Peritoneal dialysis tailored to pediatric needs

C P Schmitt, A Zaloszyc, B Schaefer, M Fischbach, C P Schmitt, A Zaloszyc, B Schaefer, M Fischbach

Abstract

Consideration of specific pediatric aspects is essential to achieve adequate peritoneal dialysis (PD) treatment in children. These are first of all the rapid growth, in particular during infancy and puberty, which must be accompanied by a positive calcium balance, and the age dependent changes in body composition. The high total body water content and the high ultrafiltration rates required in anuric infants for adequate nutrition predispose to overshooting convective sodium losses and severe hypotension. Tissue fragility and rapid increases in intraabdominal fat mass predispose to hernia and dialysate leaks. Peritoneal equilibration tests should repeatedly been performed to optimize individual dwell time. Intraperitoneal pressure measurements give an objective measure of intraperitoneal filling, which allow for an optimized dwell volume, that is, increased dialysis efficiency without increasing the risk of hernias, leaks, and retrofiltration. We present the concept of adapted PD, that is, the combination of short dwells with low fill volume to promote ultrafiltration and long dwells with a high fill volume to improve purification within one PD session. The use of PD solutions with low glucose degradation product content is recommended in children, but unfortunately still not feasible in many countries.

Figures

Figure 1
Figure 1
IPP is an individual patient characteristic, determined by BMI and dwell volume. The intraperitoneal pressure (IPP, y-axis) is positively correlated with the normalized body mass index (x-axis) within the general population. This correlation is even stronger than the correlation between dwell volume to IPP [5].
Figure 2
Figure 2
Intraperitoneal pressure (mean/SD) according to dwell volume in children on PD above two years of age [7, 26]. In infants IPP should be below 8–10 cm, in children below 13-14 cm H2O. The red arrows give an example of how dwell volumes can be increased in patients with low IPP.
Figure 3
Figure 3
Illustration of APEX time, the crossing point of dialytic urea appearance, and glucose disappearance curve. APEX time indicates the optimal dwell time for ultrafiltration (normal range: 18 to 71 minutes).
Figure 4
Figure 4
Example of an adapted PD session. Short dwells of 45 minutes of dwell time (i.e., individual APEX time) with a small fill volume (800 mL/m2) favoring ultrafiltration by a high osmotic gradient at a low IPP are followed by long dwells (150 minutes; 3-4 times the APEX time) with a large fill volume (1500 mL/m2), to promote uremic toxin removal.

References

    1. Oh J, Wunsch R, Turzer M, et al. Advanced coronary and carotid arteriopathy in young adults with childhood-onset chronic renal failure. Circulation. 2002;106(1):100–105.
    1. KDOQI Work Group. KDOQI clinical practice guideline for nutrition in children with CKD: 2008 update. Executive summary. American Journal of Kidney Diseases. 2009;53(supplement 2):11–104.
    1. Rinaldi S, Sera F, Verrina E, et al. The Italian registry of pediatric chronic peritoneal dialysis: a ten-year experience with chronic peritoneal dialysis catheters. Peritoneal Dialysis International. 1998;18(1):71–74.
    1. Leblanc M, Ouimet D, Pichette V. Dialysate leaks in peritoneal dialysis. Seminars in Dialysis. 2001;14(1):50–54.
    1. Fiscbach M, Terzic J, Provot E, et al. Intraperitoneal pressure in children: fill-volume related and impacted by body mass index. Peritoneal Dialysis International. 2003;23(4):391–394.
    1. McDonald SP, Craig JC. Long-term survival of children with end-stage renal disease. New England Journal of Medicine. 2004;350(26):2654–2662.
    1. Fischbach M, Terzic J, Laugel V, Escande B, Dangelser C, Helmstetter A. Measurement of hydrostatic intraperitoneal pressure: a useful tool for the improvement of dialysis dose prescription. Pediatric Nephrology. 2003;18(10):976–980.
    1. Warady BA, Alexander SR, Hossli S, et al. Peritoneal membrane transport function in children receiving long-term dialysis. Journal of the American Society of Nephrology. 1996;7(11):2385–2391.
