Causes, Effects and Methods of Monitoring Gas Exchange Disturbances during Equine General Anaesthesia

Elżbieta Stefanik, Olga Drewnowska, Barbara Lisowska, Bernard Turek, Elżbieta Stefanik, Olga Drewnowska, Barbara Lisowska, Bernard Turek

Abstract

Horses, due to their unique anatomy and physiology, are particularly prone to intraoperative cardiopulmonary disorders. In dorsally recumbent horses, chest wall movement is restricted and the lungs are compressed by the abdominal organs, leading to the collapse of the alveoli. This results in hypoventilation, leading to hypercapnia and respiratory acidosis as well as impaired tissue oxygen supply (hypoxia). The most common mechanisms disturbing gas exchange are hypoventilation, atelectasis, ventilation-perfusion (V/Q) mismatch and shunt. Gas exchange disturbances are considered to be an important factor contributing to the high anaesthetic mortality rate and numerous post-anaesthetic side effects. Current monitoring methods, such as a pulse oximetry, capnography, arterial blood gas measurements and spirometry, may not be sufficient by themselves, and only in combination with each other can they provide extensive information about the condition of the patient. A new, promising, complementary method is near-infrared spectroscopy (NIRS). The purpose of this article is to review the negative effect of general anaesthesia on the gas exchange in horses and describe the post-operative complications resulting from it. Understanding the changes that occur during general anaesthesia and the factors that affect them, as well as improving gas monitoring techniques, can improve the post-aesthetic survival rate and minimize post-operative complications.

Keywords: NIRS; equine anaesthesia; gas exchange; hypoxemia; pulse oximetry; respiratory monitoring; ventilation.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
The haemoglobin dissociation curve shows the relationship between oxygen partial pressure (PaO2) and haemoglobin oxygen saturation (SaO2). P50 is the PaO2 value at which 50% of haemoglobin is saturated with O2 at a blood pH of 7.4 and temperature of 37 °C. Adapted with permission from [63] Copyright 2016 John Willey and Sons.
Figure 2
Figure 2
Sensor for measuring oxygenation of cerebral blood using the NIRS method (by Masimo®, Irvine, CA, USA), located above the dorsal sagittal sinus, which is a pool of venous blood from the cerebral hemispheres (horse is in the lateral recumbency).
Figure 3
Figure 3
Multifunctional patient monitor (Datex Ohmeda Cardiocap S5, Helsinki, Finland), used routinely during anaesthesia (monitor on the right) and the monitor for brain oximetry (Root with Sedline, Masimo), measured with NIRS (on the left). This device also measures density spectral array.
Figure 4
Figure 4
Special arterial catheter placed in the transversal facial artery, which allows one to take samples of arterial blood during a surgical procedure.
Figure 5
Figure 5
The compliance loop demonstrates the relationship between pressure and volume. Adapted with permission from [86] Copyright 2010 Y.P.S. Moens.
Figure 6
Figure 6
The resistance loop demonstrates the relationship between flow and volume. Loop A indicates typical resistance with a high peak flow. Loop B suggests increased airway resistance (decreased peak flow). Adapted with permission from [86] Copyright 2010 Y.P.S. Moens.
Figure 7
Figure 7
Normal capnogram. The description is included in the text. Adapted with permission from [91] Copyright 2013 Elsevier.

References

    1. Johnston G.M., Eastment J.K., Wood J.L.N., Taylor P.M. The confidential enquiry into perioperative equine fatalities (CEPEF): Mortality results of Phases 1 and 2. Vet. Anaesth. Analg. 2002;29:159–170. doi: 10.1046/j.1467-2995.2002.00106.x.
    1. Brodbelt D. Perioperative mortality in small animal anaesthesia. Vet. J. 2009;182:152–161. doi: 10.1016/j.tvjl.2008.06.011.
    1. Koenig J., McDonell W., Valverde A. Accuracy of Pulse Oximetry and Capnography in Healthy and Compromised Horses during Spontaneous and Controlled Ventilation. Can. J. Vet. Res. 2003;67:169–174.
