Circulating Hsp70 Levels and the Immunophenotype of Peripheral Blood Lymphocytes as Potential Biomarkers for Advanced Lung Cancer and Therapy Failure after Surgery

Seyer Safi, Luis Messner, Merten Kliebisch, Linn Eggert, Ceyra Ceylangil, Philipp Lennartz, Benedict Jefferies, Henriette Klein, Moritz Schirren, Michael Dommasch, Dominik Lobinger, Gabriele Multhoff, Seyer Safi, Luis Messner, Merten Kliebisch, Linn Eggert, Ceyra Ceylangil, Philipp Lennartz, Benedict Jefferies, Henriette Klein, Moritz Schirren, Michael Dommasch, Dominik Lobinger, Gabriele Multhoff

Abstract

Lung cancer remains a devastating disease with a poor clinical outcome. A biomarker signature which could distinguish lung cancer from metastatic disease and detect therapeutic failure would significantly improve patient management and allow for individualized, risk-adjusted therapeutic decisions. In this study, circulating Hsp70 levels were measured using ELISA, and the immunophenotype of the peripheral blood lymphocytes were measured using multiparameter flow cytometry, to identify a predictive biomarker signature for lung cancer patients pre- and post-operatively, in patients with lung metastases and in patients with COPD as an inflammatory lung disease. The lowest Hsp70 concentrations were found in the healthy controls followed by the patients with advanced COPD. Hsp70 levels sequentially increased with an advancing tumor stage and metastatic disease. In the early-recurrence patients, Hsp70 levels started to increase within the first three months after surgery, but remained unaltered in the recurrence-free patients. An early recurrence was associated with a significant drop in B cells and an increase in Tregs, whereas the recurrence-free patients had elevated T and NK cell levels. We conclude that circulating Hsp70 concentrations might have the potential to distinguish lung cancer from metastatic disease, and might be able to predict an advanced tumor stage and early recurrence in lung cancer patients. Further studies with larger patient cohorts and longer follow-up periods are needed to validate Hsp70 and immunophenotypic profiles as predictive biomarker signatures.

Keywords: advanced COPD; biomarker; circulating Hsp70; early recurrence; immunophenotypic profile; lung cancer; surgery.

Conflict of interest statement

The authors declare there is no conflict of interest. G.M. is the founder and Chief Scientific Officer of multimmune GmbH, Munich, Germany. The funders had no role in the design of the study, in the collection, analyses, or interpretation of the data, in the writing of the manuscript or in the decision to publish the results.

