Electroencephalography microstates imbalance across the spectrum of early psychosis, autism, and mood disorders

Anton Iftimovici, Angela Marchi, Victor Férat, Estelle Pruvost-Robieux, Eléonore Guinard, Valentine Morin, Yannis Elandaloussi, Arnaud D'Halluin, Marie-Odile Krebs, Boris Chaumette, Martine Gavaret, Anton Iftimovici, Angela Marchi, Victor Férat, Estelle Pruvost-Robieux, Eléonore Guinard, Valentine Morin, Yannis Elandaloussi, Arnaud D'Halluin, Marie-Odile Krebs, Boris Chaumette, Martine Gavaret

Abstract

Background: Electroencephalography (EEG) microstates translate resting-state temporal dynamics of neuronal networks throughout the brain and could constitute possible markers of psychiatric disorders. We tested the hypothesis of an increased imbalance between a predominant self-referential mode (microstate C) and a decreased attentional mode (microstate D) in psychosis, mood, and autism spectrum disorders.

Methods: We retrospectively included 135 subjects from an early psychosis outpatient unit, with available eyes-closed resting-state 19 electrodes EEG. Individual-level then group-level modified K-means clustering in controls provided four microstate maps that were then backfitted to all groups. Differences between microstate parameters (occurrence, coverage, and mean duration) were computed between controls and each group, and between disease groups.

Results: Microstate class D parameters were systematically decreased in disease groups compared with controls, with an effect size increasing along the psychosis spectrum, but also in autism. There was no difference in class C. C/D ratios of mean duration were increased only in SCZ compared with controls.

Conclusions: The decrease in microstate class D may be a marker of stage of psychosis, but it is not specific to it and may rather reflect a shared dimension along the schizophrenia-autism spectrum. C/D microstate imbalance may be more specific to schizophrenia.

Keywords: EEG microstates; Electroencephalography; autism spectrul disorder; mood disorders; psychosis; transdiagnostic approaches.

Conflict of interest statement

The authors declare none.

Figures

Figure 1.
Figure 1.
Mean spectral power densities for each group after preprocessing. ASD, autism spectrum disorder; BIP, bipolar disorder; CTRL, controls; FEP, first-episode psychosis; MDD, major depressive disorder; SCZ, schizophrenia; UHR, ultra-high-risk.
Figure 2.
Figure 2.
Spatial correlations between the four clusters of each disease group and the controls.
Figure 3.
Figure 3.
Posterior estimation of the effect-size of the difference in microstate D parameters (occurrence, coverage, mean duration) between each disease group and the controls. The red dotted interval represents the region of practical equivalence. HDI: 90% highest density interval of the posterior estimation.