    1. Gilbert H.C., Veder J.S. Clinical Anesthesia. J. B. Lippincott; Philadephia, PA, USA: 1992. Monitoring the anesthetized patient; pp. 742–743.
    1. Hubbell J.A.E., Muir W.W. Oxygenation, oxygen delivery and anaesthesia in the horse. Equine Vet. J. 2014;47:25–35. doi: 10.1111/evj.12258.
    1. Nyman G., Hedenstierna G. Ventilation-perfusion relationships in the anaesthetised horse. Equine Vet. J. 1989;21:274–281. doi: 10.1111/j.2042-3306.1989.tb02167.x.
    1. Grosenbaugh A.D., Muir W.W. Cardiorespiratory effects of sevoflurane, isoflurane, and halothane anesthesia in horses. Am. J. Veter Res. 1998;59:101–106.
    1. Wagner P.D. The physiological basis of pulmonary gas exchange: Implications for clinical interpretation of arterial blood gases. Eur. Respir. J. 2014;45:227–243. doi: 10.1183/09031936.00039214.
    1. Hall L.W. II Disturbances of Cardiopulmonary Function in Anaesthetised Horses. Equine Vet. J. 1971;3:95–98. doi: 10.1111/j.2042-3306.1971.tb04447.x.
    1. Dupont J., Serteyn D., Sandersen C. Prolonged Recovery from General Anesthesia Possibly Related to Persistent Hypoxemia in a Draft Horse. Front. Vet. Sci. 2018;5:5. doi: 10.3389/fvets.2018.00235.
    1. McMurphy R.M., Cribb P.H. Alleviation of postanesthetic hypoxemia in the horse. Can. Vet. J. La Rev. Vet. Can. 1989;30:37–41.
    1. Yoon S., Zuccarello M., Rapoport R.M. pCO2 and pH regulation of cerebral blood flow. Front. Physiol. 2012;3:365. doi: 10.3389/fphys.2012.00365.
    1. Bayly W.M., Hodgson D.R., Schulz D.A., Dempsey J.A., Gollnick P.D. Exercise-induced hypercapnia in the horse. J. Appl. Physiol. 1989;67:1958–1966. doi: 10.1152/jappl.1989.67.5.1958.
    1. Muir W.W., Moore A.C., Hamlin R.L. Ventilatory alterations in normal horses in response to changes in inspired oxygen and carbon dioxide. Am. J. Vet. Res. 1975;36:155–159.
    1. Pelletier N., Leith D.E. Ventilation and carbon dioxide exchange in exercising horses: Effect of inspired oxygen fraction. J. Appl. Physiol. 1995;78:654–662. doi: 10.1152/jappl.1995.78.2.654.
    1. Wagner A.E. The importance of hypoxaemia and hypercapnia in anaesthetised horses. Equine Vet. Educ. 1993;5:207–211. doi: 10.1111/j.2042-3292.1993.tb01047.x.
    1. Grandy J.L., Steffey E.P., Hodgson D.S. Arterial Hypotension and the Development of Postanesthetic Myopathy in Halotane-Anaesthetized Horses. Am. J. Vet. Res. 1987;48:192–197.
    1. Brosnan R.J. Inhaled Anesthetics in Horses. Veterinary Clinics of North. Am. Equine Pract. 2013;29:69–87. doi: 10.1016/j.cveq.2012.11.006.
    1. Nyman G., Grubb T.L., Heinonen E., Frendin J., Edner A., Malavasi L.M., Frostell C., Högman M. Pulsed delivery of inhaled nitric oxide counteracts hypoxaemia during 2.5 hours of inhalation anaesthesia in dorsally recumbent horses. Vet. Anaesth. Analg. 2012;39:480–487. doi: 10.1111/j.1467-2995.2012.00740.x.
    1. Koterba A.M., Kosch P.C., Beech J., Whitlock T. Breathing strategy of the adult horse (Equus caballus) at rest. J. Appl. Physiol. 1988;64:337–346. doi: 10.1152/jappl.1988.64.1.337.
    1. Sarkar M., Niranjan N., Banyal P. Mechanisms of hypoxemia. Lung India. 2017;34:47. doi: 10.4103/0970-2113.197116.
    1. Saraswat V. Effects of anaesthesia techniques and drugs on pulmonary function. Indian J. Anaesth. 2015;59:557–564. doi: 10.4103/0019-5049.165850.
    1. Brosnan R.J., Steffey E.P., Escobar A. Effects of hypercapnic hyperpnea on recovery from isoflurane or sevoflurane anesthesia in horses. Vet. Anaesth. Analg. 2012;39:335–344. doi: 10.1111/j.1467-2995.2012.00727.x.
    1. Nyman G., Funkquist B., Kvart C., Frostell C., Tokics L., Strandberg Å., Lundquist H., Lundh B., Brismar B., Hedenstierna G. Atelectasis causes gas exchange impairment in the anaesthetised horse. Equine Vet. J. 1990;22:317–324. doi: 10.1111/j.2042-3306.1990.tb04280.x.
    1. Mosing M., Senior J.M. Maintenance of equine anaesthesia over the last 50 years: Controlled inhalation of volatile anaesthetics and pulmonary ventilation. Equine Vet. J. 2018;50:282–291. doi: 10.1111/evj.12793.
    1. Joyce C.J., Baker A.B. What is the Role of Absorption Atelectasis in the Genesis of Perioperative Pulmonary Collapse? Anaesth. Intensive Care. 1995;23:691–696. doi: 10.1177/0310057X9502300606.
    1. Guedes A. Interpretation of Equine Laboratory Diagnostics. John Wiley & Sons; Hoboken, NJ, USA: 2018. Blood gases; pp. 57–65.
    1. Dobson A., Gleed R.D., Meyer R.E., Stewart B.J. Changes in Blood Flow Distribution in Equine Lungs Induced by Anaesthesia. Q. J. Exp. Physiol. 1985;70:283–297. doi: 10.1113/expphysiol.1985.sp002909.
    1. Trim C.M., Wan P.Y. Hypoxaemia during anaesthesia in seven horses with colic. J. Assoc. Vet. Anaesth. 1990;17:45–49. doi: 10.1111/j.1467-2995.1990.tb00390.x.
    1. Mosing M., Böhm S.H., Rasis A., Hoosgood G., Auer U., Tusman G., Bettschart-Wolfensberger R., Schramel J.P. Physiologic Factors Influencing the Arterial-To-End-Tidal CO2 Difference and the Alveolar Dead Space Fraction in Spontaneously Breathing Anesthetised Horses. Front. Vet. Sci. 2018;5:58. doi: 10.3389/fvets.2018.00058.
    1. Drábková Z., Schramel J.P., Kabeš R. Determination of physiological dead space in anaesthetized horses: A method-comparison study. Vet. Anaesth. Analg. 2018;45:73–77. doi: 10.1016/j.vaa.2017.04.003.
    1. Gallivan G., McDonell W., Forrest J. Comparative ventilation and gas exchange in the horse and the cow. Res. Vet. Sci. 1989;46:331–336. doi: 10.1016/S0034-5288(18)31175-5.
    1. Robertson H.T. Erratum: Dead Space: The Physiology of Wasted Ventilation. Eur. Respir J. 2015;45:1704–1716. doi: 10.1183/09031936.00137614.
    1. Edner A., Nyman G., Essén-Gustavsson B. The effects of spontaneous and mechanical ventilation on central cardiovascular function and peripheral perfusion during isoflurane anaesthesia in horses. Vet. Anaesth. Analg. 2005;32:136–146. doi: 10.1111/j.1467-2995.2005.00190.x.
    1. Ambrósio A.M., Ida K.K., Souto M.T., Oshiro A.H., Fantoni D.T. Effects of positive end-expiratory pressure titration on gas exchange, respiratory mechanics and hemodynamics in anesthetized horses. Vet. Anaesth. Analg. 2013;40:564–572. doi: 10.1111/vaa.12068.
    1. Kurt Grimm J.A., Lamont L.A., Tranquilli W.J., Greene S.A., Robertson S.A., McDonell W.N., Kerr C.L. Section 5 Respiratory System Veterinary Anesthesia and Analgesia: The Fifth Edition of Lumb and 27 Physiology, Pathophysiology, and Anesthetic Management of Patients with Respiratory Disease. John Wiley & Sons; Hoboken, NJ, USA: 2015.
    1. Abboud F.M., Heistad D.D., Mark A.L., Schmid P.G. Reflex control of the peripheral circulation. Prog. Cardiovasc. Dis. 1976;18:371–403. doi: 10.1016/0033-0620(76)90003-7.
    1. Auckburally A., Nyman G. Review of hypoxaemia in anaesthetized horses: Predisposing factors, consequences and management. Vet. Anaesth. Analg. 2017;44:397–408. doi: 10.1016/j.vaa.2016.06.001.
    1. Rosenberg J., Rasmussen V., von Jessen F., Ullstad T., Kehlet H. Late Postoperative Episodic and Constant Hypoxaemia and Associated ECG Abnormalities. Br. J. Anaesth. 1990;65:684–691. doi: 10.1093/bja/65.5.684.
    1. Cargill R., Kiely D.G., Lipworth B.J. Adverse Effects of Hypoxaemia on Diastolic Filling in Humans. Clin. Sci. 1995;89:165–169. doi: 10.1042/cs0890165.
    1. Lindsay W.A., Robinson G.M., Brunson D.B. Induction of Equine Postanaesthetic Myositis after Halotane-Induced Hypotension. Am. J. Vet. Res. 1989;50:404–410.
    1. Romer L.M., Haverkamp H.C., Lovering A., Pegelow D.F., Dempsey J.A. Effect of exercise-induced arterial hypoxemia on quadriceps muscle fatigue in healthy humans. Am. J. Physiol. Integr. Comp. Physiol. 2006;290:R365–R375. doi: 10.1152/ajpregu.00332.2005.
    1. Costa-Farré C., Prades M., Ribera T., Valero O., Taurá P. Does intraoperative low arterial partial pressure of oxygen increase the risk of surgical site infection following emergency exploratory laparotomy in horses? Vet. J. 2014;200:175–180. doi: 10.1016/j.tvjl.2014.01.029.
    1. Obert R., Reif G., Kça Z.A., Rnst P., Eter E., Orn H., Ndrea A., Urz K., Aniel D., Essler I.S. Supplemental Perioperative Oxygen to Reduce the Incidence of Surgical-Wound Infection Abstract Background Destruction by Oxidation, or Oxidative. N. Engl. J. Med. 2000;342:161–167.
    1. Moore J.N., A White N., Berg J.N., Trim C.M., Garner H.E. Endotoxemia following experimental intestinal strangulation obstruction in ponies. Can. J. Comp. Med. Rev. Can. Med. Comp. 1981;45:330–332.
    1. Nelson D.P., Samsel R.W., Wood L.D., Schumacker P.T. Pathological supply dependence of systemic and intestinal O2 uptake during endotoxemia. J. Appl. Physiol. 1988;64:2410–2419. doi: 10.1152/jappl.1988.64.6.2410.
    1. Trim C.M. Monitoring during anaesthesia: Techniques and interpretation. Equine Veter Educ. 2010;15:30–40. doi: 10.1111/j.2042-3292.2005.tb01825.x.
    1. Laurenza C., Ansart L., Portier K. Risk Factors of Anesthesia-Related Mortality and Morbidity in One Equine Hospital: A Retrospective Study on 1,161 Cases Undergoing Elective or Emergency Surgeries. Front. Veter Sci. 2020;6:6. doi: 10.3389/fvets.2019.00514.
    1. Holcombe S.J. Neuromuscular Regulation of the Larynx and Nasopharynx in the Horse. AAEP Proc. 1998;44:26–29.
    1. Dugdale A.H., Taylor P.M. Equine anaesthesia-associated mortality: Where are we now? Vet. Anaesth. Analg. 2016;43:242–255. doi: 10.1111/vaa.12372.
    1. Lumb A.B., Slinger P. Hypoxic Pulmonary Vasoconstriction: Physiology and Anesthetic Implications. Anesthesiology. 2015;122:932–946. doi: 10.1097/ALN.0000000000000569.
    1. Nagendran J., Stewart K., Hoskinson M., Archer S.L. An anesthesiologist’s guide to hypoxic pulmonary vasoconstriction: Implications for managing single-lung anesthesia and atelectasis. Curr. Opin. Anaesthesiol. 2006;19:34–43. doi: 10.1097/01.aco.0000192777.09527.9e.
    1. Khanna A.K., McDonell W.N., Dyson D.H., Taylor P.M. Cardiopulmonary effects of hypercapnia during controlled intermittent positive pressure ventilation in the horse. Can. J. Vet. Res. Rev. Can. Rech. Vet. 1995;59:213–221.
    1. Crystal G.J. Carbon Dioxide and the Heart: Physiology and Clinical Implications. Anesth. Analg. 2015;121:610–623. doi: 10.1213/ANE.0000000000000820.
    1. Reiners J.K., Rossdeutscher W., Hopster K., Kästner S. Development and clinical evaluation of a new sensor design for buccal pulse oximetry in horses. Equine Vet. J. 2017;50:228–234. doi: 10.1111/evj.12744.
    1. Magdesian K. Monitoring the critically ill equine patient. Vet. Clin. N. Am. Equine Pract. 2004;20:11–39. doi: 10.1016/j.cveq.2003.12.001.
    1. Hubbell J.A.E. A Review of the American College of Veterinary Anesthesiologists Guidelines for Anesthesia of Horses. AAEP Proc. 2008;54:48–53.
    1. Variane G.F.T., Chock V.Y., Netto A., Pietrobom R.F.R., Van Meurs K.P. Simultaneous Near-Infrared Spectroscopy (NIRS) and Amplitude-Integrated Electroencephalography (aEEG): Dual Use of Brain Monitoring Techniques Improves Our Understanding of Physiology. Front. Pediatr. 2020;7:560. doi: 10.3389/fped.2019.00560.
    1. Zoff A.H.A., Dugdale A., Scarabelli S., Rioja E. Evaluation of pulse co-oximetry to determine haemoglobin saturation with oxygen and haemoglobin concentration in anaesthetized horses: A retrospective study. Vet. Anaesth. Analg. 2019;46:452–457. doi: 10.1016/j.vaa.2019.02.005.
    1. Drewnowska O., Lisowska B., Turek B. Equine general anesthesia monitoring–review of the methods and current knowledge. Med. Weter. 2018;74:67–77. doi: 10.21521/mw.5983.
    1. Barker S.J., Tremper K.K. Pulse Oximetry: Applications and Limitations. Int. Anesthesiol. Clin. 1987;25:155–175. doi: 10.1097/00004311-198702530-00010.
    1. Barton L.J., Devey J.J., Gorski S., Mainiero L., DeBehnke D. Evaluation of Transmittance and Reflectance Pulse Oximetry in a Canine Model of Hypotension and Desaturation. J. Vet. Emerg. Crit. Care. 1996;6:21–28. doi: 10.1111/j.1476-4431.1996.tb00031.x.
    1. Auckburally A. Pulse oximetry and oxygenation assessment in small animal practice. Practice. 2016;38:50–58. doi: 10.1136/inp.i185.
    1. Odette O., Cooley K.G., Johnson R.A. Veterinary Anesthetic and Monitoring Equipment. Wiley & Sons; Hoboken, NJ, USA: 2018. pp. 223–233.
    1. Shah N., Ragaswamy H.B., Govindugari K., Estanol L. Performance of three new-generation pulse oximeters during motion and low perfusion in volunteers. J. Clin. Anesthesia. 2012;24:385–391. doi: 10.1016/j.jclinane.2011.10.012.
    1. Tusman G., Bohm S.H., Suarez-Sipmann F. Advanced Uses of Pulse Oximetry for Monitoring Mechanically Ventilated Patients. Anesthesia Analg. 2017;124:62–71. doi: 10.1213/ANE.0000000000001283.