Figures

Figure 1
Figure 1
Patient flow diagram of the healthy controls, lung tumor (LT) and advanced-COPD patients. Blood samples were taken from patients with adeno carcinoma (ADENO-CA), squamous cell carcinoma of the lung (SCC), other lung cancers (OTLC) and lung metastases (MET) before (Pre) and three months (3m Post) post-operatively. Patients were divided into a recurrence-free (RFC) and early recurrent (RC) cohort. The numbers in parentheses indicate the number of blood samples which were available for Hsp70 measurements using ELISA and for immunophenotyping using multiparameter flow cytometry.
Figure 2
Figure 2
Circulating Hsp70 levels in (a) healthy individuals (Healthy, n = 108), patients with adeno carcinoma of the lung (ADENO-CA, n = 17), squamous cell carcinoma (SCC, n = 7) of the lung, other types of lung cancers (OTLC, n = 8), lung metastases (MET, n = 17) and advanced COPD (n = 18). (b) Hsp70 levels in the healthy control cohort (n = 108) and primary lung tumor patients in stage I (n = 7), II (n = 5), III (n = 11) and IV (n = 9). * p < 0.05, ** p < 0.01, **** p < 0.0001.
Figure 3
Figure 3
Measurement of Hsp70 in the peripheral blood of healthy individuals (n = 108), patients with primary lung tumors in stages I-III (n = 6), stage IV (n = 3) and lung metastases (MET, n = 7), before (Pre) and three months (Post) post-operatively, * p < 0.05.
Figure 4
Figure 4
Measurement of Hsp70 levels in the peripheral blood of healthy human volunteers (Healthy, n = 108) and lung cancer patients before (Pre) and three months after (Post) surgery in a recurrence-free (RFC, n = 10) and early recurrence (RC, n = 6) cohort, * p < 0.05, ** p < 0.01.
Figure 5
Figure 5
Representative example of a gating strategy to identify lymphocyte subpopulations (a) such as CD3−/CD19+ B cells (c), CD3−/CD56+ NK cells (d), CD3+/CD45+ leukocytes (e), CD3+/CD4+ T helper (e), CD3+/CD8+ cytotoxic T cells (e), CD4+ and CD8+ CD3+/CD25+/FoxP3+ Treg cells (e). (b) negative control gating, red circle, lymphocyte gate; green box, gated cell population for subpopulation analysis.
Figure 6
Figure 6
Composition of lymphocytes and lymphocyte subpopulations in the peripheral blood of the healthy volunteers (Healthy, n = 16) and in a cohort of recurrence-free (RFC, n = 8) and early recurrence (RC, n = 6) lung cancer patients before (Pre) and after (Post) surgery, as determined by using multiparameter flow cytometry. (a) The proportion of CD45+ lymphocytes in the healthy volunteers, pre-surgery recurrence-free (Pre RFC), post-surgery recurrence-free (Post RFC), pre-surgery early recurrence (Pre RC) and post-surgery early recurrence (Post RC) lung cancer patients. (b) The proportion of CD19+ B cells in all the indicated groups. (c) The proportion of CD3+ T cells, CD4+ T helper cells and CD8+ cytotoxic T cells in all the indicated groups. (d) The proportion of CD4+ and CD8+ CD3+/CD25+/FoxP3+ Treg cells in all the indicated groups. (e) The proportion of different NK cell subpopulations including CD3−/CD16+ (CD16), CD3−/NKG2D+ (NKG2D), CD3−/CD56+ (CD56), CD3−/NKp30+ (NKp30), CD3−/NKp46+ (NKp46), CD3−/CD69+ (CD69) and CD3−/CD94+ (CD94) in all the indicated groups (* p < 0.05, ** p < 0.01, **** p < 0.0001).

