Long-term incidence and prognostic factors of the progression of new coronary lesions in Japanese coronary artery disease patients after percutaneous coronary intervention

Hidehiro Kaneko, Junji Yajima, Yuji Oikawa, Shingo Tanaka, Daisuke Fukamachi, Shinya Suzuki, Koichi Sagara, Takayuki Otsuka, Shunsuke Matsuno, Hiroto Kano, Tokuhisa Uejima, Akira Koike, Kazuyuki Nagashima, Hajime Kirigaya, Hitoshi Sawada, Tadanori Aizawa, Takeshi Yamashita, Hidehiro Kaneko, Junji Yajima, Yuji Oikawa, Shingo Tanaka, Daisuke Fukamachi, Shinya Suzuki, Koichi Sagara, Takayuki Otsuka, Shunsuke Matsuno, Hiroto Kano, Tokuhisa Uejima, Akira Koike, Kazuyuki Nagashima, Hajime Kirigaya, Hitoshi Sawada, Tadanori Aizawa, Takeshi Yamashita

Abstract

Revascularization of an initially non-target site due to its progression as a new culprit lesion has emerged as a new therapeutic target of coronary artery disease (CAD) in the era of drug-eluting stents. Using the Shinken database, a single-hospital-based cohort, we aimed to clarify the incidence and prognostic factors for progression of previously non-significant coronary portions after prior percutaneous coronary intervention (PCI) in Japanese CAD patients. We selected from the Shinken database a single-hospital-based cohort of Japanese patients (n = 15227) who visited the Cardiovascular Institute between 2004 and 2010 to undergo PCI. This study included 1,214 patients (median follow-up period, 1,032 ± 704 days). Additional clinically driven PCI to treat previously non-significant lesions was performed in 152 patients. The cumulative rate of new-lesion PCI was 9.5 % at 1 year, 14.4 % at 3 years, and 17.6 % at 5 years. There was no difference in background clinical characteristics between patients with and without additional PCI. Prevalence of multi-vessel disease (MVD) (82 vs. 57 %, p < 0.001) and obesity (47 vs. 38 %, p = 0.028) were significantly higher and high-density lipoprotein cholesterol (HDL) level (51 ± 15 vs. 47 ± 12 mg/dl, p < 0.001) was significantly lower in patients with additional PCI than those without. Patients using insulin (6 vs. 3 %, p = 0.035) were more common in patients with additional PCI. Multivariate analysis showed that MVD, lower HDL, and insulin use were independent determinants of progression of new culprit coronary lesions. In conclusion, progression of new coronary lesions was common and new-lesion PCI continued to occur beyond 1 year after PCI without attenuation of their annual incidences up to 5 years. Greater coronary artery disease burden, low HDL, and insulin-dependent DM were independent predictors of progression of new culprit coronary lesions.

Figures

Fig. 1
Fig. 1
Kaplan–Meier curve for survival rates without new-lesion PCI. Degree of angiographic stenosis of right coronary artery (RCA) (a), left anterior descending coronary artery (LAD) (b), and left circumflex coronary artery (LCx) (c) at initial percutaneous coronary intervention (PCI) and follow-up coronary angiography (CAG) is shown