References

    1. Solmi M, Radua J, Olivola M, Croce E, Soardo L, Salazar de Pablo G, et al. Age at onset of mental disorders worldwide: large-scale meta-analysis of 192 epidemiological studies. Mol Psychiatry. 2021;27:281–95. doi:10.1038/s41380-021-01161-7
    1. Zheng Y, Xu T, Zhu Y, Li C, Wang J, Livingstone S, et al. Cognitive behavioral therapy for prodromal stage of psychosis-outcomes for transition, functioning, distress, and quality of life: a systematic review and meta-analysis. Schizophr Bull. 2021;48:sbab044. doi:10.1093/schbul/sbab044
    1. Frawley E, Cowman M, Lepage M, Donohoe G. Social and occupational recovery in early psychosis: a systematic review and meta-analysis of psychosocial interventions. Psychol Med. 2021;53:1–12. doi:
    1. McDaid D, Park A-L, Wahlbeck K. The economic case for the prevention of mental illness. Annu Rev Public Health. 2019;40:373–89. doi:10.1146/annurev-publhealth-040617-013629
    1. Fusar-Poli P, Salazar de Pablo G, Correll CU, Meyer-Lindenberg A, Millan MJ, Borgwardt S, et al. Prevention of psychosis: advances in detection, prognosis, and intervention. JAMA Psychiatry. 2020;77:755. doi:10.1001/jamapsychiatry.2019.4779
    1. Fusar-Poli P, Cappucciati M, Borgwardt S, Woods SW, Addington J, Nelson B, et al. Heterogeneity of psychosis risk within individuals at clinical high risk: a meta-analytical stratification. JAMA Psychiatry. 2016;73:113. doi:10.1001/jamapsychiatry.2015.2324
    1. Howes OD, Murray RM. Schizophrenia: an integrated sociodevelopmental-cognitive model. Lancet. 2014;383:1677–87. doi:10.1016/S0140-6736(13)62036-X
    1. King BH, Lord C. Is schizophrenia on the autism spectrum? Brain Res. 2011;1380:34–41. doi:10.1016/j.brainres.2010.11.031
    1. Nieman DH, McGorry PD. Detection and treatment of at-risk mental state for developing a first psychosis: making up the balance. Lancet Psychiatry. 2015;2:825–34. doi:10.1016/S2215-0366(15)00221-7
    1. Misiak B, Stramecki F, Gawęda Ł, Prochwicz K, Sąsiadek MM, Moustafa AA, et al. Interactions between variation in candidate genes and environmental factors in the etiology of schizophrenia and bipolar disorder: a systematic review. Mol Neurobiol. 2018;55:5075–100. doi:10.1007/s12035-017-0708-y
    1. Baselmans BML, Yengo L, van Rheenen W, Wray NR. Risk in relatives, heritability, SNP-based heritability, and genetic correlations in psychiatric disorders: a review. Biol Psychiatry. 2021;89:11–9. doi:10.1016/j.biopsych.2020.05.034
    1. Lee PH, Anttila V, Won H, Feng Y-CA, Rosenthal J, Zhu Z, et al. Genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders. Cell. 2019;179:1469–1482.e11. doi:10.1016/j.cell.2019.11.020
    1. Writing Committee for the Attention-Deficit/Hyperactivity Disorder, Autism Spectrum Disorder, Bipolar Disorder, Major Depressive Disorder, Obsessive-Compulsive Disorder, and Schizophrenia ENIGMA Working Groups, et al. Virtual histology of cortical thickness and shared neurobiology in 6 psychiatric disorders. JAMA Psychiatry. 2021;78:47. doi:10.1001/jamapsychiatry.2020.2694
    1. Uhlhaas PJ, Singer W. Abnormal neural oscillations and synchrony in schizophrenia. Nat Rev Neurosci. 2010;11:100–13. doi:10.1038/nrn2774
    1. Gavaret M, Iftimovici A, Pruvost-Robieux E. EEG: current relevance and promising quantitative analyses. Rev Neurol (Paris). 2023;179:352–60. doi:10.1016/j.neurol.2022.12.008
    1. Michel CM, Koenig T. EEG microstates as a tool for studying the temporal dynamics of whole-brain neuronal networks: a review. NeuroImage. 2018;180:577–93. doi:10.1016/j.neuroimage.2017.11.062