References

    1. Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global cancer statistics 2020: Globocan estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660.
    1. De Koning H., Van Der Aalst C., Ten Haaf K., Oudkerk M. Effekts of volume ct lung cancer screening: Mortality results of the nelson randomised-controlled population based trial. J. Thorac. Oncol. 2018;13:S185. doi: 10.1016/j.jtho.2018.08.012.
    1. Reduced lung-cancer mortality with low-dose computed tomographic screening. N. Engl. J. Med. 2011;365:395–409. doi: 10.1056/NEJMoa1102873.
    1. Schabath M.B., Cote M.L. Cancer progress and priorities: Lung cancer. Cancer Epidemiol. Biomark. Prev. 2019;28:1563–1579. doi: 10.1158/1055-9965.EPI-19-0221.
    1. Barnes B., Kraywinkel K., Nowossadeck E., Schönfeld I., Starker A., Wienecke A., Wolf U. Bericht zum Krebsgeschehen in Deutschland 2016. Robert Koch Institute; Berlin, Germany: 2016. pp. 32–34.
    1. De Torres J.P., Bastarrika G., Wisnivesky J.P., Alcaide A.B., Campo A., Seijo L.M., Pueyo J.C., Villanueva A., Lozano M.D., Montes U., et al. Assessing the relationship between lung cancer risk and emphysema detected on low-dose ct of the chest. Chest. 2007;132:1932–1938. doi: 10.1378/chest.07-1490.
    1. Scrimini S., Pons J., Sauleda J. Myeloid-derived suppressor cells: Possible link between chronic obstrucive pulmonary disease and lung cancer. Arch. Bronconeumol. 2016;52:29–35. doi: 10.1016/j.arbres.2015.07.003.
    1. Yamauchi Y., Safi S., Blattner C., Rathinasamy A., Umansky L., Juenger S., Warth A., Eichhorn M., Muley T., Herth F.J.F., et al. Circulating and tumor myeloid-derived suppressor cells in resectable non-small cell lung cancer. Am. J. Respir. Crit. Care Med. 2018;198:777–787. doi: 10.1164/rccm.201708-1707OC.
    1. Radons J. The human hsp70 family of chaperones: Where do we stand? Cell Stress Chaperones. 2016;21:379–404. doi: 10.1007/s12192-016-0676-6.
    1. Multhoff G., Botzler C., Wiesnet M., Muller E., Meier T., Wilmanns W., Issels R.D. A stress-inducible 72-kda heat-shock protein (hsp72) is expressed on the surface of human tumor cells, but not on normal cells. Int. J. Cancer. 1995;61:272–279. doi: 10.1002/ijc.2910610222.
    1. Gehrmann M., Schmetzer H., Eissner G., Haferlach T., Hiddemann W., Multhoff G. Membrane-bound heat shock protein 70 (hsp70) in acute myeloid leukemia: A tumor specific recognition structure for the cytolytic activity of autologous nk cells. Haematologica. 2003;88:474–476.
    1. Gastpar R., Gehrmann M., Bausero M.A., Asea A., Gross C., Schroeder J.A., Multhoff G. Heat shock protein 70 surface-positive tumor exosomes stimulate migratory and cytolytic activity of natural killer cells. Cancer Res. 2005;65:5238–5247. doi: 10.1158/0008-5472.CAN-04-3804.
    1. Gunther S., Ostheimer C., Stangl S., Specht H.M., Mozes P., Jesinghaus M., Vordermark D., Combs S.E., Peltz F., Jung M.P., et al. Correlation of hsp70 serum levels with gross tumor volume and composition of lymphocyte subpopulations in patients with squamous cell and adeno non-small cell lung cancer. Front. Immunol. 2015;6:556. doi: 10.3389/fimmu.2015.00556.
    1. Stepien E.L., Durak-Kozica M., Moskal P. Extracellular vesicles in vascular pathophysiology: Beyond their molecular content. Pol. Arch. Intern. Med. 2023;133:16483. doi: 10.20452/pamw.16483.
    1. Leidal A.M., Debnath J. Unraveling the mechanisms that specify molecules for secretion in extracellular vesicles. Methods. 2020;177:15–26. doi: 10.1016/j.ymeth.2020.01.008.
    1. Zhang C., Yang X., Jiang T., Yan C., Xu X., Chen Z. Tissue-derived extracellular vesicles: Isolation, purification, and multiple roles in normal and tumor tissues. Life Sci. 2023;321:121624. doi: 10.1016/j.lfs.2023.121624.
