Specific Learning Disorder in Children and Adolescents, a Scoping Review on Motor Impairments and Their Potential Impacts

Mariève Blanchet, Christine Assaiante, Mariève Blanchet, Christine Assaiante

Abstract

Mastering motor skills is important for children to achieve functional mobility and participate in daily activities. Some studies have identified that students with specific learning disorders (SLD) could have impaired motor skills; however, this postulate and the potential impacts remain unclear. The purpose of the scoping review was to evaluate if SLD children have motor impairments and examine the possible factors that could interfere with this assumption. The sub-objective was to investigate the state of knowledge on the lifestyle behavior and physical fitness of participants with SLD and to discuss possible links with their motor skills. Our scoping review included preregistration numbers and the redaction conformed with the PRISMA guidelines. A total of 34 studies published between 1990 and 2022 were identified. The results of our scoping review reflected that students with SLD have poorer motor skills than their peers. These motor impairments are exacerbated by the complexity of the motor activities and the presence of comorbidities. These results support our sub-objective and highlight the link between motor impairments and the sedentary lifestyle behavior of SLDs. This could lead to deteriorating health and motor skills due to a lack of motor experience, meaning that this is not necessarily a comorbidity. This evidence emphasizes the importance of systematic clinical motor assessments and physical activity adaptations.

Keywords: children and adolescents; fine motor skills; gross motor skills; learning disabilities; locomotion; motor development; posture; sensorimotor representations.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Flow diagram of included studies.

References

    1. American Psychiatric Association . Diagnostic and Statistical Manual of Mental Disorders. 4th ed. APA; Washington, DC, USA: 1994. p. 886.
    1. Canadian ADHD Resource Alliance (CADDRA) Canadian ADHD Practice Guidelines, ADHD Also Has a Specific Learning Disability. 4th ed. CADDRA; Toronto, ON, Canada: 2014. pp. 65–70.
    1. Kulkarni M., Kalantre S., Upadhyem S., Karande S., Ahuja S. Approach to learning disability. Indian J. Pediatr. 2001;68:539–546. doi: 10.1007/BF02723250.
    1. Koppitze M. The Bender-Gestalt test and learning disturbance in young children. J. Clin. Psychol. 1958;14:292–295. doi: 10.1002/1097-4679(195807)14:3<292::AID-JCLP2270140321>;2-O.
    1. Pyfer J.L., Carlson B.R. Characteristic motor development of children with learning disabilities. Percept. Mot. Ski. 1972;35:291–296. doi: 10.2466/pms.1972.35.1.291.
    1. Bruininks V.L., Bruininks R.J. Motor proficiency and learning disabled and nondisabled students. Percept. Mot. Ski. 1977;44:1131–1137. doi: 10.2466/pms.1977.44.3c.1131.
    1. Haubenstricker J.L. Motor Development in Children with Learning Disabilities. J. Phys. Educ. Recreat. Dance. 1982;53:41–43. doi: 10.1080/07303084.1982.10629384.
    1. Baharudin N.R., Harun D., Kadar M. An Assessment of the Movement and Function of Children with Specific Learning Disabilities: A Review of Five Standardised Assessment Tools. J. Med. Sci. 2020;27:21–36. doi: 10.21315/mjms2020.27.2.3.
    1. Rochelle K.S.H., Talcott J.B. Impaired balance in developmental dyslexia? A meta-analysis of the contending evidence. J. Child Psychol. Psychiatry. 2006;47:1159–1166. doi: 10.1111/j.1469-7610.2006.01641.x.
    1. Quercia P., Seigneuric A.S., Chariot P., Vernet T., Pozzo A., Bron C., Creuzot-Garcher, Robichon F. Ocular proprioception and developmental dyslexia. Sixty clinical observations. J. Fr. Ophtalmol. 2005;28:713–723. doi: 10.1016/S0181-5512(05)80983-0.
    1. Westendorp M., Hartman E., Houwen S., Smith J., Visscher C. The relationship between gross motor skills and academic achievement in children with learning disabilities. Res. Dev. Disabil. 2011;32:2773–2779. doi: 10.1016/j.ridd.2011.05.032.
    1. Westendorp M., Hartman E., Houwen S., Huijgen B.C., Smith J., Visscher C.A. Longitudinal study on gross motor development in children with learning disorders. Res. Dev. Disabil. 2014;35:357–363. doi: 10.1016/j.ridd.2013.11.018.