    1. Dehaene S, Kerszberg M, Changeux J-P. A neuronal model of a global workspace in effortful cognitive tasks. Proc Natl Acad Sci USA. 1998;95:14529–34.
    1. Britz J, Van De Ville D, Michel CM. BOLD correlates of EEG topography reveal rapid resting-state network dynamics. NeuroImage. 2010;52:1162–70. doi:10.1016/j.neuroimage.2010.02.052
    1. Rieger K, Diaz Hernandez L, Baenninger A, Koenig T. 15 years of microstate research in schizophrenia – where are we? A meta-analysis. Front Psychiatry. 2016;7:22. doi:10.3389/fpsyt.2016.00022
    1. Yoshimura M, Koenig T, Irisawa S, Isotani T, Yamada K, Kikuchi M, et al. A pharmaco-EEG study on antipsychotic drugs in healthy volunteers. Psychopharmacology. 2007;191:995–1004. doi:10.1007/s00213-007-0737-8
    1. Kikuchi M, Koenig T, Wada Y, Higashima M, Koshino Y, Strik W, et al. Native EEG and treatment effects in neuroleptic-naïve schizophrenic patients: time and frequency domain approaches. Schizophr Res. 2007;97:163–72. doi:10.1016/j.schres.2007.07.012
    1. de Bock R, Mackintosh AJ, Maier F, Borgwardt S, Riecher-Rössler A, Andreou C. EEG microstates as biomarker for psychosis in ultra-high-risk patients. Transl Psychiatry 2020;10:300. doi:10.1038/s41398-020-00963-7
    1. da Cruz JR, Favrod O, Roinishvili M, Chkonia E, Brand A, Mohr C, et al. EEG microstates are a candidate endophenotype for schizophrenia. Nat Commun. 2020;11:3089. doi:10.1038/s41467-020-16914-1
    1. Tomescu MI, Rihs TA, Roinishvili M, Karahanoglu FI, Schneider M, Menghetti S, et al. Schizophrenia patients and 22q11.2 deletion syndrome adolescents at risk express the same deviant patterns of resting state EEG microstates: a candidate endophenotype of schizophrenia. Schizophr Res Cogn. 2015;2:159–65. doi:10.1016/j.scog.2015.04.005
    1. Mackintosh AJ, Borgwardt S, Studerus E, Riecher-Rössler A, de Bock R, Andreou C. EEG microstate differences in medicated vs. medication-Naïve first-episode psychosis patients. Front Psychiatry. 2020;11:600606. doi:10.3389/fpsyt.2020.600606
    1. Murphy M, Whitton AE, Deccy S, Ironside ML, Rutherford A, Beltzer M, et al. Abnormalities in electroencephalographic microstates are state and trait markers of major depressive disorder. Neuropsychopharmacology. 2020;45:2030–7. doi:10.1038/s41386-020-0749-1
    1. He Y, Yu Q, Yang T, Zhang Y, Zhang K, Jin X, et al. Abnormalities in electroencephalographic microstates among adolescents with first episode major depressive disorder. Front Psychiatry. 2021;12:775156. doi:10.3389/fpsyt.2021.775156
    1. Lei L, Liu Z, Zhang Y, Guo M, Liu P, Hu X, et al. EEG microstates as markers of major depressive disorder and predictors of response to SSRIs therapy. Prog Neuropsychopharmacol Biol Psychiatry. 2022;116:110514. doi:10.1016/j.pnpbp.2022.110514
    1. D’Croz-Baron DF, Baker M, Michel CM, Karp T. EEG microstates analysis in young adults with autism spectrum disorder during resting-state. Front Hum Neurosci. 2019;13:173. doi:10.3389/fnhum.2019.00173
    1. Jia H, Yu D. Aberrant intrinsic brain activity in patients with autism spectrum disorder: insights from EEG microstates. Brain Topogr. 2019;32:295–303. doi:10.1007/s10548-018-0685-0
    1. Takarae Y, Zanesco A, Keehn B, Chukoskie L, Müller R-A, Townsend J. EEG microstates suggest atypical resting-state network activity in high-functioning children and adolescents with autism spectrum development. Dev Sci. 2022;25:e13231. doi:10.1111/desc.13231
    1. Kalburgi SN, Whitten AP, Key AP, Bodfish JW. Children with autism produce a unique pattern of EEG microstates during an eyes closed resting-state condition. Front Hum Neurosci. 2020;14:288. doi:10.3389/fnhum.2020.00288