    1. Cano F, Sanchez L, Rebori A, et al. The short peritoneal equilibration test in pediatric peritoneal dialysis. Pediatric Nephrology. 2010;25(10):2159–2164.
    1. Schmitt CP, Haraldsson B, Doetschmann R, et al. Effects of pH-neutral, bicarbonate-buffered dialysis fluid on peritoneal transport kinetics in children. Kidney International. 2002;61(4):1527–1536.
    1. Haas S, Schmitt CP, Arbeiter K, et al. Improved acidosis correction and recovery of mesothelial cell mass with neutral-pH bicarbonate dialysis solution among children undergoing automated peritoneal dialysis. Journal of the American Society of Nephrology. 2003;14(10):2632–2638.
    1. Pride ET, Gustafson J, Graham A, et al. Comparison of a 2.5% and a 4.25% dextrose peritoneal equilibration test. Peritoneal Dialysis International. 2002;22(3):365–370.
    1. Davies SJ, Phillips L, Naish PF, Russell GI. Peritoneal glucose exposure and changes in membrane solute transport with time on peritoneal dialysis. Journal of the American Society of Nephrology. 2001;12(5):1046–1051.
    1. Davies SJ, Brown EA, Frandsen NE, et al. Longitudinal membrane function in functionally anuric patients treated with APD: data from EAPOS on the effects of glucose and icodextrin prescription. Kidney International. 2005;67(4):1609–1615.
    1. Churchill DN, Thorpe KE, Nolph KD, Keshaviah PR, Oreopoulos DG, Pagé D. Increased peritoneal membrane transport is associated with decreased patient and technique survival for continuous peritoneal dialysis patients. Journal of the American Society of Nephrology. 1998;9(7):1285–1292.
    1. Bakkaloglu SA, Saygili A, Sever L, et al. Impact of peritoneal transport characteristics on cardiac function in paediatric peritoneal dialysis patients: a Turkish Pediatric Peritoneal Dialysis Study Group (TUPEPD) report. Nephrology Dialysis Transplantation. 2010;25(7):2296–2303.
    1. Schaefer F, Klaus G, Mehls O. Peritoneal transport properties and dialysis dose affect growth and nutritional status in children on chronic peritoneal dialysis. Journal of the American Society of Nephrology. 1999;10(8):1786–1792.
    1. Wang T, Heimbürger O, Waniewski J, Bergström J, Lindholm B. Increased peritoneal permeability is associated with decreased fluid and small-solute removal and higher mortality in CAPD patients. Nephrology Dialysis Transplantation. 1998;13(5):1242–1249.
    1. Dasgupta MK, Perry D, Royer R, Fox S. Long-term survival and its relationship to membrane transport status in peritoneal dialysis. Advances in Peritoneal Dialysis. 2000;16:15–18.
    1. Jager KJ, Merkus MP, Dekker FW, et al. Mortality and technique failure in patients starting chronic peritoneal dialysis: results of the Netherlands cooperative study on the adequacy of dialysis. Kidney International. 1999;55(4):1476–1485.
    1. Brown EA, Davies SJ, Rutherford P, et al. Survival of functionally anuric patients on automated peritoneal dialysis: the European APD outcome study. Journal of the American Society of Nephrology. 2003;14(11):2948–2957.
    1. Passadakis PS, Thodis ED, Panagoutsos SA, Selisiou CA, Pitta EM, Vargemezis VA. Outcome for continuous ambulatory peritoneal dialysis patients is not predicted by peritoneal permeability characteristics. Advances in Peritoneal Dialysis. 2000;16:2–6.
    1. Balafa O, Halbesma N, Struijk DG, Dekker FW, Krediet RT. Peritoneal albumin and protein losses do not predict outcome in peritoneal dialysis patients. Clinical Journal of the American Society of Nephrology. 2011;6(3):561–566.
    1. Stenvinkel P, Chung SH, Heimbürger O, Lindholm B. Malnutrition, inflammation, and atherosclerosis in peritoneal dialysis patients. Peritoneal Dialysis International. 2001;21(3):S157–S162.