    1. Cignetti F., Vaugoyeau M., Fontan A., Joverd M., Livete M.-O., Hugonenq C., Audic F., Chabrol B., Assaiante C. Feedforward motor control in developmental dyslexia and developmental coordination disorder: Does comorbidity matter? Res. Dev. Disabil. 2018;76:25–34. doi: 10.1016/j.ridd.2018.03.001.
    1. Marchetti R., Vaugoyeau M., Colé P., Assaiante C. Effet de la comorbidité sensorimotrice dans la dyslexie développementale: Entre déficit phonologique et atteinte des représentations internes de l’action. ANAE. 2021;33:689–699.
    1. Galli M., Vimercati S.L., Giacomo S., Caiazzo G., Norveti F., Onnis F., Rigoldi C., Albertini G. A new approach for the quantitative evaluation of drawings in children with learning disabilities. Res. Dev. Disabil. 2011;32:1004–1010. doi: 10.1016/j.ridd.2011.01.051.
    1. Cignetti F., Nemmi F., Vaugoyeau M., Girard N., Albaret J.-M., Chaix Y., Péran P., Assaiante C. Intrinsic Cortico-Subcortical Functional Connectivity in Developmental Dyslexia and Developmental Coordination Disorder. Cereb. Cortex. 2020;1:tgaa011. doi: 10.1093/texcom/tgaa011.
    1. Rae C., Harasty J.A., Dzendrowskyj T.E., Talcott J.B., Simpson J.M., Blamire A., Dixon R.M., Lee M.A., Thompson C.H., Styles P., et al. Cerebellar morphology in developmental dyslexia. Neuropsychologia. 2002;40:1285–1292. doi: 10.1016/S0028-3932(01)00216-0.
    1. Eckert M.A., Leonard C.M., Richards T.L., Aylward E.H., Thomson J., Berninger V.W. Anatomical correlates of dyslexia: Frontal and cerebellar findings. Brain. 2003;126:482–1144. doi: 10.1093/brain/awg026.
    1. Ibrahim S., Harun D., Kadar M., Mohd Rasdi H.F., Baharudin N.S., Jong Tze Hui E. Motor performance and functional mobility in children with specific learning disabilities. Med. J. Malaysia. 2019;74:34–39.
    1. Barnett L.M., Lai S.K., Veldman S.L.C., Hardy L.L., Cliff D.P., Morgan P.J., Zask A., Lubans D.R., Shultz N.S.P. Correlates of Gross Motor Competence in Children and Adolescents: A Systematic Review and Meta Analysis. Sports Med. 2016;46:1663–1688. doi: 10.1007/s40279-016-0495-z.
    1. Johnston M.V. Plasticity in the developing brain: Implications for rehabilitation. Dev. Disabil. Res. Rev. 2009;15:94–101. doi: 10.1002/ddrr.64.
    1. Ismail F.Y., Fatemi A., Johnston M.V. Cerebral plasticity: Windows of opportunity in the developing brain. Eur. J. Paediatr. Neurol. 2017;21:23–48. doi: 10.1016/j.ejpn.2016.07.007.
    1. Blanchet M., Prince F. Development of mediolateral postural control mechanisms and proprioception were accelerated by kicking sports training in adolescents. J. Pediatr. Exerc. Sci. 2022. sous presse .
    1. Sommeijer J.P., Ahmadlou M., Saiepour M.H. Thalamic inhibition regulates critical-period plasticity in visual cortex and thalamus. Nat. Neurosci. 2017;20:1715–1721. doi: 10.1038/s41593-017-0002-3.
    1. Kalogeraki E., Pielecka-Fortuna J., Löwel S. Environmental enrichment accelerates ocular dominance plasticity in mouse visual cortex whereas transfer to standard cages resulted in a rapid loss of increased plasticity. PLoS ONE. 2017;26:e0186999. doi: 10.1371/journal.pone.0186999.
    1. Paillard T. Plasticity of the postural function to sport and/or motor experience. Neurosci. Biobehav. Rev. 2017;72:129–152. doi: 10.1016/j.neubiorev.2016.11.015.
    1. Fontan A., Cignetti F., Nazarian B., Anton J.L., Vaugoyeau M., Assaiante C. How does the body representation system develop in the human brain? Dev. Cogn. Neurosci. 2017;24:118–128. doi: 10.1016/j.dcn.2017.02.010.
    1. Stodden D.F., Goodway J., Langendorfer S.J., Roberton M.A. A Developmental Perspective on the Role of Motor Skill Competence in Physical Activity: An Emergent Relationship. NAKHE. 2008;60:290–306. doi: 10.1080/00336297.2008.10483582.
    1. Lopes L., Santos R., Pereira B., Lopes V.P. Associations between gross motor coordination and academic achievement in elementary school children. Hum. Mov. Sci. 2013;32:9–20. doi: 10.1016/j.humov.2012.05.005.
