Plasma Exosome Profile in ST-Elevation Myocardial Infarction Patients with and without Out-of-Hospital Cardiac Arrest

Marta Zarà, Jeness Campodonico, Nicola Cosentino, Maria Luisa Biondi, Patrizia Amadio, Gloria Milanesi, Emilio Assanelli, Silvia Cerri, Marco Biggiogera, Leonardo Sandrini, Calogero Claudio Tedesco, Fabrizio Veglia, Daniela Trabattoni, Fabio Blandini, Elena Tremoli, Giancarlo Marenzi, Silvia S Barbieri, Marta Zarà, Jeness Campodonico, Nicola Cosentino, Maria Luisa Biondi, Patrizia Amadio, Gloria Milanesi, Emilio Assanelli, Silvia Cerri, Marco Biggiogera, Leonardo Sandrini, Calogero Claudio Tedesco, Fabrizio Veglia, Daniela Trabattoni, Fabio Blandini, Elena Tremoli, Giancarlo Marenzi, Silvia S Barbieri

Abstract

The identification of new biomarkers allowing an early and more accurate characterization of patients with ST-segment elevation myocardial infarction (STEMI) is still needed, and exosomes represent an attractive diagnostic tool in this context. However, the characterization of their protein cargo in relation to cardiovascular clinical manifestation is still lacking. To this end, 35 STEMI patients (17 experiencing resuscitated out-of-hospital cardiac arrest (OHCA-STEMI) and 18 uncomplicated) and 32 patients with chronic coronary syndrome (CCS) were enrolled. Plasma exosomes were characterized by the nanoparticle tracking analysis and Western blotting. Exosomes from STEMI patients displayed a higher concentration and size and a greater expression of platelet (GPIIb) and vascular endothelial (VE-cadherin) markers, but a similar amount of cardiac troponin compared to CCS. In addition, a difference in exosome expression of acute-phase proteins (ceruloplasmin, transthyretin and fibronectin) between STEMI and CCS patients was found. GPIIb and brain-associated marker PLP1 accurately discriminated between OHCA and uncomplicated STEMI. In conclusion, the exosome profile of STEMI patients has peculiar features that differentiate it from that of CCS patients, reflecting the pathophysiological mechanisms involved in STEMI. Additionally, the exosome expression of brain- and platelet-specific markers might allow the identification of patients experiencing ischemic brain injury in STEMI.

Keywords: ST-elevation myocardial infarction; brain-associated marker; exosomes; platelets; resuscitated out-of-hospital cardiac arrest.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Exosome concentration and dimension are different between CCS and STEMI patients. Exosomes were isolated from plasma of CCS (N = 32) and STEMI (N = 18) patients and analyzed by NTA. (a) Representative NTA traces of exosomes isolated from plasma of CCS and STEMI patients. (b,c) Analysis of exosome dimension (mode) (b) and concentration (number of particles/mL) (c) as assessed by NTA. For each box plot, the center line illustrates the median and box limits indicate the 25th and 75th percentiles. ** p < 0.01, *** p < 0.001.
Figure 2
Figure 2
Plasma exosomes of STEMI patients display a different expression of specific proteins. Plasma exosomes from CCS and STEMI patients were lysed, and the expression of selected proteins was investigated. (ag) Densitometric quantification and representative images of Western blot analysis of GPIIb (a), VE-cadherin (b), troponin (c), ceruloplasmin (d), transthyretin (e), fibronectin (f) and galectin-3-binding protein (g). For each box plot, the center line illustrates the median and box limits indicate the 25th and 75th percentiles. ns: not significant, * p < 0.05, ** p < 0.01, *** p < 0.001.
Figure 3
Figure 3
Exosomes isolated from plasma of STEMI with out-of-hospital cardiac arrest (OHCA-STEMI) have a higher dimension compared to uncomplicated STEMI. (a) Representative NTA traces of exosomes isolated from plasma of uncomplicated STEMI (n = 18) and OHCA-STEMI (n = 17). (b,c) Analysis of exosome concentration (number of particles/mL) (b) and dimension (mode) (c) as assessed by NTA. For each box plot, the center line illustrates the median and box limits indicate the 25th and 75th percentiles. ns: not significant, * p < 0.05.