    1. Kim SB, Chang JW, Lee SK, Park JS. Acute systemic inflammation is associated with an increase in peritoneal solute transport rate in chronic peritoneal dialysis patients. Peritoneal Dialysis International. 2004;24(6):597–600.
    1. Rusthoven E, van der Vlugt ME, van Lingen-van Bueren LJ, et al. Evaluation of intraperitoneal pressure and the effect of different osmotic agents on intraperitoneal pressure in children. Peritoneal Dialysis International. 2005;25(4):352–356.
    1. Fischbach M, Warady BA. Peritoneal dialysis prescription in children: bedside principles for optimal practice. Pediatric Nephrology. 2009;24(9):1633–1642.
    1. Fischback M, Terzic J, Chauvé S, Laugel V, Muller A, Haraldsson B. Effect of peritoneal dialysis fluid composition on peritoneal area available for exchange in children. Nephrology Dialysis Transplantation. 2004;19(4):925–932.
    1. Fischbach M, Terzic J, Menouer S, Haraldsson B. Optimal volume prescription for children on peritoneal dialysis. Peritoneal Dialysis International. 2001;20(6):603–606.
    1. Chagnac A, Herskovitz P, Ori Y, et al. Effect of increased dialysate volume on peritoneal surface area among peritoneal dialysis patients. Journal of the American Society of Nephrology. 2002;13(10):2554–2559.
    1. Schmitt CP, Borzych D, Nau B, Wühl E, Zurowska A, Schaefer F. Dialytic phosphate removal: a modifiable measure of dialysis efficacy in automated peritoneal dialysis. Peritoneal Dialysis International. 2009;29(4):465–471.
    1. Fischbach M, Haraldsson B. Dynamic changes of the total pore area available for peritoneal exchange in children. Journal of the American Society of Nephrology. 2001;12(7):1524–1529.
    1. Dejardin A, Robert A, Goffin E. Intraperitoneal pressure in PD patients: relationship to intraperitoneal volume, body size and PD-related complications. Nephrology Dialysis Transplantation. 2007;22(5):1437–1444.
    1. Kohaut EC, Waldo FB, Benfield MR. The effect of changes in dialysate volume on glucose and urea equilibration. Peritoneal Dialysis International. 1994;14(3):236–239.
    1. Fischbach M. Peritoneal dialysis prescription for neonates. Peritoneal Dialysis International. 1996;16(1):S512–S514.
    1. Fischbach M, Stefanidis CJ, Watson AR. Guidelines by an ad hoc European committee on adequacy of the paediatric peritoneal dialysis prescription. Nephrology Dialysis Transplantation. 2002;17(3):380–385.
    1. Fischbach M, Desprez P, Terzic J, Lahlou A, Mengus L, Geisert J. Use of intraperitoneal pressure, ultrafiltration and purification dwell times for individual peritoneal dialysis prescription in children. Clinical Nephrology. 1996;46(1):14–16.
    1. Fischbach M, Lahlou A, Eyer D, Desprez P, Geisert J. Determination of individual ultrafiltration time (APEX) and purification phosphate time by peritoneal equilibration test: application to individual peritoneal dialysis modality prescription in children. Peritoneal Dialysis International. 1996;16(1):S557–S560.
    1. Fischbach M, Desprez P, Donnars F, Hamel G, Geisert J. Optimization of CCPD prescription in children using peritoneal equilibration test. Advances in Peritoneal Dialysis. 1994;10:307–309.
    1. Fischbach M, Issad B, Dubois V, Taamma R. The influence of varying the dwell time and fill volume on the effectiveness of automated peritoneal dialysis: a randomized controlled trial. Peritoneal Dialysis International. In press.
    1. Edefonti A, Mastrangelo A, Paglialonga F. Assessment and monitoring of nutrition status in pediatric peritoneal dialysis patients. Peritoneal Dialysis International. 2009;29(2):S176–S179.