    1. McConnell E.J., Rioja E., Bester L., Sanz M.G., Fosgate G.T., Saulez M.N. Use of near-infrared spectroscopy to identify trends in regional cerebral oxygen saturation in horses. Equine Vet. J. 2012;45:470–475. doi: 10.1111/evj.12001.
    1. Gingold B.M., Killos M.B., Griffith E., Posner L. Measurement of peripheral muscle oxygen saturation in conscious healthy horses using a near-infrared spectroscopy device. Vet. Anaesth. Analg. 2019;46:789–795. doi: 10.1016/j.vaa.2019.07.001.
    1. Gay A.N., Lazar D.A., Stoll B., Naik-Mathuria B., Mushin O.P., Rodriguez M.A., Burrin D., Olutoye O.O. Near-infrared spectroscopy measurement of abdominal tissue oxygenation is a useful indicator of intestinal blood flow and necrotizing enterocolitis in premature piglets. J. Pediatr. Surg. 2011;46:1034–1040. doi: 10.1016/j.jpedsurg.2011.03.025.
    1. Murkin J.M., Arango M. Near-infrared spectroscopy as an index of brain and tissue oxygenation. Br. J. Anaesth. 2009;103:i3–i13. doi: 10.1093/bja/aep299.
    1. Casati A., Spreafico E., Putzu M., Fanelli G. New technology for noninvasive brain monitoring: Continuous cerebral oximetry. Minerva Anestesiol. 2006;72
    1. Greisen G., Leung T., Wolf M. Has the time come to use near-infrared spectroscopy as a routine clinical tool in preterm infants undergoing intensive care? Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011;369:4440–4451. doi: 10.1098/rsta.2011.0261.
    1. Cope M., Delpy D.T., Reynolds E.O.R., Wray S., Wyatt J., Van Der Zee P. Methods of Quantitating Cerebral Near Infrared Spectroscopy Data. Adv. Exp. Med. Biol. 1988;222:183–189. doi: 10.1007/978-1-4615-9510-6_21.
    1. O’Leary H., Gregas M.C., Limperopoulos C., Zaretskaya I., Bassan H., Soul J., Di Salvo D.N., Du Plessis A.J. Elevated Cerebral Pressure Passivity Is Associated with Prematurity-Related Intracranial Hemorrhage. Pediatrics. 2009;124:302–309. doi: 10.1542/peds.2008-2004.
    1. Armstead W.M. Cerebral Blood Flow Autoregulation and Dysautoregulation. Anesthesiol. Clin. 2016;34:465–477. doi: 10.1016/j.anclin.2016.04.002.
    1. Jeawon S.S., Katz L.M., Galvin N.P., Fogarty U.M., Duggan V.E. Determination of reference intervals for umbilical cord arterial and venous blood gas analysis of healthy Thoroughbred foals. Theriogenology. 2018;118:1–6. doi: 10.1016/j.theriogenology.2018.05.024.
    1. Krueger C.R., Hackett E.S., Hess A.M., Mama K.R. Evaluation of the Element point-of-care blood gas analyzer for use in horses. J. Veter Emerg. Crit. Care. 2020;30:279–285. doi: 10.1111/vec.12950.
    1. Castro T.F., González F. Blood Gas Analysis in Mangalarga Marchador Horses with Colic Análisis de Gases Sanguíneos En Caballos Mangalarga Marchador Con Cólico. Rev. MVZ Córdoba. 2015;20:4447–4454. doi: 10.21897/rmvz.74.
    1. Aguilera-Tejero E., Estepa J.C., López I., Mayer-Valor R., Rodriguez M. Arterial blood gases and acid-base balance in healthy young and aged horses. Equine Vet. J. 1998;30:352–354. doi: 10.1111/j.2042-3306.1998.tb04111.x.
    1. Wong D.M., Hepworth-Warren K., Sponseller B.T., Howard J.M., Wang C. Measured and calculated variables of global oxygenation in healthy neonatal foals. Am. J. Vet. Res. 2017;78:230–238. doi: 10.2460/ajvr.78.2.230.
