther. 2017;19:64. doi: 10.1186/s13075-017-1269-1.
    1. Kwan L.Y., Mahadevan U. Inflammatory bowel disease and pregnancy: An update. Expert Rev. Clin. Immunol. 2010;6:643–657. doi: 10.1586/eci.10.35.
    1. Julsgaard M., Christensen L.A., Gibson P.R., Gearry R.B., Fallingborg J., Hvas C.L., Bibby B.M., Uldbjerg N., Connell W., Rosella O., et al. Concentrations of Adalimumab and Infliximab in Mothers and Newborns, and Effects on Infection. Gastroenterology. 2016;151:110–119. doi: 10.1053/j.gastro.2016.04.002.
    1. Chaparro M., Verreth A., Lobatón T., Gravito-Soares E., Julsgaard M., Savarino E.V., Magro F., Biron A., Lopez-Serrano P., Casanova M.J., et al. Long-Term Safety of In Utero Exposure to Anti-TNFα Drugs for the Treatment of Inflammatory Bowel Disease: Results from the Multicenter European TEDDY Study. Am. J. Gastroenterol. 2018;113:396–403. doi: 10.1038/ajg.2017.501.
    1. Komaki F., Komaki Y., Micic D., Ido A., Sakuraba A. Outcome of pregnancy and neonatal complications with anti-tumor necrosis factor-α use in females with immune mediated diseases; a systematic review and meta-analysis. J. Autoimmun. 2017;76:38–52. doi: 10.1016/j.jaut.2016.11.004.
    1. Bröms G., Kieler H., Ekbom A., Gissler M., Hellgren K., Lahesmaa-Korpinen A.-M., Pedersen L., Schmitt-Egenolf M., Sørensen H., Granath F. Anti-TNF treatment during pregnancy and birth outcomes: A population-based study from Denmark, Finland, and Sweden. Pharmacoepidemiol. Drug Saf. 2020;29:316–327. doi: 10.1002/pds.4930.
    1. Bröms G., Kieler H., Ekbom A., Gissler M., Hellgren K., Leinonen M.K., Pedersen L., Schmitt-Egenolf M., Sørensen H.T., Granath F. Paediatric infections in the first 3 years of life after maternal anti-TNF treatment during pregnancy. Aliment. Pharmacol. Ther. 2020 doi: 10.1111/apt.15971.
    1. Murray K.E., Moore L., O’Brien C., Clohessy A., Brophy C., Minnock P., Fitzgerald O., Molloy E.S., Mongey A.-B., Higgins S., et al. Updated pharmacological management of rheumatoid arthritis for women before, during, and after pregnancy, reflecting recent guidelines. Ir. J. Med. Sci. 2018;188:169–172. doi: 10.1007/s11845-018-1829-7.
    1. Luu M., Benzénine E., Doret M., Michiels C., Barkun A., Degand T., Quantin C., Bardou M. Continuous Anti-TNFα Use Throughout Pregnancy: Possible Complications for the Mother but Not for the Fetus. A Retrospective Cohort on the French National Health Insurance Database (EVASION) Am. J. Gastroenterol. 2018;113:1669–1677. doi: 10.1038/s41395-018-0176-7.
    1. Soh M.C., Moretto M. The use of biologics for autoimmune rheumatic diseases in fertility and pregnancy. Obstet. Med. 2019;13:5–13. doi: 10.1177/1753495X19841799.
    1. Kazatchkine M.D., Kaveri S. Immunomodulation of Autoimmune and Inflammatory Diseases with Intravenous Immune Globulin. N. Engl. J. Med. 2001;345:747–755. doi: 10.1056/NEJMra993360.
    1. Lünemann J.D., Quast I., Dalakas M.C. Efficacy of Intravenous Immunoglobulin in Neurological Diseases. Neurotherapeutics. 2016;13:34–46. doi: 10.1007/s13311-015-0391-5.
    1. Li N., Zhao M., Hilario-Vargas J., Prisayanh P., Warren S., Diaz L.A., Roopenian D.C., Liu Z. Complete FcRn dependence for intravenous Ig therapy in autoimmune skin blistering diseases. J. Clin. Investig. 2005;115:3440–3450. doi: 10.1172/JCI24394.
    1. Perez E.E., Orange J.S., Bonilla F., Chinen J., Chinn I.K., Dorsey M., El-Gamal Y., Harville T.O., Hossny E., Mazer B., et al. Update on the use of immunoglobulin in human disease: A review of evidence. J. Allergy Clin. Immunol. 2017;139:S1–S46. doi: 10.1016/j.jaci.2016.09.023.
    1. Lieberman L., Greinacher A., Murphy M.F., Bussel J.B., Bakchoul T., Corke S., Kjaer M., Kjeldsen-Kragh J., Bertrand G., Oepkes D., et al. Fetal and neonatal alloimmune thrombocytopenia: Recommendations for evidence-based practice, an international approach. Int. Collab. Transfus. Med. Guidel. (ICTMG) Br. J. Haematol. 2019;185:549–562. doi: 10.1111/bjh.15813.
    1. Regan F., Lees C.C., Jones B., Nicolaides K.H., Wimalasundera R.C., Mijovic A. Royal College of Obstetricians and Gynaecologists. Prenatal Management of Pregnancies at Risk of Fetal Neonatal Alloimmune Thrombocytopenia (FNAIT): Scientific Impact Paper No. 61. Royal College of Obstetricians and Gynaecologists. BJOG. 2019;126:e173–e185. doi: 10.1111/1471-0528.15642.
    1. Revello M.G., Lazzarotto T., Guerra B., Spinillo A., Ferrazzi E., Kustermann A., Guaschino S., Vergani P., Todros T., Frusca T., et al. A Randomized Trial of Hyperimmune Globulin to Prevent Congenital Cytomegalovirus. N. Engl. J. Med. 2014;370:1316–1326. doi: 10.1056/NEJMoa1310214.
    1. Hamprecht K., Kagan K.-O., Goelz R., Van Leeuwen E., Rengerink K.O., Pajkrt E., Spinillo A., Gerna G., Nigro G. Hyperimmune Globulin to Prevent Congenital CMV Infection. N. Engl. J. Med. 2014;370:2543–2545. doi: 10.1056/nejmc1405377.

Source: PubMed

3
Sottoscrivi