    1. Wühl E, Fusch CH, Schärer K, Mehls O, Schaefer F. Assessment of total body water in paediatric patients on dialysis. Nephrology Dialysis Transplantation. 1996;11(1):75–80.
    1. Demirci MS, Demirci C, Ozdogan O, et al. Relations between malnutrition-inflammation-atherosclerosis and volume status. The usefulness of bioimpedance analysis in peritoneal dialysis patients. Nephrology Dialysis Transplantation. 2011;26(5):1708–1716.
    1. Ni J, Verbavatz JM, Rippe A, et al. Aquaporin-1 plays an essential role in water permeability and ultrafiltration during peritoneal dialysis. Kidney International. 2006;69(9):1518–1525.
    1. Rippe B, Venturoli D. Optimum electrolyte composition of a dialysis solution. Peritoneal Dialysis International. 2008;28(3):S131–S136.
    1. Fourtounas C, Hardalias A, Dousdampanis P, Papachristopoulos B, Savidaki E, Vlachojannis JG. Sodium removal in peritoneal dialysis: the role of icodextrin and peritoneal dialysis modalities. Advances in Peritoneal Dialysis. 2008;24:27–31.
    1. Nakayama M, Kasai K, Imai H. Novel low na peritoneal dialysis solutions designed to optimize na gap of effluent: kinetics of na and water removal. Peritoneal Dialysis International. 2009;29(5):528–535.
    1. Davies S, Carlsson O, Simonsen O, et al. The effects of low-sodium peritoneal dialysis fluids on blood pressure, thirst and volume status. Nephrology Dialysis Transplantation. 2009;24(5):1609–1617.
    1. Margetts P. Heparin and the peritoneal membrane. Peritoneal Dialysis International. 2009;29(1):16–19.
    1. Williams JD, Craig KJ, Topley N, et al. Morphologic changes in the peritoneal membrane of patients with renal disease. Journal of the American Society of Nephrology. 2002;13(2):470–479.
    1. Witowski J, Jörres A. Peritoneal dialysis: a biological membrane with a nonbiological fluid. Contributions to Nephrology. 2009;163:27–34.
    1. Mortier S, Lameire NH, De Vriese AS. The effects of peritoneal dialysis solutions on peritoneal host defense. Peritoneal Dialysis International. 2004;24(2):123–138.
    1. Yoshino A, Honda M, Fukuda M, et al. Changes in peritoneal equilibration test values during long-term peritoneal dialysis in peritonitis-free children. Peritoneal Dialysis International. 2001;21(2):180–185.
    1. Frischmann M, Spitzer J, Fünfrocken M, et al. Development and validation of an HPLC method to quantify 3,4-dideoxyglucosone-3-ene in peritoneal dialysis fluids. Biomedical Chromatography. 2009;23(8):843–851.
    1. Erixon M, Wieslander A, Lindén T, et al. How to avoid glucose degradation products in peritoneal dialysis fluids. Peritoneal Dialysis International. 2006;26(4):490–497.
    1. Topley N, Kaur D, Petersen MM, et al. Biocompatibility of bicarbonate buffered peritoneal dialysis fluids: influence on mesothelial cell and neutrophil function. Kidney International. 1996;49(5):1447–1456.
    1. Mortier S, Faict D, Schalkwijk CG, Lameire NH, De Vriese AS. Long-term exposure to new peritoneal dialysis solutions: effects on the peritoneal membrane. Kidney International. 2004;66(3):1257–1265.
    1. Plum J, Razeghi P, Lordnejad RM, et al. Peritoneal dialysis fluids with a physiologic pH based on either lactate or bicarbonate buffer-effects on human mesothelial cells. American Journal of Kidney Diseases. 2001;38(4):867–875.
    1. Ogata S, Mori M, Tatsukawa Y, Kiribayashi K, Yorioka N. Expression of vascular endothelial growth factor, fibroblast growth factor, and lactate dehydrogenase by human peritoneal mesothelial cells in solutions with lactate or bicarbonate or both. Advances in Peritoneal Dialysis. 2006;22:37–40.