References

    1. Dangas GD, Claessen BE, Caixeta A, Sanidas EA, Mintz GS, Mehran R. In-stent restenosis in the drug-eluting stent era. J Am Coll Cardiol. 2010;56:1897–1907. doi: 10.1016/j.jacc.2010.07.028.
    1. Kastrati A, Dibra A, Mehilli J, Mayer S, Pinieck S, Pache J, Dirschinger J, Schomig A. Predictive factors of restenosis after coronary implantation of sirolimus- or paclitaxel-eluting stents. Circulation. 2006;113:2293–2300. doi: 10.1161/CIRCULATIONAHA.105.601823.
    1. Elezi S, Kastrati A, Pache J, Wehinger A, Hadamitzky M, Dirschinger J, Neumann FJ, Schomig A. Diabetes mellitus and the clinical and angiographic outcome after coronary stent placement. J Am Coll Cardiol. 1998;32:1866–1873. doi: 10.1016/S0735-1097(98)00467-7.
    1. Kastrati A, Schomig A, Elezi S, Schuhlen H, Dirschinger J, Hadamitzky M, Wehinger A, Hausleiter J, Walter H, Neumann FJ. Predictive factors of restenosis after coronary stent placement. J Am Coll Cardiol. 1997;30:1428–1436. doi: 10.1016/S0735-1097(97)00334-3.
    1. Suzuki S, Sagara K, Otsuka T, Matsuno S, Funada R, Uejima T, Oikawa Y, Koike A, Nagashima K, Kirigaya H, Yajima J, Sawada H, Aizawa T, Yamashita T. Gender-specific relationship between serum uric acid level and atrial fibrillation prevalence. Circ J. 2012;76:607–611. doi: 10.1253/circj.CJ-11-1111.
    1. Suzuki S, Yamashita T, Ohtsuka T, Sagara K, Uejima T, Oikawa Y, Yajima J, Koike A, Nagashima K, Kirigaya H, Ogasawara K, Sawada H, Aizawa T. Prevalence and prognosis of patients with atrial fibrillation in Japan: a prospective cohort of Shinken Database 2004. Circ J. 2008;72:914–920. doi: 10.1253/circj.72.914.
    1. Matsuo S, Imai E, Horio M, Yasuda Y, Tomita K, Nitta K, Yamagata K, Tomino Y, Yokoyama H, Hishida A. Revised equations for estimated GFR from serum creatinine in Japan. Am J Kidney Dis. 2009;53:982–992. doi: 10.1053/j.ajkd.2008.12.034.
    1. Tonelli M, Jose P, Curhan G, Sacks F, Braunwald E, Pfeffer M. Proteinuria, impaired kidney function, and adverse outcomes in people with coronary disease: analysis of a previously conducted randomised trial. BMJ. 2006;332:1426. doi: 10.1136/bmj.38814.566019.2F.
    1. Allison DB, Fontaine KR, Manson JE, Stevens J, VanItallie TB. Annual deaths attributable to obesity in the United States. JAMA. 1999;282:1530–1538. doi: 10.1001/jama.282.16.1530.
    1. St Jeor ST, Brownell KD, Atkinson RL, Bouchard C, Dwyer J, Foreyt JP, Heber D, Kris-Etherton P, Stern JS, Willett W. Obesity. Workshop III. AHA Prevention Conference III. Behavior change and compliance: keys to improving cardiovascular health. Circulation. 1993;88:1391–1396. doi: 10.1161/01.CIR.88.3.1391.
    1. Park MW, Seung KB, Kim PJ, Park HJ, Yoon SG, Baek JY, Koh YS, Jung HO, Chang K, Kim HY, Baek SH. Long-term percutaneous coronary intervention rates and associated independent predictors for progression of nonintervened nonculprit coronary lesions. Am J Cardiol. 2009;104:648–652. doi: 10.1016/j.amjcard.2009.04.052.
    1. Glaser R, Selzer F, Faxon DP, Laskey WK, Cohen HA, Slater J, Detre KM, Wilensky RL. Clinical progression of incidental, asymptomatic lesions discovered during culprit vessel coronary intervention. Circulation. 2005;111:143–149. doi: 10.1161/01.CIR.0000150335.01285.12.
    1. Kimura T, Morimoto T, Nakagawa Y, Kawai K, Miyazaki S, Muramatsu T, Shiode N, Namura M, Sone T, Oshima S, Nishikawa H, Hiasa Y, Hayashi Y, Nobuyoshi M, Mitudo K. Very Late Stent Thrombosis And Late Target Lesion Revascularization After Sirolimus-Eluting Stent Implantation: Five-Year Outcome Of The j-Cypher Registry. Circulation. 2012;125:584–591. doi: 10.1161/CIRCULATIONAHA.111.046599.
    1. Gordon DJ, Rifkind BM. High-density lipoprotein—the clinical implications of recent studies. N Engl J Med. 1989;321:1311–1316. doi: 10.1056/NEJM198911093211907.
    1. Castelli WP. Cardiovascular disease and multifactorial risk: challenge of the 1980s. Am Heart J. 1983;106:1191–1200. doi: 10.1016/0002-8703(83)90174-6.
    1. Glueck CJ, Gartside P, Fallat RW, Sielski J, Steiner PM. Longevity syndromes: familial hypobeta and familial hyperalpha lipoproteinemia. J Lab Clin Med. 1976;88:941–957.