    1. Yung AR, Yuen HP, Mcgorry PD, Phillips LJ, Kelly D, Dell’olio M, et al. Mapping the onset of psychosis: the comprehensive assessment of at-risk mental states. Aust N Z J Psychiatry. 2005;39:964–71.
    1. Krebs M-O, Magaud E, Willard D, Elkhazen C, Chauchot F, Gut A, et al. Évaluation des états mentaux à risque de transition psychotique: validation de la version française de la CAARMS. L’Encéphale. 2014;40:447–56. doi:10.1016/j.encep.2013.12.003
    1. American Psychiatric Association. Diagnostic and statistical manual of mental disorders: DSM-5. 5th ed. Washington, D.C: American Psychiatric Association; 2013.
    1. André-Obadia N, Sauleau P, Cheliout-Heraut F, Convers P, Debs R, Eisermann M, et al. Recommandations françaises Sur l’électroencéphalogramme. Neurophysiol Clin Neurophysiol. 2014;44:515–612. doi:10.1016/j.neucli.2014.10.001
    1. Appelhoff S, Sanderson M, Brooks T, van Vliet M, Quentin R, Holdgraf C, et al. MNE-BIDS: organizing electrophysiological data into the BIDS format and facilitating their analysis. J Open Source Softw. 2019;4:1896. doi:10.21105/joss.01896
    1. Gramfort A. MEG and EEG data analysis with MNE-python. Front Neurosci. 2013;7:267. doi:10.3389/fnins.2013.00267
    1. Pernet C, Garrido MI, Gramfort A, Maurits N, Michel CM, Pang E, et al. Issues and recommendations from the OHBM COBIDAS MEEG committee for reproducible EEG and MEG research. Nat Neurosci. 2020;23:1473–83. doi:10.1038/s41593-020-00709-0
    1. Férat V, Scheltienne M, Brunet D, Ros T, and Michel C. Pycrostates: a Python library to study EEG microstates. J Open Source Softw. 2022; 7(78), 4564. doi: 10.21105/joss.04564
    1. Pascual-Marqui RD, Michel CM, Lehmann D. Segmentation of brain electrical activity into microstates: model estimation and validation. IEEE Trans Biomed Eng. 1995;42:658–65. doi:10.1109/10.391164
    1. Kruschke JK. Bayesian estimation supersedes the t test. J Exp Psychol Gen. 2013;142:573–603. doi:10.1037/a0029146
    1. Salvatier J, Wiecki TV, Fonnesbeck C. Probabilistic programming in python using PyMC3. PeerJ Comput Sci. 2016;2:e55. doi:10.7717/peerj-cs.55
    1. Mishara AL, Fusar-Poli P. The phenomenology and neurobiology of delusion formation during psychosis onset: Jaspers, Truman symptoms, and aberrant salience. Schizophr Bull. 2013;39:278–86. doi:10.1093/schbul/sbs155
    1. Koenig T, Prichep L, Lehmann D, Sosa PV, Braeker E, Kleinlogel H, et al. Millisecond by millisecond, year by year: normative EEG microstates and developmental stages. NeuroImage. 2002;16:41–8. doi:10.1006/nimg.2002.1070
    1. Lally J, Ajnakina O, Stubbs B, Cullinane M, Murphy KC, Gaughran F, et al. Remission and recovery from first-episode psychosis in adults: systematic review and meta-analysis of long-term outcome studies. Br J Psychiatry. 2017;211:350–8. doi:10.1192/bjp.bp.117.201475
    1. Morgan C, Lappin J, Heslin M, Donoghue K, Lomas B, Reininghaus U, et al. Reappraising the long-term course and outcome of psychotic disorders: the AESOP-10 study. Psychol Med. 2014;44:2713–26. doi:10.1017/S0033291714000282
    1. Ayesa-Arriola R, Ortíz-García de la Foz V, Martínez-García O, Setién-Suero E, Ramírez ML, Suárez-Pinilla P, et al. Dissecting the functional outcomes of first episode schizophrenia spectrum disorders: a 10-year follow-up study in the PAFIP cohort. Psychol Med. 2021;51:264–77. doi:10.1017/S0033291719003179
    1. Zhang K, Shi W, Wang C, Li Y, Liu Z, Liu T, et al. Reliability of EEG microstate analysis at different electrode densities during propofol-induced transitions of brain states. NeuroImage. 2021;231:117861. doi:10.1016/j.neuroimage.2021.117861

Source: PubMed

3
Sottoscrivi