    1. Wang Y., Zhang Y., Li Z., Wei S., Chi X., Yan X., Lv H., Zhao L., Zhao L. Combination of size-exclusion chromatography and ion exchange adsorption for improving the proteomic analysis of plasma-derived extracellular vesicles. Proteomics. 2023;23:e2200364. doi: 10.1002/pmic.202200364.
    1. Sojka D.R., Abramowicz A., Adamiec-Organisciok M., Karnas E., Mielanczyk L., Kania D., Blamek S., Telka E., Scieglinska D. Heat shock protein a2 is a novel extracellular vesicle-associated protein. Sci. Rep. 2023;13:4734. doi: 10.1038/s41598-023-31962-5.
    1. Fathi M., Martinez-Paniagua M., Rezvan A., Montalvo M.J., Mohanty V., Chen K., Mani S.A., Varadarajan N. Identifying signatures of ev secretion in metastatic breast cancer through functional single-cell profiling. iScience. 2023;26:106482. doi: 10.1016/j.isci.2023.106482.
    1. Multhoff G., Pfister K., Botzler C., Jordan A., Scholz R., Schmetzer H., Burgstahler R., Hiddemann W. Adoptive transfer of human natural killer cells in mice with severe combined immunodeficiency inhibits growth of hsp70-expressing tumors. Int. J. Cancer. 2000;88:791–797. doi: 10.1002/1097-0215(20001201)88:5<791::AID-IJC17>;2-I.
    1. Stangl S., Wortmann A., Guertler U., Multhoff G. Control of metastasized pancreatic carcinomas in scid/beige mice with human il-2/tkd-activated nk cells. J. Immunol. 2006;176:6270–6276. doi: 10.4049/jimmunol.176.10.6270.
    1. Gehrmann M., Radons J., Molls M., Multhoff G. The therapeutic implications of clinically applied modifiers of heat shock protein 70 (hsp70) expression by tumor cells. Cell Stress Chaperones. 2008;13:1–10. doi: 10.1007/s12192-007-0006-0.
    1. Multhoff G., Mizzen L., Winchester C.C., Milner C.M., Wenk S., Eissner G., Kampinga H.H., Laumbacher B., Johnson J. Heat shock protein 70 (hsp70) stimulates proliferation and cytolytic activity of natural killer cells. Exp. Hematol. 1999;27:1627–1636. doi: 10.1016/S0301-472X(99)00104-6.
    1. Multhoff G., Pfister K., Gehrmann M., Hantschel M., Gross C., Hafner M., Hiddemann W. A 14-mer hsp70 peptide stimulates natural killer (nk) cell activity. Cell Stress Chaperones. 2001;6:337–344. doi: 10.1379/1466-1268(2001)006<0337:AMHPSN>;2.
    1. Gross C., Koelch W., Demaio A., Arispe N., Multhoff G. Cell surface-bound heat shock protein 70 (hsp70) mediates perforin-independent apoptosis by specific binding and uptake of granzyme b. J. Biol. Chem. 2003;278:41173–41181. doi: 10.1074/jbc.M302644200.
    1. Specht H.M., Ahrens N., Blankenstein C., Duell T., Fietkau R., Gaipl U.S., Gunther C., Gunther S., Habl G., Hautmann H., et al. Heat shock protein 70 (hsp70) peptide activated natural killer (nk) cells for the treatment of patients with non-small cell lung cancer (nsclc) after radiochemotherapy (rctx)—From preclinical studies to a clinical phase ii trial. Front. Immunol. 2015;6:162. doi: 10.3389/fimmu.2015.00162.
    1. Bi J., Tian Z. Nk cell exhaustion. Front. Immunol. 2017;8:760. doi: 10.3389/fimmu.2017.00760.
    1. Thommen D.S., Schumacher T.N. T cell dysfunction in cancer. Cancer Cell. 2018;33:547–562. doi: 10.1016/j.ccell.2018.03.012.
    1. Myers J.A., Miller J.S. Exploring the nk cell platform for cancer immunotherapy. Nat. Rev. Clin. Oncol. 2021;18:85–100. doi: 10.1038/s41571-020-0426-7.
    1. Seier S., Bashiri Dezfouli A., Lennartz P., Pockley A.G., Klein H., Multhoff G. Elevated levels of circulating hsp70 and an increased prevalence of cd94+/cd69+ nk cells is predictive for advanced stage non-small cell lung cancer. Cancers. 2022;14:5701. doi: 10.3390/cancers14225701.