Figure 4
Figure 4
Plasma exosomes of OHCA-STEMI patients display a greater expression of platelet and brain-associated markers. (af) Densitometric quantification and representative images of Western blot analysis of GPIIb (a), VE-cadherin (b), fibronectin (c), ceruloplasmin (d), transthyretin (e) and PLP1 (f). For each box plot, the center line illustrates the median and box limits indicate the 25th and 75th percentiles. ns: not significant, * p < 0.05, ** p < 0.01.
Figure 5
Figure 5
ROC curve analysis of exosomes versus cardiovascular clinical manifestation. Receiver operating characteristic (ROC) curve analysis was used to evaluate the ability of exosome to discriminate between STEMI (overall) and CCS patients (ae) and between OHCA-STEMI and uncomplicated STEMI (f,g) in terms of dimension (mode) (a), GPIIb (bf), VE-cadherin (c), ceruloplasmin (d), transthyretin (e) and/or PLP1 (g). Areas under the curve (AUCs), p values for AUC differences, cut-off values, sensitivity, and specificity are reported.

References

    1. Ibanez B., James S., Agewall S., Antunes M.J., Bucciarelli-Ducci C., Bueno H., Caforio A.L.P., Crea F., Goudevenos J.A., Halvorsen S., et al. 2017 ESC Guidelines for the management of acute myocardial infarction in patients presenting with ST-segment elevation: The Task Force for the management of acute myocardial infarction in patients presenting with ST-segment elevation of the European Society of Cardiology (ESC) Eur. Heart J. 2018;39:119–177. doi: 10.1093/eurheartj/ehx393.
    1. De Maria G.L., Garcia-Garcia H.M., Scarsini R., Finn A., Sato Y., Virmani R., Bhindi R., Ciofani J.L., Nuche J., Ribeiro H.B., et al. Novel device-based therapies to improve outcome in ST-segment elevation myocardial infarction. Eur. Heart J. Acute Cardiovasc. Care. 2021:zuab012. doi: 10.1093/ehjacc/zuab012.
    1. Pedersen F., Butrymovich V., Kelbæk H., Wachtell K., Helqvist S., Kastrup J., Holmvang L., Clemmensen P., Engstrøm T., Grande P., et al. Short- and Long-Term Cause of Death in Patients Treated With Primary PCI for STEMI. J. Am. Coll. Cardiol. 2014;64:2101–2108. doi: 10.1016/j.jacc.2014.08.037.
    1. Kalluri R., LeBleu V.S. The biology function and biomedical applications of exosomes. Science. 2020;367:eaau6977. doi: 10.1126/science.aau6977.
    1. Zarà M., Amadio P., Campodonico J., Sandrini L., Barbieri S.S. Exosomes in Cardiovascular Diseases. Diagnostics. 2020;10:943. doi: 10.3390/diagnostics10110943.
    1. Moreira-Costa L., Barros A.S., Lourenço A.P., Leite-Moreira A.F., Nogueira-Ferreira R., Thongboonkerd V., Vitorino R. Exosome-Derived Mediators as Potential Biomarkers for Cardiovascular Diseases: A Network Approach. Proteomes. 2021;9:8. doi: 10.3390/proteomes9010008.
    1. Raposo G., Stoorvogel W. Extracellular vesicles: Exosomes, microvesicles, and friends. J. Cell Biol. 2013;200:373–383. doi: 10.1083/jcb.201211138.
    1. Guay C., Regazzi R. Exosomes as new players in metabolic organ cross-talk. Diabetes Obes. Metab. 2017;19:137–146. doi: 10.1111/dom.13027.
    1. Carrozzo A., Casieri V., Di Silvestre D., Brambilla F., De Nitto E., Sardaro N., Papini G., Storti S., Settanni G., Solinas M., et al. Plasma exosomes characterization reveals a perioperative protein signature in older patients undergoing different types of on-pump cardiac surgery. Geroscience. 2021;43:773–789. doi: 10.1007/s11357-020-00223-y.