    1. Son S.H., Meisels S.J. The relationship of young children’s motor skills to later reading and math achievement. Merrill-Palmer Q. 2006;52:755–778. doi: 10.1353/mpq.2006.0033.
    1. Soares D.B., Porto E., Marco A., Azoni C.A., Capelatto I.V. Influence of the physical activity on motor performance of children with learning difficulties. Rev. CEFAC. 2015;17:1132–1142. doi: 10.1590/1982-0216201517420014.
    1. Suggate S., Pufke E., Stoeger H. Do fine motor skills contribute to early reading development? J. Res. Read. 2018;41:1–19. doi: 10.1111/1467-9817.12081.
    1. Rivilis I., Hay J., Cairney J., Klentrou P., Liu J., Faught B.E. Physical activity and fitness in children with developmental coordination disorder: A systematic review. Res. Dev. Disabil. 2011;32:894–910. doi: 10.1016/j.ridd.2011.01.017.
    1. World Health Organization. [(accessed on 27 May 2022)]. Available online: .
    1. Grigorenko E.L., Donald C., Fuchs L., Wagner R., Willcutt E., Fletcher J.M. Understanding, Educating, and Supporting Children with Specific Learning Disabilities: 50 Years of Science and Practice. Am. Psychol. 2020;75:37–51. doi: 10.1037/amp0000452.
    1. Zoia S., Barnett A., Wilson P., Hill E. Special Issue: Developmental Coordination Disorder: Current Issues. Child Care Health Dev. 2006;32:613–618. doi: 10.1111/j.1365-2214.2006.00697.x.
    1. Kaplan B.J., Wilson B.N., Dewey D.M., Crawford S.G. DCD may not be a discrete disorder. Hum. Mov. Sci. 1998;17:471–490. doi: 10.1016/S0167-9457(98)00010-4.
    1. Hussein Z.A., Abdel-Aty S.A.-R., Elmeniawy G.H., Mahgoub E.A.-M. Defects of motor performance in children with different types of specific learning disability. Drug Invent. Today. 2020;14:303–307.
    1. Vuijk P.J., Hartman E., Mombarg R., Scherder E., Visscher C. Associations between academic and motor performance in a heterogeneous sample of children with Learning Disabilities. J. Learn. Disabil. 2011;44:276–282. doi: 10.1177/0022219410378446.
    1. Poblano A., Ishiwara K., de Lourdes Arias M., García-Pedroza F., Marín H., Trujillo M. Motor control alteration in posturography in learning-disabled children. Arch. Med. Res. 2002;33:485–488. doi: 10.1016/S0188-4409(02)00397-1.
    1. Blanchet M., Guetiti S., Cadoret G. Limits of stability and postural control stability in children with learning disorders. ISEK. 2022. in review .
    1. Okuda P.M.M., Pinheiro F.H. Motor Performance of Students with Learning Difficulties Procedia. Soc. Behav. Sci. 2015;174:1330–1338. doi: 10.1016/j.sbspro.2015.01.755.
    1. Jongmans M.J., Bouwien C., Smits-Engelsman M., Schoemaker M.M. Consequences of Comorbidity of Developmental Coordination Disorders and Learning Disabilities for Severity and Pattern of Perceptual–Motor Dysfunction. J. Learn. Disabil. 2003;36:528–537. doi: 10.1177/00222194030360060401.
    1. Getchell N., Pabreja P., Neeld K., Carrio V. Comparing children with and without dyslexia on the Movement Assessment Battery for Children and the Test of Gross Motor Development. Percept. Mot. Ski. 2007;105:207–214. doi: 10.2466/pms.105.1.207-214.
    1. Marchand-Krynski M.-È., Morin-Moncet O., Bélanger A.-M., Beauchamp M.-H., Leonard G. Shared and differentiated motor skill impairments in children with dyslexia and/or attention deficit disorder: From simple to complex sequential coordination. PLoS ONE. 2017;19:e0177490. doi: 10.1371/journal.pone.0177490.
    1. Moe-Nilssen R., Helbostad J.L., Talcott J.B., Toennessen F.E. Balance and gait in children with dyslexia. Exp. Brain Res. 2003;150:237–244. doi: 10.1007/s00221-003-1450-4.
    1. McPhillips M., Sheehy N. Prevalence of persistent primary reflexes and motor problems in children with reading difficulties. Dyslexia. 2004;10:316–338. doi: 10.1002/dys.282.