    1. Werner C., Stangl S., Salvermoser L., Schwab M., Shevtsov M., Xanthopoulos A., Wang F., Dezfouli A.B., Tholke D., Ostheimer C., et al. Hsp70 in liquid biopsies-a tumor-specific biomarker for detection and response monitoring in cancer. Cancers. 2021;13:3706. doi: 10.3390/cancers13153706.
    1. Belka C., Ottinger H., Kreuzfelder E., Weinmann M., Lindemann M., Lepple-Wienhues A., Budach W., Grosse-Wilde H., Bamberg M. Impact of localized radiotherapy on blood immune cells counts and function in humans. Radiother. Oncol. 1999;50:199–204. doi: 10.1016/S0167-8140(98)00130-3.
    1. Multhoff G., Seier S., Stangl S., Sievert W., Shevtsov M., Werner C., Pockley A.G., Blankenstein C., Hildebrandt M., Offner R., et al. Targeted natural killer cell-based adoptive immunotherapy for the treatment of patients with nsclc after radiochemotherapy: A randomized phase ii clinical trial. Clin. Cancer Res. 2020;26:5368–5379. doi: 10.1158/1078-0432.CCR-20-1141.
    1. Lobinger D., Gempt J., Sievert W., Barz M., Schmitt S., Nguyen H.T., Stangl S., Werner C., Wang F., Wu Z., et al. Potential role of hsp70 and activated nk cells for prediction of prognosis in glioblastoma patients. Front. Mol. Biosci. 2021;8:669366. doi: 10.3389/fmolb.2021.669366.
    1. Zimmermann M., Nickl S., Lambers C., Hacker S., Mitterbauer A., Hoetzenecker K., Rozsas A., Ostoros G., Laszlo V., Hofbauer H., et al. Discrimination of clinical stages in non-small cell lung cancer patients by serum hsp27 and hsp70: A multi-institutional case-control study. Clin. Chim. Acta. 2012;413:1115–1120. doi: 10.1016/j.cca.2012.03.008.
    1. Lindquist S., Craig E.A. The heat-shock proteins. Annu. Rev. Genet. 1988;22:631–677. doi: 10.1146/annurev.ge.22.120188.003215.
    1. Bonilla F.A., Oettgen H.C. Adaptive immunity. J. Allergy Clin. Immunol. 2010;125:S33–S40. doi: 10.1016/j.jaci.2009.09.017.
    1. Shahal-Zimra Y., Rotem Z., Chezar J., Shochat T., Ross L., Pickholtz I., Rabizadeh E. Lymphocyte subset reference ranges in healthy israeli adults. Isr. Med. Assoc. J. 2016;18:739–743.
    1. Zhao W., Wang P., Jia H., Chen M., Gu X., Liu M., Zhang Z., Cheng W., Wu Z. Lymphocyte count or percentage: Which can better predict the prognosis of advanced cancer patients following palliative care? BMC Cancer. 2017;17:514. doi: 10.1186/s12885-017-3498-8.
    1. Sapski S., Beha N., Kontermann R., Muller D. Tumor-targeted costimulation with antibody-fusion proteins improves bispecific antibody-mediated immune response in presence of immunosuppressive factors. Oncoimmunology. 2017;6:e1361594. doi: 10.1080/2162402X.2017.1361594.
    1. Verastegui E.L., Morales R.B., Barrera-Franco J.L., Poitevin A.C., Hadden J. Long-term immune dysfunction after radiotherapy to the head and neck area. Int. Immunopharmacol. 2003;3:1093–1104. doi: 10.1016/S1567-5769(03)00013-4.
    1. Dovsak T., Ihan A., Didanovic V., Kansky A., Verdenik M., Hren N.I. Effect of surgery and radiotherapy on complete blood count, lymphocyte subsets and inflammatory response in patients with advanced oral cancer. BMC Cancer. 2018;18:235. doi: 10.1186/s12885-018-4136-9.
    1. Largeot A., Pagano G., Gonder S., Moussay E., Paggetti J. The b-side of cancer immunity: The underrated tune. Cells. 2019;8:449. doi: 10.3390/cells8050449.
    1. Barth D.A., Stanzer S., Spiegelberg J.A., Bauernhofer T., Absenger G., Szkandera J., Gerger A., Smolle M.A., Hutterer G.C., Ahyai S.A., et al. Patterns of peripheral blood b-cell subtypes are associated with treatment response in patients treated with immune checkpoint inhibitors: A prospective longitudinal pan-cancer study. Front. Immunol. 2022;13:840207. doi: 10.3389/fimmu.2022.840207.
