m.3243A>G mutation in mitochondrial DNA leads to decreased insulin sensitivity in skeletal muscle and to progressive beta-cell dysfunction

Markus M Lindroos, Kari Majamaa, Andrea Tura, Andrea Mari, Kari K Kalliokoski, Markku T Taittonen, Patricia Iozzo, Pirjo Nuutila, Markus M Lindroos, Kari Majamaa, Andrea Tura, Andrea Mari, Kari K Kalliokoski, Markku T Taittonen, Patricia Iozzo, Pirjo Nuutila

Abstract

Objective: To study insulin sensitivity and perfusion in skeletal muscle together with the beta-cell function in subjects with the m.3243A>G mutation in mitochondrial DNA, the most common cause of mitochondrial diabetes.

Research design and methods: We measured skeletal muscle glucose uptake and perfusion using positron emission tomography and 2-[18F]fluoro-2-deoxyglucose and [15O]H2O during euglycemic hyperinsulinemia in 15 patients with m.3243A>G. These patients included five subjects with no diabetes as defined by the oral glucose tolerance test (OGTT) (group 1), three with GHb <6.1% and newly found diabetes by OGTT (group 2), and seven with a previously diagnosed diabetes (group 3). Control subjects consisted of 13 healthy individuals who were similar to the carriers of m.3243A>G with respect to age and physical activity. Beta-cell function was assessed using the OGTT and subsequent mathematical modeling.

Results: Skeletal muscle glucose uptake was significantly lower in groups 1, 2, and 3 than in the control subjects. The glucose sensitivity of beta-cells in group 1 patients was similar to that of the control subjects, whereas in group 2 and 3 patients, the glucose sensitivity was significantly lower. The insulin secretion parameters correlated strongly with the proportion of m.3243A>G mutation in muscle.

Conclusions: Our findings show that subjects with m.3243A>G are insulin resistant in skeletal muscle even when beta-cell function is not markedly impaired or glucose control compromised. We suggest that both the skeletal muscle insulin sensitivity and the beta-cell function are affected before the onset of the mitochondrial diabetes caused by the m.3243A>G mutation.

Figures

FIG. 1.
FIG. 1.
OGTT in patients with the m.3243A>G mutation. A: Glucose concentration. B: C-peptide concentration. C: Insulin concentration. ○, control subjects. Patients with m.3243A>G mutation: •, group 1; ▴, group 2; and ×, group 3. AC: *P < 0.05 vs. healthy subjects, at respective time points.
FIG. 2.
FIG. 2.
Rate sensitivity and glucose sensitivity of the β-cells during OGTT. A: Rate sensitivity is the insulin secretion response to the pace of increase in plasma glucose. Control subjects, □. Patients with m.3243A>G mutation: , group 1; , group 2; and ▪, group 3. The apparently high rate sensitivity in group 1 is partly due to the higher insulin sensitivity in the control subjects, because rate sensitivity tends to be inversely correlated with insulin sensitivity (see Table 2 for respective disposition index). B: Glucose sensitivity is the insulin dose-response function to absolute glucose level during OGTT.
FIG. 3.
FIG. 3.
Skeletal muscle and whole-body glucose uptake. A: Skeletal muscle insulin-stimulated glucose uptake. B: Correlation between skeletal muscle and whole-body glucose uptake (M value) in all groups (for linear correlation r = 0.78–0.99 and P < 0.007). ○, control subjects. Patients with m.3243A>G mutation: •, group 1; ▴, group 2; and ×, group 3.
FIG. 4.
FIG. 4.
Perfusion and glucose extraction in skeletal muscle. A: Skeletal muscle blood flow per tissue weight. B: Glucose extraction; glucose uptake per blood flow in skeletal muscle.
FIG. 5.
FIG. 5.
β-Cell function and m.3243A>G heteroplasmy. There was an inverse relationship between dynamic insulin secretion parameters and m.3243A>G heteroplasmy. The AUCI/AUCG as a function of m.3243A>G heteroplasmy in skeletal muscle (r = −0.83; P = 0.001).

References

    1. Iozzo P, Hällsten K, Oikonen V, Virtanen KA, Kemppainen J, Solin O, Ferrannini E, Knuuti J, Nuutila P: Insulin-mediated hepatic glucose uptake is impaired in type 2 diabetes: evidence for a relationship with glycemic control. J Clin Endocrinol Metab 88: 2055–2060, 2003
    1. Virtanen KA, Lönnroth P, Parkkola R, Peltoniemi P, Asola M, Viljanen T, Tolvanen T, Knuuti J, Rönnemaa T, Huupponen R, Nuutila P: Glucose uptake and perfusion in subcutaneous and visceral adipose tissue during insulin stimulation in nonobese and obese humans. J Clin Endocrinol Metab 87: 3902–3910, 2002
    1. Beck-Nielsen H, Vaag A, Poulsen P, Gaster M: Metabolic and genetic influence on glucose metabolism in type 2 diabetic subjects: experiences from relatives and twin studies. Best Pract Res Clin Endocrinol Metab 17: 445–467, 2003
    1. Shulman GI, