Relationship between Coronary Arterial Geometry and the Presence and Extend of Atherosclerotic Plaque Burden: A Review Discussing Methodology and Findings in the Era of Cardiac Computed Tomography Angiography

Georgios Rampidis, Vasileios Rafailidis, Konstantinos Kouskouras, Andjoli Davidhi, Angeliki Papachristodoulou, Athanasios Samaras, George Giannakoulas, Antonios Ziakas, Panagiotis Prassopoulos, Haralambos Karvounis, Georgios Rampidis, Vasileios Rafailidis, Konstantinos Kouskouras, Andjoli Davidhi, Angeliki Papachristodoulou, Athanasios Samaras, George Giannakoulas, Antonios Ziakas, Panagiotis Prassopoulos, Haralambos Karvounis

Abstract

Coronary artery disease (CAD) represents a modern pandemic associated with significant morbidity and mortality. The multi-faceted pathogenesis of this entity has long been investigated, highlighting the contribution of systemic factors such as hyperlipidemia and hypertension. Nevertheless, recent research has drawn attention to the importance of geometrical features of coronary vasculature on the complexity and vulnerability of coronary atherosclerosis. Various parameters have been investigated so far, including vessel-length, coronary artery volume index, cross-sectional area, curvature, and tortuosity, using primarily invasive coronary angiography (ICA) and recently non-invasive cardiac computed tomography angiography (CCTA). It is clear that there is correlation between geometrical parameters and both the haemodynamic alterations augmenting the atherosclerosis-prone environment and the extent of plaque burden. The purpose of this review is to discuss the currently available literature regarding this issue and propose a potential non-invasive imaging biomarker, the geometric risk score, which could be of importance to allow the early detection of individuals at increased risk of developing CAD.

Keywords: atherosclerosis; cardiac CT; coronary; geometry.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Blood flow patterns, levels of shear stress, and their effects on atherosclerosis. ESS, endothelial shear stress.
Figure 2
Figure 2
GEOMETRY-CTA study design (ClinicalTrials.gov ID: NCT04185493).
Figure 3
Figure 3
Volume-rendering (VRT) and multiplanar reconstruction (MPR) techniques used to measure the bifurcation angle between LAD and LCx in a 67-year-old woman with mild non-obstructive coronary artery disease.

References

    1. Sanchis-Gomar F., Perez-Quilis C., Leischik R., Lucia A. Epidemiology of coronary heart disease and acute coronary syndrome. Ann. Transl. Med. 2016;4:256. doi: 10.21037/atm.2016.06.33.
    1. Neumann F.J., Sousa-Uva M., Ahlsson A., Alfonso F., Banning A.P., Benedetto U., Byrne R.A., Collet J.P., Falk V., Head S.J., et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur. Heart J. 2019;40:87–165. doi: 10.1093/eurheartj/ehy394.
    1. Chatzizisis Y.S., Coskun A.U., Jonas M., Edelman E.R., Feldman C.L., Stone P.H. Role of endothelial shear stress in the natural history of coronary atherosclerosis and vascular remodeling: Molecular, cellular, and vascular behavior. J. Am. Coll. Cardiol. 2007;49:2379–2393. doi: 10.1016/j.jacc.2007.02.059.
    1. Morbiducci U., Kok A.M., Kwak B.R., Stone P.H., Steinman D.A., Wentzel J.J. Atherosclerosis at arterial bifurcations: Evidence for the role of haemodynamics and geometry. Thromb. Haemost. 2016;115:484–492. doi: 10.1160/th15-07-0597.
    1. Friedman M.H., Deters O.J., Mark F.F., Bargeron C.B., Hutchins G.M. Arterial geometry affects hemodynamics: A potential risk factor for atherosclerosis. Atherosclerosis. 1983;46:225–231. doi: 10.1016/0021-9150(83)90113-2.
    1. Svindland A. The localization of sudanophilic and fibrous plaques in the main left coronary bifurcation. Atherosclerosis. 1983;48:139–145. doi: 10.1016/0021-9150(83)90100-4.
    1. Giannoglou G.D., Antoniadis A.P., Koskinas K.C., Chatzizisis Y.S. Flow and atherosclerosis in coronary bifurcations. EuroIntervention. 2010;6((Suppl. J)):J16–J23. doi: 10.4244/EIJV6SUPJA4.
    1. Antoniadis A.P., Giannopoulos A.A., Wentzel J.J., Joner M., Giannoglou G.D., Virmani R., Chatzizisis Y.S. Impact of local flow haemodynamics on atherosclerosis in coronary artery bifurcations. EuroIntervention. 2015;11((Suppl. V)):V18–V22. doi: 10.4244/EIJV11SVA4.
    1. Ferencik M. About the twists and turns: Relationship of coronary artery geometry and atherosclerosis. J. Cardiovasc. Comput. Tomogr. 2018;12:261–262. doi: 10.1016/j.jcct.2018.04.004.
    1. Abbara S., Blanke P., Maroules C.D., Cheezum M., Choi A.D., Han B.K., Marwan M., Naoum C., Norgaard B.L., Rubinshtein R., et al. SCCT guidelines for the performance and acquisition of coronary computed tomographic angiography: A report of the society of Cardiovascular Computed Tomography Guidelines Committee: Endorsed by the North American Society for Cardiovascular Imaging (NASCI) J. Cardiovasc. Comput. Tomogr. 2016;10:435–449. doi: 10.1016/j.jcct.2016.10.002.
    1. Friedman M.H. Variability of 3D arterial geometry and dynamics, and its pathologic implications. Biorheology. 2002;39:513–517.
    1. Brinkman A.M., Baker P.B., Newman W.P., Vigorito R., Friedman M.H. Variability of human coronary artery geometry: An angiographic study of the left anterior descending arteries of 30 autopsy hearts. Ann. Biomed. Eng. 1994;22:34–44. doi: 10.1007/BF02368220.
    1. Zhu H., Ding Z., Piana R.N., Gehrig T.R., Friedman M.H. Cataloguing the geometry of the human coronary arteries: A potential tool for predicting risk of coronary artery disease. Int. J. Cardiol. 2009;135:43–52. doi: 10.1016/j.ijcard.2008.03.087.
    1. Gauss S., Pflederer T., Marwan M., Daniel W.G., Achenbach S. Analysis of left main coronary artery and branching geometry by coronary CT angiography. Int. J. Cardiol. 2011;146:469–470. doi: 10.1016/j.ijcard.2010.10.140.
    1. Ding Z., Friedman M.H. Dynamics of human coronary arterial motion and its potential role in coronary atherogenesis. J. Biomech. Eng. 2000;122:488–492. doi: 10.1115/1.1289989.
    1. Zhu H., Friedman M.H. Relationship between the dynamic geometry and wall thickness of a human coronary artery. Arterioscler. Thromb. Vasc. Biol. 2003;23:2260–2265. doi: 10.1161/01.ATV.0000095976.40874.E0.
    1. Katranas S.A., Kelekis A.L., Antoniadis A.P., Giannoglou G.D. The cardiac cycle effects on the coronary arterial geometry and hemodynamics: An in vivo CT angiography study. Int. J. Cardiol. 2013;168:2935–2936. doi: 10.1016/j.ijcard.2013.03.178.
    1. Torii R., Keegan J., Wood N.B., Dowsey A.W., Hughes A.D., Yang G.Z., Firmin D.N., Thom S.A.M., Xu X.Y. MR image-based geometric and hemodynamic investigation of the right coronary artery with dynamic vessel motion. Ann. Biomed. Eng. 2010;38:2606–2620. doi: 10.1007/s10439-010-0008-4.
    1. Van Zandwijk J.K., Tuncay V., Vliegenthart R., Pelgrim G.J., Slump C.H., Oudkerk M., Van Ooijen P. Assessment of dynamic change of coronary artery geometry and its relationship to coronary artery disease, based on coronary CT angiography. J. Digit. Imaging. 2020;33:480–489. doi: 10.1007/s10278-019-00300-5.
    1. Chiastra C., Gallo D., Tasso P., Iannaccone F., Migliavacca F., Wentzel J.J., Morbiducci U. Healthy and diseased coronary bifurcation geometries influence near-wall and intravascular flow: A computational exploration of the hemodynamic risk. J. Biomech. 2017;58:79–88. doi: 10.1016/j.jbiomech.2017.04.016.
    1. Gijsen F., Katagiri Y., Barlis P., Bourantas C., Collet C., Coskun U., Daemen J., Dijkstra J., Edelman E., Evans P., et al. Expert recommendations on the assessment of wall shear stress in human coronary arteries: Existing methodologies, technical considerations, and clinical applications. Eur. Heart J. 2019;40:3421–3433. doi: 10.1093/eurheartj/ehz551.
    1. Chaichana T., Sun Z., Jewkes J. Computation of hemodynamics in the left coronary artery with variable angulations. J. Biomech. 2011;44:1869–1878. doi: 10.1016/j.jbiomech.2011.04.033.
    1. Peng C., Wang X., Xian Z., Liu X., Huang W., Xu P., Wang J. The impact of the geometric characteristics on the hemodynamics in the stenotic coronary artery. PLoS ONE. 2016;11:e0157490. doi: 10.1371/journal.pone.0157490.
    1. Brech R., Bellhouse B.J. Flow in branching vessels. Cardiovasc. Res. 1973;7:593–600. doi: 10.1093/cvr/7.5.593.
    1. Malcolm A.D., Roach M.R. Flow disturbances at the apex and lateral angles of a variety of bifurcation models and their role in development and manifestations of arterial disease. Stroke. 1979;10:335–343. doi: 10.1161/01.STR.10.3.335.
    1. Malvè M., Gharib A.M., Yazdani S.K., Finet G., Martínez M.A., Pettigrew R., Ohayon J. Tortuosity of coronary bifurcation as a potential local risk factor for atherosclerosis: CFD steady state study based on in vivo dynamic CT measurements. Ann. Biomed. Eng. 2015;43:82–93. doi: 10.1007/s10439-014-1056-y.
    1. Pinho N., Castro C.F., António C.C., Bettencourt N., Sousa L.C., Pinto S.I.S. Correlation between geometric parameters of the left coronary artery and hemodynamic descriptors of atherosclerosis: FSI and statistical study. Med. Biol. Eng. Comput. 2019;57:715–729. doi: 10.1007/s11517-018-1904-2.
    1. Pinho N., Sousa L.C., Castro C.F., António C.C., Carvalho M., Ferreira W., Ladeiras-Lopes R., Ferreira N.D., Braga P., Bettencourt N., et al. The impact of the right coronary artery geometric parameters on hemodynamic performance. Cardiovasc. Eng. Technol. 2019;10:257–270. doi: 10.1007/s13239-019-00403-8.
    1. Friedman M.H., O’Brien V., Ehrlich L.W. Calculations of pulsatile flow through a branch: Implications for the hemodynamics of atherogenesis. Circ. Res. 1975;36:277–285. doi: 10.1161/01.RES.36.2.277.
    1. Gazetopoulos N., Ioannidis P.J., Marselos A., Kelekis D., Lolas C., Avgoustakis D., Tountas C. Length of main left coronary artery in relation to atherosclerosis of its branches. A coronary arteriographic study. Heart. 1976;38:180–185. doi: 10.1136/hrt.38.2.180.
    1. Saltissi S., Webb-Peploe M.M., Coltart D.J. Effect of variation in coronary artery anatomy on distribution of stenotic lesions. Br. Heart J. 1979;42:186. doi: 10.1136/hrt.42.2.186.
    1. Friedman M.H., Brinkman A.M., Qin J.J., Seed W.A. Relation between coronary artery geometry and the distribution of early sudanophilic lesions. Atherosclerosis. 1993;98:193–199. doi: 10.1016/0021-9150(93)90128-H.
    1. Friedman M.H., Ding Z. Relation between the structural asymmetry of coronary branch vessels and the angle at their origin. J. Biomech. 1997;31:273–278. doi: 10.1016/S0021-9290(98)00013-X.
    1. Friedman M.H., Baker P.B., Ding Z., Kuban B.D. Relationship between the geometry and quantitative morphology of the left anterior descending coronary artery. Atherosclerosis. 1996;125:183–192. doi: 10.1016/0021-9150(96)05869-8.
    1. Tuncay V., Vliegenthart R., Den Dekker M.A.M., de Jonge G.J., van Zandwijk J.K., van der Harst P., Oudkerk M., van Ooijen P.M.A. Non-invasive assessment of coronary artery geometry using coronary CTA. J. Cardiovasc. Comput. Tomogr. 2018;12:257–260. doi: 10.1016/j.jcct.2018.02.003.
    1. Altintas M.S., Ermis N., Cuglan B., Alturk E., Ozdemir R. Influence of right coronary artery shape on TIMI frame count and lesion distribution. Arch. Cardiol. México. 2020;90:475–479. doi: 10.24875/ACM.20000083.
    1. Han D., Lin A., Kuronuma K., Tzolos E., Kwan A.C., Klein E., Andreini D., Bax J.J., Cademartiri F., Chinnaiyan K., et al. Association of Plaque Location and Vessel Geometry Determined by Coronary Computed Tomographic Angiography With Future Acute Coronary Syndrome–Causing Culprit Lesions. JAMA Cardiol. 2022;7:309–319. doi: 10.1001/jamacardio.2021.5705.
    1. Benetos G., Buechel R.R., Gonçalves M., Benz D.C., von Felten E., Rampidis G.P., Clerc O.F., Messerli M., Giannopoulos A.A., Gebhard C., et al. Coronary artery volume index: A novel CCTA-derived predictor for cardiovascular events. Int. J. Cardiovasc. Imaging. 2020;36:713–722. doi: 10.1007/s10554-019-01750-2.
    1. Benetos G., Benz D.C., Rampidis G.P., Giannopoulos A.A., von Felten E., Bakula A., Sustar A., Fuchs T.A., Pazhenkottil A.P., Gebhard C., et al. Coronary artery lumen volume index as a marker of flow-limiting atherosclerosis—validation against 13N-ammonia positron emission tomography. Eur. Radiol. 2021;31:5116–5126. doi: 10.1007/s00330-020-07586-y.
    1. Rampidis G., Kouskouras K., Rafailidis V., Kampaktsis P.N., Giannopoulos A., Giannakoulas G., Prassopoulos P., Karvounis H. Correlation of coronary artery geometry with the complexity and severity of coronary atherosclerosis: Rationale and design of the GEOMETRY-CTA study. Eur. Heart J. -Cardiovasc. Imaging. 2021;22((Suppl. 3)):jeab111-018. doi: 10.1093/ehjci/jeab111.018.
    1. van Rosendael A.R., Shaw L.J., Xie J.X., Dimitriu-Leen A.C., Smit J.M., Scholte A.J., van Werkhoven J.M., Callister T.Q., DeLago A., Berman D.S., et al. Superior risk stratification with coronary computed tomography angiography using a comprehensive atherosclerotic risk score. JACC Cardiovasc. Imaging. 2019;12:1987–1997. doi: 10.1016/j.jcmg.2018.10.024.
    1. Rampidis G.P., Benetos G., Benz D.C., Giannopoulos A.A., Buechel R.R. A guide for Gensini Score calculation. Atherosclerosis. 2019;287:181–183. doi: 10.1016/j.atherosclerosis.2019.05.012.

Source: PubMed

3
Sottoscrivi