    1. King H.W., Michael M.Z., Gleadle J.M. Hypoxic enhancement of exosome release by breast cancer cells. BMC Cancer. 2012;12:421. doi: 10.1186/1471-2407-12-421.
    1. Kumar A., Deep G. Hypoxia in tumor microenvironment regulates exosome biogenesis: Molecular mechanisms and translational opportunities. Cancer Lett. 2020;479:23–30. doi: 10.1016/j.canlet.2020.03.017.
    1. Currim F., Singh J., Shinde A., Gohel D., Roy M., Singh K., Shukla S., Mane M., Vasiyani H., Singh R. Exosome Release Is Modulated by the Mitochondrial-Lysosomal Crosstalk in Parkinson’s Disease Stress Conditions. Mol. Neurobiol. 2021;58:1819–1833. doi: 10.1007/s12035-020-02243-3.
    1. Zhang Z.G., Chopp M. Exosomes in stroke pathogenesis and therapy. J. Clin. Investig. 2016;126:1190–1197. doi: 10.1172/JCI81133.
    1. Gao L., Mei S., Zhang S., Qin Q., Li H., Liao Y., Fan H., Liu Z., Zhu H. Cardio-renal Exosomes in Myocardial Infarction Serum Regulate Proangiogenic Paracrine Signaling in Adipose Mesenchymal Stem Cells. Theranostics. 2020;10:1060–1073. doi: 10.7150/thno.37678.
    1. He C., Zheng S., Luo Y., Wang B. Exosome Theranostics: Biology and Translational Medicine. Theranostics. 2018;8:237–255. doi: 10.7150/thno.21945.
    1. Emanueli C., Shearn A.I.U., Angelini G.D., Sahoo S. Exosomes and exosomal miRNAs in cardiovascular protection and repair. Vasc. Pharm. 2015;71:24–30. doi: 10.1016/j.vph.2015.02.008.
    1. Henning R.J. Cardiovascular Exosomes and MicroRNAs in Cardiovascular Physiology and Pathophysiology. J. Cardiovasc. Transl. Res. 2021;14:195–212. doi: 10.1007/s12265-020-10040-5.
    1. Yang T., Martin P., Fogarty B., Brown A., Schurman K., Phipps R., Yin V.P., Lockman P., Bai S. Exosome delivered anticancer drugs across the blood-brain barrier for brain cancer therapy in Danio rerio. Pharm. Res. 2015;32:2003–2014. doi: 10.1007/s11095-014-1593-y.
    1. Chen C.C., Liu L., Ma F., Wong C.W., Guo X.E., Chacko J.V., Farhoodi H.P., Zhang S.X., Zimak J., Ségaliny A., et al. Elucidation of Exosome Migration across the Blood-Brain Barrier Model In Vitro. Cell Mol. Bioeng. 2016;9:509–529. doi: 10.1007/s12195-016-0458-3.
    1. Banks W.A., Sharma P., Bullock K.M., Hansen K.M., Ludwig N., Whiteside T.L. Transport of Extracellular Vesicles across the Blood-Brain Barrier: Brain Pharmacokinetics and Effects of Inflammation. Int. J. Mol. Sci. 2020;21:4407. doi: 10.3390/ijms21124407.
    1. Looze C., Yui D., Leung L., Ingham M., Kaler M., Yao X., Wu W.W., Shen R.-F., Daniels M.P., Levine S.J. Proteomic profiling of human plasma exosomes identifies PPARgamma as an exosome-associated protein. Biochem. Biophys. Res. Commun. 2009;378:433–438. doi: 10.1016/j.bbrc.2008.11.050.
    1. Reunanen A., Knekt P., Aaran R.-K. Serum Ceruloplasmin Level and the Risk of Myocardial Infarction and Stroke. Am. J. Epidemiol. 1992;136:1082–1090. doi: 10.1093/oxfordjournals.aje.a116573.
    1. Fox P.L., Mazumder B., Ehrenwald E., Mukhopadhyay C.K. Ceruloplasmin and cardiovascular disease. Free. Radic. Biol. Med. 2000;28:1735–1744. doi: 10.1016/S0891-5849(00)00231-8.