    1. Iversen S., Berg K., Ellertsen B., Tønnessen F.-E. Motor coordination difficulties in a municipality group and in a clinical sample of poor readers. Dyslexia. 2005;11:217–231. doi: 10.1002/dys.297.
    1. Barela J.A., Tesima N., Amaral V.D.S., Figueiredo G.A., Barela A.M.F. Visually guided eye movements reduce postural sway in dyslexic children. Neurosci. Lett. 2020;725:134890. doi: 10.1016/j.neulet.2020.134890.
    1. Brookes R.L., Tinkler S., Nicolson R.I., Fawcett A.J. Striking the right balance: Motor difficulties in children and adults with dyslexia. Dyslexia. 2010;16:358–373. doi: 10.1002/dys.420.
    1. Viana A.R., Razuk M., de Freitas P.B., Barela J.A. Sensorimotor Integration in Dyslexic Children under Different Sensory Stimulations. PLoS ONE. 2013;8:e72719. doi: 10.1371/journal.pone.0072719.
    1. Barela J.A., Dias J.L., Godoi D., Viana A.R., de Freitas P.B. Postural control and automaticity in dyslexic children: The relationship between visual information and body sway. Res. Dev. Disabil. 2011;32:1814–1821. doi: 10.1016/j.ridd.2011.03.011.
    1. Razuk M., Barela J.A. Dyslexic Children Suffer from Less Informative Visual Cues to Control Posture. Res. Dev. Disabil. 2014;35:1988–1994. doi: 10.1016/j.ridd.2014.03.045.
    1. Razuk M., Lukasova K., Bucci M.P., Barela J.A. Dyslexic children need more robust information to resolve conflicting sensory situations. Dyslexia. 2020;26:52–66. doi: 10.1002/dys.1641.
    1. Goulème N., Gerard C.L., Bui-Quoc E., Bucci M.P. Spatial and temporal analysis of postural control in dyslexic children. Clin. Neurophysiol. 2015;126:1370–1377. doi: 10.1016/j.clinph.2014.10.016.
    1. Okuda P.M.M., Ramos F.G., Santos L.C.A., Padula N., Kirby A., Capellini S.A. Motor profiles of students with dyslexia. Psychol. Res. 2014;4:31–39.
    1. Razuk M., Barela J.A., Peyre H., Gerard C.L., Bucci M.P. Eye movements and postural control in dyslexic children performing different visual tasks. PLoS ONE. 2018;24:e0198001. doi: 10.1371/journal.pone.0198001.
    1. Bucci M.P., Goulème N., Stordeur C., Acquaviva E., Scheid I., Lefebvre A., Gerard C.-L., Peyre H., Delorme R. Discriminant validity of spatial and temporal postural index in children with neurodevelopmental disorders. Int. J. Dev. Neurosci. 2017;61:51–57. doi: 10.1016/j.ijdevneu.2017.06.010.
    1. Goulème N., Villeneuve P., Gérard C.L., Bucci M.P. Influence of both cutaneous input from the foot soles and visual information on the control of postural stability in dyslexic children. Gait Posture. 2017;56:141–146. doi: 10.1016/j.gaitpost.2017.04.039.
    1. Ramus F., Pidgeon E., Frith U. The relationship between motor control and phonology in dyslexic children. J. Child Psychol. Psychiatry. 2003;44:712–722. doi: 10.1111/1469-7610.00157.
    1. Legrand A., Bui-Quoc E., Doré-Mazars K., Lemoine C., Gérard C.-L., Bucci M.P. Effect of a dual task on postural control in dyslexic children. PLoS ONE. 2012;7:e35301. doi: 10.1371/journal.pone.0035301.
    1. Kapoula Z., Bucci M.P. Postural control in dyslexic and non-dyslexic children. J. Neurol. 2007;254:1174–1183. doi: 10.1007/s00415-006-0460-0.
    1. Lam S.S.T., Au R.K.C., Leung H.W.H., Li-Tsang C.W.P. Chinese handwriting performance of primary school children with dyslexia. Res. Dev. Disabil. 2011;32:1745–1756. doi: 10.1016/j.ridd.2011.03.001.
    1. Niechwiej-Szwedo E., Alramis F., Christian L.W. Association between fine motor skills and binocular visual function in children with reading difficulties. Hum. Mov. Sci. 2017;56:1–10. doi: 10.1016/j.humov.2017.10.014.
    1. Wolff P.H., George F.M., Marsha O., Drake C. Rate and Timing Precision of Motor Coordination in Developmental Dyslexia. Dev. Psychol. 1990;26:82–89. doi: 10.1037/0012-1649.26.3.349.