    1. Williams JD, Topley N, Craig KJ, et al. The Euro-Balance Trial: the effect of a new biocompatible peritoneal dialysis fluid (balance) on the peritoneal membrane. Kidney International. 2004;66(1):408–418.
    1. Tranaeus A. A long-term study of a bicarbonate/lactate-based peritoneal dialysis solution—clinical benefits. Peritoneal Dialysis International. 2000;20(5):516–523.
    1. Zeier M, Schwenger V, Deppisch R, et al. Glucose degradation products in PD fluids: do they disappear from the peritoneal cavity and enter the systemic circulation? Kidney International. 2003;63(1):298–305.
    1. Rippe B, Simonsen O, Heimbürger O, et al. Long-term clinical effects of a peritoneal dialysis fluid with less glucose degradation products. Kidney International. 2001;59(1):348–357.
    1. Kim SG, Kim S, Hwang Y-H, et al. Could solutions low in glucose degradation products preserve residual renal function in incident peritoneal dialysis patients? A 1-year multicenter prospective randomized controlled trial (Balnet study) Peritoneal Dialysis International. 2008;28:S117–S122.
    1. Haag-Weber M, Krämer R, Haake R, et al. Low-GDP fluid (Gambrosol trio) attenuates decline of residual renal function in PD patients: a prospective randomized study. Nephrology Dialysis Transplantation. 2010;25(7):2288–2296.
    1. Ho-dac-Pannekeet MM, Weiss MF, De Waart DR, Erhard P, Hiralall JK, Krediet RT. Analysis of non enzymatic glycosylation in vivo: impact of different dialysis solutions. Peritoneal Dialysis International. 1999;19(2):S68–S74.
    1. Posthuma N, Ter Wee PM, Niessen H, Donker AJM, Verbrugh HA, Schalkwijk CG. Amadori albumin and advanced glycation end-product formation in peritoneal dialysis using icodextrin. Peritoneal Dialysis International. 2001;21(1):43–51.
    1. Schmitt CP, von Heyl D, Rieger S, et al. Reduced systemic advanced glycation end products in children receiving peritoneal dialysis with low glucose degradation product content. Nephrology Dialysis Transplantation. 2007;22(7):2038–2044.
    1. Han SH, Ahn SV, Yun JY, Tranaeus A, Han DS. Mortality and technique failure in peritoneal dialysis patients using advanced peritoneal dialysis solutions. American Journal of Kidney Diseases. 2009;54(4):711–720.
    1. Lee HY, Choi HY, Park HC, et al. Changing prescribing practice in CAPD patients in Korea: increased utilization of low GDP solutions improves patient outcome. Nephrology Dialysis Transplantation. 2006;21(10):2893–2899.
    1. Schmitt CP, Sevcan A, Bakkaloglu SA, Günter K, Schröder C, Fischbach M. Solutions for PD in children—recommendations by the European pediatric dialysis working group. Pediatric Nephrology. 2011;26(7):1137–1147.
    1. Moberly JB, Mujais S, Gehr T, et al. Pharmacokinetics of icodextrin in peritoneal dialysis patients. Kidney International. 2002;62(81, supplement):S23–S33.
    1. Davies SJ, Woodrow G, Donovan K, et al. Icodextrin improves the fluid status of peritoneal dialysis patients: results of a double-blind randomized controlled trial. Journal of the American Society of Nephrology. 2003;14(9):2338–2344.
    1. Konings CJAM, Kooman JP, Schonck M, et al. Effect of icodextrin on volume status, blood pressure and echocardiographic parameters: a randomized study. Kidney International. 2003;63(4):1556–1563.
    1. Finkelstein F, Healy H, Abu-Alfa A, et al. Superiority of icodextrin compared with 4.25% dextrose for peritoneal ultrafiltration. Journal of the American Society of Nephrology. 2005;16(2):546–554.
    1. Martis L, Patel M, Giertych J, et al. Aseptic peritonitis due to peptidoglycan contamination of pharmacopoeia standard dialysis solution. Lancet. 2005;365(9459):588–594.