    1. Gleissner C.A., Erbel C., Linden F., Domschke G., Akhavanpoor M., Helmes C.M., Doesch A.O., Kleber M.E., Katus H.A., Maerz W. Galectin-3 binding protein, coronary artery disease and cardiovascular mortality: Insights from the LURIC study. Atherosclerosis. 2017;260:121–129. doi: 10.1016/j.atherosclerosis.2017.03.031.
    1. Song K.S., Kim H.K., Shim W., Jee S.H. Plasma fibronectin levels in ischemic heart disease. Atherosclerosis. 2001;154:449–453. doi: 10.1016/S0021-9150(00)00490-1.
    1. Zhang Y., Zhou X., Krepinsky J.C., Wang C., Segbo J., Zheng F. Association study between fibronectin and coronary heart disease. Clin. Chem. Lab. Med. (CCLM) 2006;44:37–42. doi: 10.1515/CCLM.2006.008.
    1. Valiente-Alandi I., Potter Sarah J., Salvador Ane M., Schafer Allison E., Schips T., Carrillo-Salinas F., Gibson Aaron M., Nieman Michelle L., Perkins C., Sargent Michelle A., et al. Inhibiting Fibronectin Attenuates Fibrosis and Improves Cardiac Function in a Model of Heart Failure. Circulation. 2018;138:1236–1252. doi: 10.1161/CIRCULATIONAHA.118.034609.
    1. Jain S., Gautam V., Naseem S. Acute-phase proteins: As diagnostic tool. J. Pharm. Bioallied Sci. 2011;3:118–127. doi: 10.4103/0975-7406.76489.
    1. Gruys E., Toussaint M.J.M., Niewold T.A., Koopmans S.J. Acute phase reaction and acute phase proteins. J. Zhejiang Univ. Sci. B. 2005;6:1045–1056. doi: 10.1631/jzus.2005.B1045.
    1. Hessvik N.P., Llorente A. Current knowledge on exosome biogenesis and release. Cell Mol. Life Sci. 2018;75:193–208. doi: 10.1007/s00018-017-2595-9.
    1. Zhao C., Wang H., Xiong C., Liu Y. Hypoxic glioblastoma release exosomal VEGF-A induce the permeability of blood-brain barrier. Biochem. Biophys. Res. Commun. 2018;502:324–331. doi: 10.1016/j.bbrc.2018.05.140.
    1. Gidlöf O., Evander M., Rezeli M., Marko-Varga G., Laurell T., Erlinge D. Proteomic profiling of extracellular vesicles reveals additional diagnostic biomarkers for myocardial infarction compared to plasma alone. Sci. Rep. 2019;9:8991. doi: 10.1038/s41598-019-45473-9.
    1. Barrachina M.N., Calderón-Cruz B., Fernandez-Rocca L., García Á. Application of Extracellular Vesicles Proteomics to Cardiovascular Disease: Guidelines, Data Analysis, and Future Perspectives. Proteomics. 2019;19:1800247. doi: 10.1002/pmic.201800247.
    1. Deftu A.T., Radu B.M., Cretoiu D., Deftu A.F., Cretoiu S.M., Xiao J. Exosomes as intercellular communication messengers for cardiovascular and cerebrovascular diseases. In: Edelstein L., Smythies J., Quesenberry P., Noble D., editors. Exosomes. Academic Press; Cambridge, MA, USA: 2020. pp. 199–238. Chapter 9.
    1. Gawaz M. Role of platelets in coronary thrombosis and reperfusion of ischemic myocardium. Cardiovasc. Res. 2004;61:498–511. doi: 10.1016/j.cardiores.2003.11.036.
    1. Falque H., Bochaton T., Bernelin H., Paccalet A., Da Silva C.C., Baetz D., Bonnefoy-Cudraz E., Mewton N., Ovize M. Endothelial activation and infarct size at the acute phase of myocardial infarction. Arch. Cardiovasc. Dis. Suppl. 2018;10:178. doi: 10.1016/j.acvdsp.2018.02.006.