    1. Naz S., Najam N. Neurological deficits and comorbidity in children with reading disorder. Psychiatr. Clin. Psychopharmacol. 2019;29:674–681. doi: 10.1080/24750573.2019.1589174.
    1. Haouès M.M.M., Rahmab A., Walidc O. Study on postural control of dyslexic versus normal-reading children. Rev. Podol. 2021;17:18–22. doi: 10.1016/j.revpod.2021.02.005.
    1. Pieters S., Desoete A., Roeyers H. Behind mathematical learning disabilities: What about visual perception and motor skills? Learn. Individ. Differ. 2012;22:498–504. doi: 10.1016/j.lindif.2012.03.014.
    1. Kulkarni S.K., Naidu P.S. Tardive dyskinesia: An update. Drugs Today. 2001;37:97–119. doi: 10.1358/dot.2001.37.2.834327.
    1. Ulrich D.A. Test of Gross Motor Development. Pro-Edinc; Austin, TX, USA: 1985.
    1. Ulrich D.A. Test of Gross Motor Development. 2nd ed. Pro-Edinc; Austin, TX, USA: 2000.
    1. Bluechardt M., Shephard Roy J. Motor performance impairment in students with learning disability: Influence of gender and body build. BMC Sports Sci. Med. Rehabil. 1996;7:133–140. doi: 10.1080/15438629609512077.
    1. Okuda P.M., Pinheiro F.H., Germano G.D., Padula N.A., Lourencetti M.D., Santos L.C., Capellini S.A. Screening for Motor Dysgraphia in Public Schools. J. Soc. Bras. Fonoaudiol. 2011;23:351–357. doi: 10.1590/S2179-64912011000400010.
    1. Capellini S.A., Coppede A.C., Valle T.R. Fine motor function of school-aged children with dyslexia, learning disability and learning difficulties. Pró-Fono Rev. Atual. Cient. 2010;22:201–208. doi: 10.1590/S0104-56872010000300008.
    1. Fawcett A.J., Nicolson R.I., Dean P. Impaired performance of children with dyslexia on a range of cerebellar tasks. Ann. Dyslexia. 1996;46:259–283. doi: 10.1007/BF02648179.
    1. Laprevotte J., Papaxanthis C., Saltarelli S., Quercia P., Gaveau J. Movement detection thresholds reveal proprioceptive impairments in developmental dyslexia. Sci. Rep. 2021;11:299. doi: 10.1038/s41598-020-79612-4.
    1. Van Hecke R., Danneels M., Dhooge I., Van Waelvelde H., Wiersema J.R., Deconinck F.J.A., Maes L. Vestibular Function in Children with Neurodevelopmental Disorders: A Systematic Review. J. Autism Dev. Disord. 2019;49:3328–3350. doi: 10.1007/s10803-019-04059-0.
    1. Craity B.J. Physical Expressions of Intelligence. Prentice-Hall; Englewood Cliffs, NJ, USA: 1972.
    1. Maloyc F., Sattlerj M. Motor and cognitive proficiency of learning disabled and normal children. J. Sch. Psychol. 1979;17:213–218. doi: 10.1016/0022-4405(79)90002-5.
    1. Lipowska M., Czaplewska E., Wysocka A. Visuospatial deficits of dyslexic children. Med. Sci. Monit. 2011;17:CR216–CR221. doi: 10.12659/MSM.881718.
    1. Pozzo T., Vernet P., Creuzot-Garcher C., Robichon F., Bron A., Quercia P. Static postural control in children with developmental dyslexia. Neurosci. Lett. 2006;7:211–215. doi: 10.1016/j.neulet.2006.03.049.
    1. Gashaj V., Oberer N., Mast F.W., Roebers C.M. Individual differences in basic numerical skills: The role of executive functions and motor skills. J. Exp. Child Psychol. 2019;182:187–195. doi: 10.1016/j.jecp.2019.01.021.
    1. Luo Z., Jose P.E., Huntsinger C.S., Pigott T.D. Fine motor skills and mathematics achievement in East Asian American and European American kindergartners and first graders. Br. J. Dev. Psychol. 2007;25:595–614. doi: 10.1348/026151007X185329.
    1. Magistro D., Bardaglio G., Rabaglietti E. Gross motor skills and academic achievement in typically developing children: The mediating effect of ADHD related behaviours. Cogn. Brain Behav. Interdiscip. J. 2015;19:149–163.
    1. Robinson L.E., Wadsworth D.D., Peoples C.M. Correlates of School-Day Physical Activity in Preschool Students. Res. Q. Exerc. Sport. 2012;83:20–26. doi: 10.1080/02701367.2012.10599821.