    1. Yuan S., Liu Y., Till B., Song Y., Wang Z. Pretreatment peripheral b cells are associated with tumor response to anti-pd-1-based immunotherapy. Front. Immunol. 2020;11:563653. doi: 10.3389/fimmu.2020.563653.
    1. Qin Z., Richter G., Schuler T., Ibe S., Cao X., Blankenstein T. B cells inhibit induction of t cell-dependent tumor immunity. Nat. Med. 1998;4:627–630. doi: 10.1038/nm0598-627.
    1. Raskov H., Orhan A., Christensen J.P., Gogenur I. Cytotoxic cd8(+) t cells in cancer and cancer immunotherapy. Br. J. Cancer. 2021;124:359–367. doi: 10.1038/s41416-020-01048-4.
    1. Kamphorst A.O., Ahmed R. Cd4 t-cell immunotherapy for chronic viral infections and cancer. Immunotherapy. 2013;5:975–987. doi: 10.2217/imt.13.91.
    1. Miggelbrink A.M., Jackson J.D., Lorrey S.J., Srinivasan E.S., Waibl-Polania J., Wilkinson D.S., Fecci P.E. Cd4 t-cell exhaustion: Does it exist and what are its roles in cancer? Clin. Cancer Res. 2021;27:5742–5752. doi: 10.1158/1078-0432.CCR-21-0206.
    1. Golubovskaya V., Wu L. Different subsets of t cells, memory, effector functions, and car-t immunotherapy. Cancers. 2016;8:36. doi: 10.3390/cancers8030036.
    1. Tanaka A., Sakaguchi S. Targeting treg cells in cancer immunotherapy. Eur. J. Immunol. 2019;49:1140–1146. doi: 10.1002/eji.201847659.
    1. O'callaghan D.S., Rexhepaj E., Gately K., Coate L., Delaney D., O'donnell D.M., Kay E., O'connell F., Gallagher W.M., O'byrne K.J. Tumour islet foxp3+ t-cell infiltration predicts poor outcome in nonsmall cell lung cancer. Eur. Respir. J. 2015;46:1762–1772. doi: 10.1183/13993003.00176-2014.
    1. Lodoen M.B., Lanier L.L. Natural killer cells as an initial defense against pathogens. Curr. Opin. Immunol. 2006;18:391–398. doi: 10.1016/j.coi.2006.05.002.
    1. Schmidt A., Oberle N., Krammer P.H. Molecular mechanisms of treg-mediated t cell suppression. Front. Immunol. 2012;3:51. doi: 10.3389/fimmu.2012.00051.
    1. Li C., Jiang P., Wei S., Xu X., Wang J. Regulatory t cells in tumor microenvironment: New mechanisms, potential therapeutic strategies and future prospects. Mol. Cancer. 2020;19:116. doi: 10.1186/s12943-020-01234-1.
    1. Trzonkowski P., Szmit E., Mysliwska J., Dobyszuk A., Mysliwski A. Cd4+cd25+ t regulatory cells inhibit cytotoxic activity of t cd8+ and nk lymphocytes in the direct cell-to-cell interaction. Clin. Immunol. 2004;112:258–267. doi: 10.1016/j.clim.2004.04.003.
    1. Pedroza-Pacheco I., Madrigal A., Saudemont A. Interaction between natural killer cells and regulatory t cells: Perspectives for immunotherapy. Cell. Mol. Immunol. 2013;10:222–229. doi: 10.1038/cmi.2013.2.
    1. Gross C., Schmidt-Wolf I.G., Nagaraj S., Gastpar R., Ellwart J., Kunz-Schughart L.A., Multhoff G. Heat shock protein 70-reactivity is associated with increased cell surface density of cd94/cd56 on primary natural killer cells. Cell Stress Chaperones. 2003;8:348–360. doi: 10.1379/1466-1268(2003)008<0348:HSPRIA>;2.
    1. Gross C., Hansch D., Gastpar R., Multhoff G. Interaction of heat shock protein 70 peptide with nk cells involves the nk receptor cd94. Biol. Chem. 2003;384:267–279. doi: 10.1515/BC.2003.030.
    1. Holdenrieder S., Stieber P., Peterfi A., Nagel D., Steinle A., Salih H.R. Soluble mica in malignant diseases. Int. J. Cancer. 2006;118:684–687. doi: 10.1002/ijc.21382.
    1. Alvarez M., Simonetta F., Baker J., Pierini A., Wenokur A.S., Morrison A.R., Murphy W.J., Negrin R.S. Regulation of murine nk cell exhaustion through the activation of the DNA damage repair pathway. JCI Insight. 2019;5:e127729. doi: 10.1172/jci.insight.127729.

Source: PubMed

3
Sottoscrivi