    1. Hackett E.S., Traub-Dargatz J.L., Jr., Tarr S.F., Dargatz D.A. Arterial blood gas parameters of normal foals born at 1500 metres elevation. Equine Vet. J. 2009;42:59–62. doi: 10.2746/042516409X475292.
    1. Hodgson D.R. Blood Gas and Acid-Base Changes in the Neonatal Foal. Vet. Clin. N. Am. Equine Pract. 1987;3:617–629. doi: 10.1016/S0749-0739(17)30667-3.
    1. Picandet V., Jeanneret S., Lavoie J.-P. Effects of Syringe Type and Storage Temperature on Results of Blood Gas Analysis in Arterial Blood of Horses. J. Vet. Intern. Med. 2007;21:476–481. doi: 10.1111/j.1939-1676.2007.tb02993.x.
    1. Eastwood G.M., Suzuki S., Lluch C., Schneider A.G., Bellomo R., Candal C.L. A pilot assessment of alpha-stat vs pH-stat arterial blood gas analysis after cardiac arrest. J. Crit. Care. 2015;30:138–144. doi: 10.1016/j.jcrc.2014.09.022.
    1. Moens Y. Mechanical Ventilation and Respiratory Mechanics During Equine Anesthesia. Veter Clin. N. Am. Equine Pract. 2013;29:51–67. doi: 10.1016/j.cveq.2012.12.002.
    1. Moens Y.P.S. Clinical application of continuous spirometry with a pitot-based flow meter during equine anaesthesia. Equine Vet. Educ. 2010;22:354–360. doi: 10.1111/j.2042-3292.2010.00066.x.
    1. Herholz C. Clinical application of continuous spirometry during equine anaesthesia and in spontaneous breathing, awake horses. Equine Vet. Educ. 2010;22:361–363. doi: 10.1111/j.2042-3292.2010.00089.x.
    1. Schramel J.P., Wimmer K., Ambrisko T.D., Moens Y.P. A novel flow partition device for spirometry during large animal anaesthesia. Vet. Anaesth. Analg. 2014;41:191–195. doi: 10.1111/vaa.12099.
    1. Moens Y.P.S., Gootjes P., Ionita J., Heinonen E., Schatzmann U. In vitro validation of a Pitot-based flow meter for the measurement of respiratory volume and flow in large animal anaesthesia. Vet. Anaesth. Analg. 2009;36:209–219. doi: 10.1111/j.1467-2995.2009.00449.x.
    1. Duke-Novakovski T. Basics of monitoring equipment. Can. Vet. J. La Rev. Vet. Can. 2017;58:1200–1208.
    1. Thawley V., Waddell L.S. Pulse Oximetry and Capnometry. Top. Companion Anim. Med. 2013;28:124–128. doi: 10.1053/j.tcam.2013.06.006.
    1. Bednarski R.M., Muir W. Capnography. Cambridge University Press (CUP); Cambridge, UK: 2011. Capnography in veterinary medicine; pp. 272–280.
    1. Hardman J., Curran J., Mahajan R.P. End-tidal carbon dioxide measurement and breathing system filters. Anaesthesia. 1997;52:646–648. doi: 10.1111/j.1365-2044.1997.145-az0149.x.
    1. Hubbell J.A.E. Review of Support of Ventilation in the Anesthetized Horse. AAEP Proc. 2010;56:33–37.
    1. Rainger J., Dart C., Perkins N. Factors affecting the relationship between arterial and end-tidal carbon dioxide pressures in the anaesthetised horse. Aust. Vet. J. 2010;88:13–19. doi: 10.1111/j.1751-0813.2009.00535.x.
    1. Thompson J.E., Jaffe M.B. Capnographic waveforms in the mechanically ventilated patient. Respir. Care. 2005;50:100.
    1. Siobal M.S. Monitoring Exhaled Carbon Dioxide. Respir. Care. 2016;61:1397–1416. doi: 10.4187/respcare.04919.

Source: PubMed

3
Sottoscrivi