    1. Kumari P., Raj P. Role of Physical Activity in Learning Disability—A Review. Clin. Exp. Psychol. 2016;2:1–3. doi: 10.4172/2471-2701.1000118.
    1. Barnett L.M., van Beurden E., Morgan P.J., Brooks L.O., Beard J.R. Childhood motor skill proficiency as a predictor of adolescent physical activity. J. Adolesc. Health. 2009;44:252–259. doi: 10.1016/j.jadohealth.2008.07.004.
    1. Robinson L.E., Stodden D.F., Barnett L.M., Lopes V.P., Logan S.W., Rodrigues L.P., D’Hondt E. Motor Competence and its Effect on Positive Developmental Trajectories of Health. Sports Med. 2015;45:1273–1284. doi: 10.1007/s40279-015-0351-6.
    1. Burton N. How can we help people with learning disabilities engage more in meaningful activities? [(accessed on 20 January 2022)];Learn. Disabil. Elf. 2016 Available online:
    1. Emerson E., Baines S. Health Inequalities & People with Learning Disabilities in the UK. Tizard Learn. Disabil. Rev. 2011;16:42–48.
    1. Cook B.G., Li D., Heinrich K.M. Obesity, physical activity, and sedentary behavior of youth with learning disabilities and ADHD. J. Learn. Disabil. 2015;48:563–576. doi: 10.1177/0022219413518582.
    1. Cairney J., Hay J.A., Faught B.E., Flouris A., Klentrou P. Developmental coordination disorder and cardiorespiratory fitness in children. Pediatr. Exerc. Sci. 2007;19:20–28. doi: 10.1123/pes.19.1.20.
    1. Cairney J., Veldhuizen S., King-Dowling S., Faught B.E., Hay J. Tracking cardiorespiratory fitness and physical activity in children with and without motor coordination problems. J. Sci. Med. Sport. 2017;20:380–385. doi: 10.1016/j.jsams.2016.08.025.
    1. Hollins S. Meeting the needs of patients with learning disabilities. BMJ. 2013;346:f3421. doi: 10.1136/bmj.f3421.
    1. McGuigan M.S., Hollins S., Attard M. Age-specific standardized mortality rates in people with learning disability. JIDR. 1995;39:527–531. doi: 10.1111/j.1365-2788.1995.tb00573.x.
    1. Cantell M., Crawford S.G., Doyle-Baker P.K. Physical fitness and health indices in children, adolescents and adults with high or low motor competence. Hum. Mov. Sci. 2008;27:344–362. doi: 10.1016/j.humov.2008.02.007.
    1. Humphrey N., Mullins P.M. Self-concept and self-esteem in developmental dyslexia. J. Res. Spéc. Educ. Needs. 2002;2 doi: 10.1111/j.1471-3802.2002.00163.x.
    1. Zadina J.N., Corey D.M., Casbergue R.M., Lemen L.C., Rouse J.C., Knaus T.A., Foundas A.L. Lobar Asymmetries in Subtypes of Dyslexic and Control Subjects. J. Child Neurol. 2006;21:917–922. doi: 10.1177/08830738060210110201.
    1. Rintala P., Linjala J. Scores on test of gross motor development of children with dysphasia: A pilot study. Percept. Mot. Ski. 2003;97:755–762. doi: 10.2466/pms.2003.97.3.755.
    1. Macdonald K., Milne N., Orr R., Pope R. Relationships between motor proficiency and academic performance in mathematics and reading in school-aged children and adolescents: A systematic review. Int. J. Environ. Res. 2018;15:1603. doi: 10.3390/ijerph15081603.
    1. Hynd G.W., Semrud-Clikeman M. Dyslexia and brain morphology. Psychol. Bull. 1989;106:447–482. doi: 10.1037/0033-2909.106.3.447.
    1. Filipek P.A. Neurobiologic correlates of developmental dyslexia: How do dyslexics’ brains differ from those of normal readers? J. Child Neurol. 1995;10:S62–S68. doi: 10.1177/08830738950100S113.
    1. Leonard C.M., Lombardino L.J., Walsh K., A Eckert M., Mockler J.L., A Rowe L., Williams S., DeBose C.B. Anatomical risk factors that distinguish dyslexia from SLI predict reading skill in normal children. J. Commun. Disord. 2002;35:501–531. doi: 10.1016/S0021-9924(02)00120-X.
    1. Hazzaa N., Shalaby A., Hassanein S., Naeem F., Khattab A., Metwally N. Assesment of balance functions and primitive reflexes in children with learning disability. Ain Shams Med. J. 2021;72:97–103. doi: 10.21608/asmj.2021.167357.