    1. Frossard M., Fuchs I., Leitner J.M., Hsieh K., Vlcek M., Losert H., Domanovits H., Schreiber W., Laggner A.N., Jilma B. Platelet Function Predicts Myocardial Damage in Patients With Acute Myocardial Infarction. Circulation. 2004;110:1392–1397. doi: 10.1161/01.CIR.0000141575.92958.9C.
    1. Moccetti F., Brown E., Xie A., Packwood W., Qi Y., Ruggeri Z., Shentu W., Chen J., López J.A., Lindner J.R. Myocardial Infarction Produces Sustained Proinflammatory Endothelial Activation in Remote Arteries. J. Am. Coll. Cardiol. 2018;72:1015–1026. doi: 10.1016/j.jacc.2018.06.044.
    1. Greve A.M., Christoffersen M., Frikke-Schmidt R., Nordestgaard B.G., Tybjærg-Hansen A. Association of Low Plasma Transthyretin Concentration With Risk of Heart Failure in the General Population. JAMA Cardiol. 2021;6:258–266. doi: 10.1001/jamacardio.2020.5969.
    1. Kharb R., Sharma A., Chaddar M.K., Yadav R., Agnihotri P., Kar A., Biswas S. Plasma Proteome Profiling of Coronary Artery Disease Patients: Downregulation of Transthyretin—An Important Event. Mediat. Inflamm. 2020;2020:3429541. doi: 10.1155/2020/3429541.
    1. Singh T.K. Serum ceruloplasmin in acute myocardial infarction. Acta Cardiol. 1992;47:321–329.
    1. Brunetti N.D., Pellegrino P.L., Correale M., De Gennaro L., Cuculo A., Di Biase M. Acute phase proteins and systolic dysfunction in subjects with acute myocardial infarction. J. Thromb. Thrombolysis. 2008;26:196–202. doi: 10.1007/s11239-007-0088-7.
    1. Gabay C., Kushner I. Acute-Phase Proteins and Other Systemic Responses to Inflammation. N. Engl. J. Med. 1999;340:448–454. doi: 10.1056/NEJM199902113400607.
    1. Gitlin J.D. Transcriptional regulation of ceruloplasmin gene expression during inflammation. J. Biol. Chem. 1988;263:6281–6287. doi: 10.1016/S0021-9258(18)68783-6.
    1. Myron Johnson A., Merlini G., Sheldon J., Ichihara K. Clinical indications for plasma protein assays: Transthyretin (prealbumin) in inflammation and malnutrition. International Federation of Clinical Chemistry and Laboratory Medicine (IFCC): IFCC Scientific Division Committee on Plasma Proteins (C-PP) Clin. Chem. Lab. Med. 2007;45:419–426. doi: 10.1515/CCLM.2007.051.
    1. Karam N., Bataille S., Marijon E., Tafflet M., Benamer H., Caussin C., Garot P., Juliard J.-M., Pires V., Boche T., et al. Incidence, Mortality, and Outcome-Predictors of Sudden Cardiac Arrest Complicating Myocardial Infarction Prior to Hospital Admission. Circ. Cardiovasc. Interv. 2019;12:e007081. doi: 10.1161/CIRCINTERVENTIONS.118.007081.
    1. Negovsky V.A. Postresuscitation disease. Crit. Care Med. 1988;16:942–946. doi: 10.1097/00003246-198810000-00004.
    1. Ji Q., Ji Y., Peng J., Zhou X., Chen X., Zhao H., Xu T., Chen L., Xu Y. Increased Brain-Specific MiR-9 and MiR-124 in the Serum Exosomes of Acute Ischemic Stroke Patients. PLoS ONE. 2016;11:e0163645. doi: 10.1371/journal.pone.0163645.
    1. Chen Y., Song Y., Huang J., Qu M., Zhang Y., Geng J., Zhang Z., Liu J., Yang G.-Y. Increased Circulating Exosomal miRNA-223 Is Associated with Acute Ischemic Stroke. Front. Neurol. 2017;8:57. doi: 10.3389/fneur.2017.00057.