    1. Adam FU, Singan M, Ozelsancak R, Torun D, Ozdemir FN, Haberal M. Icodextrin-associated sterile peritonitis: a recent outbreak in Turkey. Peritoneal Dialysis International. 2007;27(5):598–599.
    1. Schalkwijk CG, ter Wee PM, Teerlink T. Reduced 1,2-dicarbonyl compounds in bicarbonate/lactate-buffered peritoneal dialysis (PD) fluids and PD fluids based on glucose polymers or amino acids. Peritoneal Dialysis International. 2001;20(6):796–798.
    1. Reimann D, Dachs D, Meye C, Gross P. Amino acid-based peritoneal dialysis solution stimulates mesothelial nitric oxide production. Peritoneal Dialysis International. 2004;24(4):378–384.
    1. Tjiong HL, Zijlstra FJ, Rietveld T, et al. Peritoneal protein losses and cytokine generation in automated peritoneal dialysis with combined amino acids and glucose solutions. Mediators of Inflammation. 2007;2007 Article ID 97272.
    1. Qamar IU, Secker D, Levin L, Balfe JA, Zlotkin S, Balfe JW. Effects of amino acid dialysis compared to dextrose dialysis in children on continuous cycling peritoneal dialysis. Peritoneal Dialysis International. 1999;19(3):237–247.
    1. Li FK, Chan LYY, Woo JCY, et al. A 3-year, prospective, randomized, controlled study on amino acid dialysate in patients on CAPD. American Journal of Kidney Diseases. 2003;42(1):173–183.
    1. Montenegro J, Saracho R, Gallardo I, Martñnez I, Muñoz R, Quintanilla N. Use of pure bicarbonate-buffered peritoneal dialysis fluid reduces the incidence of CAPD peritonitis. Nephrology Dialysis Transplantation. 2007;22(6):1703–1708.
    1. Furkert JD, Zeier M, Schwenger V. Effects of Peritoneal dialysis solutions low in GDPs on peritonitis and exit-site infection rates. Peritoneal Dialysis International. 2008;28(6):637–640.
    1. Bredie SJH, Bosch FH, Demacker PNM, Stalenhoef AFH, van Leusen R. Effects of peritoneal dialysis with an overnight icodextrin dwell on parameters of glucose and lipid metabolism. Peritoneal Dialysis International. 2001;21(3):275–281.
    1. Babazono T, Nakamoto H, Kasai K, et al. Effects of icodextrin on glycemic and lipid profiles in diabetic patients undergoing peritoneal dialysis. American Journal of Nephrology. 2007;27(4):409–415.
    1. Peritoneal Dialysis Adequacy Working Group. Clinical practice guidelines for peritoneal dialysis adequacy. American Journal of Kidney Disease. 2006;48(supplement 1):98–129.
    1. Nolph KD, Popovich RP, Moncrief JW. Theoretical and practical implications of continuous ambulatory peritoneal dialysis. Nephron. 1978;21(3):117–122.
    1. Honda M. Peritoneal dialysis prescription suitable for children with anuria. Peritoneal Dialysis International. 2008;28(3):S153–S158.
    1. Akbari A, Knoll G, Ferguson D, McCormick B, Davis A, Biyani M. Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers in peritoneal dialysis: systematic review and meta-analysis of randomized controlled trials. Peritoneal Dialysis International. 2009;29(5):554–561.
    1. Amato D, Paniagua R. The ADEMEX study: afterthoughts. Peritoneal Dialysis International. 2003;23(4):313–316.
    1. Bargman JM, Thorpe KE, Churchill DN. Relative contribution of residual renal function and peritoneal clearance to adequacy of dialysis: a reanalysis of the CANUSA study. Journal of the American Society of Nephrology. 2001;12(10):2158–2162.
    1. Chadha V, Blowey DL, Waraby BA. Is growth a valid outcome measure of dialysis clearance in children undergoing peritoneal dialysis? Peritoneal Dialysis International. 2001;21(3):S179–S184.

Source: PubMed

3
Sottoscrivi