    1. Morasso P.G., Schieppati M. Can Muscle Stiffness Alone Stabilize Upright Standing? J. Neurophysiol. 1999;82:1622–1626. doi: 10.1152/jn.1999.82.3.1622.
    1. Jover M., Ducrot S., Huau A., Bellocchi S., Brun-Hénin F., Mancini J. Les troubles moteurs chez les enfants dyslexiques: Revue de travaux et perspectives. Enfance. 2013;4:323–347.
    1. Lukasova K., Silva I.P., Macedo E. Impaired Oculomotor Behavior of Children with Developmental Dyslexia in Antisaccades and Predictive Saccades Tasks. Front. Psychol. 2016;7:987. doi: 10.3389/fpsyg.2016.00987.
    1. Stoodley C.J., Talcott J.B., Carter E.L., Witton C., Stein J.F. Selective deficits of vibrotactile sensitivity in dyslexic readers. Neurosci. Lett. 2000;295:13–16. doi: 10.1016/S0304-3940(00)01574-3.
    1. Wright B.A., Bowen R.W., Zecker S.G. Nonlinguistic perceptual deficits associated with reading and language disorders. Curr. Opin. Neurobiol. 2000;10:482–486. doi: 10.1016/S0959-4388(00)00119-7.
    1. Stein J. The magnocellular theory of developmental dyslexia. Dyslexia. 2001;7:12–36. doi: 10.1002/dys.186.
    1. Nicolson R.I., Fawcett A.J., Dean P. Developmental dyslexia: The cerebellar deficit hypothesis. Trends Neurosci. 2001;24:508–511. doi: 10.1016/S0166-2236(00)01896-8.
    1. Reiter A., Tucha O., Lange K.W. Executive functions in children with dyslexia. Dyslexia. 2005;11:116–131. doi: 10.1002/dys.289.
    1. Nicolson R.I., Fawcett A.J. Automaticity: A new framework for dyslexia research? Cognition. 1990;35:159–182. doi: 10.1016/0010-0277(90)90013-A.
    1. Nicolson R.I., Fawcett A.J., Berry E.L., Jenkins H.I., Dean P., Brooks D.J. Association of abnormal cerebellum activation with motor learning difficulties in dyslexic adults. Lancet. 1999;15:1662–1667. doi: 10.1016/S0140-6736(98)09165-X.
    1. Assaiante C., Barlaam F., Cignetti F., Vaugoyeau M. Building of body schema during childhood and adolescence: A neurosensory approach. Neurophysiol. Clin. 2014;44:3–12. doi: 10.1016/j.neucli.2013.10.125.
    1. Assaiante C. Faire avec son corps qui change: Construction du schéma corporel chez l’enfant et l’adolescent. “Corps, espaces et apprentissages chez l’enfant et l’adolescent” Numéro spécial. ANAE. 2020;168:535–542.
    1. Vaivre-Douret L., Mazeau M., Jolly C., Huron C., Arnaudi C., Gonzalez-Monge S., Assaiante C. L’expertise collective de l’Inserm sur le trouble développemental de la coordination ou dyspraxie: État des principaux travaux et recommandations. Neuropsychiatr. L’enfance L’adolescence. 2021;69:311–330. doi: 10.1016/j.neurenf.2021.07.002.
    1. Beaton A.A. Dyslexia and the cerebellar deficit hypothesis. Cortex. 2002;38:479–490. doi: 10.1016/S0010-9452(08)70017-0.
    1. Pope D.H., Whiteley H. Psychology, Proceedings of the British Psychological Society (BPS) Education Section Conference, Liverpool, UK, 23–24 October 2003. British Psychological Society; London, UK: 2003. The lost boys? A case-history view of very able children with dyslexia.
    1. Margari L., Buttiglione M., Craig F., Cristella A., de Giambattista C., Matera E., Operto F., Simone M. Neuropsychopathological comorbidities in learning disorders. BMC Neurol. 2013;13:113–198. doi: 10.1186/1471-2377-13-198.
    1. Kirby A., Sugden D., Beveridge S., Edwards L. Developmental co-ordination disorder (DCD) in adolescents and adults in further and higher education. J. Res. Spec. Educ. 2008;8:120–131. doi: 10.1111/j.1471-3802.2008.00111.x.
    1. Gooch D., Hulme C., Nash H.M., Snowling M.J. Comorbidities in preschool children at family risk of dyslexia. J. Child Psychol. Psychiatry. 2014;55:237–246. doi: 10.1111/jcpp.12139.