    1. Li D.-B., Liu J.-L., Wang W., Li R.-Y., Yu D.-J., Lan X.-Y., Li J.-P. Plasma Exosomal miR-422a and miR-125b-2-3p Serve as Biomarkers for Ischemic Stroke. Curr. Neurovascular Res. 2017;14:330–337. doi: 10.2174/1567202614666171005153434.
    1. Wang W., Li D.B., Li R.Y., Zhou X., Yu D.J., Lan X.Y., Li J.P., Liu J.L. Diagnosis of Hyperacute and Acute Ischaemic Stroke: The Potential Utility of Exosomal MicroRNA-21-5p and MicroRNA-30a-5p. Cerebrovasc. Dis. 2018;45:204–212. doi: 10.1159/000488365.
    1. Kucharzewska P., Christianson H.C., Welch J.E., Svensson K.J., Fredlund E., Ringnér M., Mörgelin M., Bourseau-Guilmain E., Bengzon J., Belting M. Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc. Natl. Acad. Sci. USA. 2013;110:7312–7317. doi: 10.1073/pnas.1220998110.
    1. Krämer-Albers E.-M., Bretz N., Tenzer S., Winterstein C., Möbius W., Berger H., Nave K.-A., Schild H., Trotter J. Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: Trophic support for axons? Proteom. Clin. Appl. 2007;1:1446–1461. doi: 10.1002/prca.200700522.
    1. Frühbeis C., Fröhlich D., Kuo W.P., Amphornrat J., Thilemann S., Saab A.S., Kirchhoff F., Möbius W., Goebbels S., Nave K.-A., et al. Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLoS Biol. 2013;11:e1001604. doi: 10.1371/journal.pbio.1001604.
    1. Fröhlich D., Kuo W.P., Frühbeis C., Sun J.-J., Zehendner C.M., Luhmann H.J., Pinto S., Toedling J., Trotter J., Krämer-Albers E.-M. Multifaceted effects of oligodendroglial exosomes on neurons: Impact on neuronal firing rate, signal transduction and gene regulation. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 2014;369:20130510. doi: 10.1098/rstb.2013.0510.
    1. Kaur C., Ling E.A. Blood Brain Barrier in Hypoxic-Ischemic Conditions. Curr. Neurovascular Res. 2008;5:71–81. doi: 10.2174/156720208783565645.
    1. Dougherty J.H., Levy D.E., Weksler B.B. Experimental cerebral ischemia produces platelet aggregates. Neurology. 1979;29:1460–1465. doi: 10.1212/WNL.29.11.1460.
    1. Zeller J.A., Tschoepe D., Kessler C. Circulating Platelets Show Increased Activation in Patients with Acute Cerebral Ischemia. Thromb. Haemost. 1999;81:373–377.
    1. Weidman J.L., Shook D.C., Hilberath J.N. Cardiac Resuscitation and Coagulation. Anesthesiology. 2014;120:1009–1014. doi: 10.1097/ALN.0000000000000086.
    1. Spiel A.O., Frossard M., Mayr F.B., Kliegel A., Janata A., Uray T., Wandaller C., Sterz F., Jilma B. Pronounced platelet hyperfunction in patients with cardiac arrest achieving restoration of spontaneous circulation. Crit. Care Med. 2009;37:975–979. doi: 10.1097/CCM.0b013e3181962cb9.
    1. Théry C., Witwer K.W., Aikawa E., Alcaraz M.J., Anderson J.D., Andriantsitohaina R., Antoniou A., Arab T., Archer F., Atkin-Smith G.K., et al. Minimal information for studies of extracellular vesicles 2018 (MISEV2018): A position statement of the International Society for Extracellular Vesicles and update of the MISEV2014 guidelines. J. Extracell. Vesicles. 2018;7:1535750. doi: 10.1080/20013078.2018.1535750.
    1. Torti M., Manganaro D., Visconte C., Zarà M., Canino J., Vismara M., Canobbio I., Guidetti G.F. Stimulation of mTORC2 by integrin αIIbβ3 is required for PI3Kβ-dependent activation of Akt but is dispensable for platelet spreading on fibrinogen. Platelets. 2020;31:521–529. doi: 10.1080/09537104.2019.1663806.

Source: PubMed

3
Sottoscrivi