    1. Rosenson RS, Brewer HB, Jr, Davidson WS, Fayad ZA, Fuster V, Goldstein J, Hellerstein M, Jiang XC, Phillips MC, Rader DJ, Remaley AT, Rothblat GH, Tall AR, Yvan-Charvet L. Cholesterol efflux and atheroprotection: advancing the concept of reverse cholesterol transport. Circulation. 2012;125:1905–1919. doi: 10.1161/CIRCULATIONAHA.111.066589.
    1. Oram JF, Johnson CJ, Brown TA. Interaction of high-density lipoprotein with its receptor on cultured fibroblasts and macrophages. Evidence for reversible binding at the cell surface without internalization. J Biol Chem. 1987;262:2405–2410.
    1. Kuhn FE, Mohler ER, Satler LF, Reagan K, Lu DY, Rackley CE. Effects of high-density lipoprotein on acetylcholine-induced coronary vasoreactivity. Am J Cardiol. 1991;68:1425–1430. doi: 10.1016/0002-9149(91)90274-O.
    1. Kontush A, Chantepie S, Chapman MJ. Small, dense HDL particles exert potent protection of atherogenic LDL against oxidative stress. Arterioscler Thromb Vasc Biol. 2003;23:1881–1888. doi: 10.1161/01.ATV.0000091338.93223.E8.
    1. Barter PJ, Nicholls S, Rye KA, Anantharamaiah GM, Navab M, Fogelman AM. Antiinflammatory properties of HDL. Circ Res. 2004;95:764–772. doi: 10.1161/01.RES.0000146094.59640.13.
    1. Saku K, Ahmad M, Glas-Greenwalt P, Kashyap ML. Activation of fibrinolysis by apolipoproteins of high-density lipoproteins in man. Thromb Res. 1985;39:1–8. doi: 10.1016/0049-3848(85)90116-1.
    1. Griffin JH, Kojima K, Banka CL, Curtiss LK, Fernandez JA. High-density lipoprotein enhancement of anticoagulant activities of plasma protein S and activated protein C. J Clin Invest. 1999;103:219–227. doi: 10.1172/JCI5006.
    1. Epand RM, Stafford A, Leon B, Lock PE, Tytler EM, Segrest JP, Anantharamaiah GM. HDL and apolipoprotein A-I protect erythrocytes against the generation of procoagulant activity. Arterioscler Thromb. 1994;14:1775–1783. doi: 10.1161/01.ATV.14.11.1775.
    1. Aoyama T, Yui Y, Morishita H, Kawai C. Prostaglandin I2 half-life regulated by high-density lipoprotein is decreased in acute myocardial infarction and unstable angina pectoris. Circulation. 1990;81:1784–1791. doi: 10.1161/01.CIR.81.6.1784.
    1. National Cholesterol Education Program Coordinating Committee Third Report of the National Cholesterol Education Program (NCEP) Expert Panel on Detection, Evaluation, and Treatment of High Blood Cholesterol in Adults (Adult Treatment Panel III) final report. Circulation. 2002;106:3143–3421.
    1. Norhammar A, Lagerqvist B, Saleh N. Long-term mortality after PCI in patients with diabetes mellitus: results from the Swedish Coronary Angiography and Angioplasty Registry. Euro Intervention. 2010;5:891–897.
    1. Anselmino M, Ohrvik J, Malmberg K, Standl E, Ryden L. Glucose lowering treatment in patients with coronary artery disease is prognostically important not only in established but also in newly detected diabetes mellitus: a report from the Euro Heart Survey on Diabetes and the Heart. Eur Heart J. 2008;29:177–184. doi: 10.1093/eurheartj/ehm519.
    1. McGuire DK, Newby LK, Bhapkar MV, Moliterno DJ, Hochman JS, Klein WW, Weaver WD, Pfisterer M, Corbalan R, Dellborg M, Granger CB, Van De Werf F, Topol EJ, Califf RM. Association of diabetes mellitus and glycemic control strategies with clinical outcomes after acute coronary syndromes. Am Heart J. 2004;147:246–252. doi: 10.1016/j.ahj.2003.07.024.
    1. Arcaro G, Cretti A, Balzano S, Lechi A, Muggeo M, Bonora E, Bonadonna RC. Insulin causes endothelial dysfunction in humans: sites and mechanisms. Circulation. 2002;105:576–582. doi: 10.1161/hc0502.103333.
    1. Angiolillo DJ, Bernardo E, Ramirez C, Costa MA, Sabate M, Jimenez-Quevedo P, Hernandez R, Moreno R, Escaned J, Alfonso F, Banuelos C, Bass TA, Macaya C, Fernandez-Ortiz A. Insulin therapy is associated with platelet dysfunction in patients with type 2 diabetes mellitus on dual oral antiplatelet treatment. J Am Coll Cardiol. 2006;48:298–304. doi: 10.1016/j.jacc.2006.03.038.

Source: PubMed

3
Sottoscrivi