    1. Meltzoff A.N., Moore M.K. Imitation of facial and manual gestures by human neonates. Science. 1977;7:75–78. doi: 10.1126/science.198.4312.75.
    1. Adolph K.E., Eppler M.A., Gibson E.J. Crawling versus walking infants’ perception of affordances for locomotion over sloping surfaces. Child Dev. 1993;64:1158–1174. doi: 10.2307/1131332.
    1. Rizzolatti G., Fogassi L., Gallese V. Neurophysiological mechanisms underlying the understanding and imitation of action. Nat. Rev. Neurosci. 2001;2:661–670. doi: 10.1038/35090060.
    1. Wolpert D.M., Miall R.C. Forward Models for Physiological Motor Control. Neural. Netw. 1996;9:1265–1279.
    1. Kawato M., Wolpert D. Internal models for motor control. Sens. Guid. Mov. 1998;218:291–304.
    1. Wolpert D.M., Miall R.C., Kawato M. Internal models in the cerebellum. Trends Cogn. Sci. 1998;1:338–347. doi: 10.1016/S1364-6613(98)01221-2.
    1. Wilson M., Knoblich G. The case for motor involvement in perceiving conspecifics. Psychol. Bull. 2005;131:460–473. doi: 10.1037/0033-2909.131.3.460.
    1. Lubans D.R., Morgan P.J., Cliff D.P., Barnett L.M., Okely A.D. Fundamental movement skills in children and adolescents: Review of associated health benefits. Sports Med. 2010;1:1019–1035. doi: 10.2165/11536850-000000000-00000.
    1. Ensrud-Skraastad O.K., Haga M. Associations between Motor Competence, Physical Self-Perception and Autonomous Motivation for Physical Activity in Children. Sports. 2020;8:120. doi: 10.3390/sports8090120.
    1. Katartzi E.S., Vlachopoulos S.P. Motivating children with developmental coordination disorder in school physical education: The self-determination theory approach. Res. Dev. Disabil. 2011;32:2674–2682. doi: 10.1016/j.ridd.2011.06.005.
    1. Boutros G.H., Giroux C., Sonjak V., Blanchet M. Exercise interventions and evaluation tool of the cardiovascular capacity in children with developmental coordination disorder. Pediatr. Neonatol. 2020;9:1–5.
    1. Livonen K.S., Sääkslahti A.K., Mehtälä A., Villberg J.J., Tammelin T.H., Kulmala J.S., Poskiparta M. Relationship between Fundamental Motor Skills and Physical Activity in 4-Year-Old Preschool Children. Percept. Mot. Ski. 2013;117:627–646. doi: 10.2466/10.06.PMS.117x22z7.
    1. Foweather L., Knowles Z., Ridgers N.D., O’Dwyer M.V., Foulkes J.D., Stratton G. Fundamental movement skills in relation to weekday and weekend physical activity in preschool children. J. Sci. Med. Sport. 2015;18:691–696. doi: 10.1016/j.jsams.2014.09.014.
    1. LeGear M., Greyling L., Sloan E., Bell R.I., Williams B.-L., Naylor P.-J., Temple V.A. A window of opportunity? Motor skills and perceptions of competence of children in kindergarten. Int. J. Behav. Nutr. Phys. Act. 2012;15:9–29. doi: 10.1186/1479-5868-9-29.
    1. Mancini V.O., Rigoli D., Roberts L.D., Heritage B., Piek J.P. The relationship between motor skills and psychosocial factors in young children: A test of the elaborated environmental stress hypothesis. Br. J. Educ. Psychol. 2018;88:363–379. doi: 10.1111/bjep.12187.
    1. Taube W., Gruber M., Gollhofer A. Spinal and supraspinal adaptations associated with balance training and their functional relevance. Acta Physiol. 2008;193:101–116. doi: 10.1111/j.1748-1716.2008.01850.x.
    1. Steenbergen-Hu S., Olszewski-Kubilius P., Calvert E. The Effectiveness of Current Interventions to Reverse the Underachievement of Gifted Students: Findings of a Meta-Analysis and Systematic Review. Gift. Child Q. 2020;64:132–165. doi: 10.1177/0016986220908601.
    1. Renshaw I., Chow J.-Y. A constraint-led approach to sport and physical education pedagogy. Phys. Educ. Sport Pedagog. 2019;24:103–116. doi: 10.1080/17408989.2018.1552676.
    1. Brymer E., Renshaw I. An introduction to the constraints-led approach to learning in outdoor education. Outdoor Environ. Educ. 2010;14:33–41. doi: 10.1007/BF03400903.

Source: PubMed

3
Sottoscrivi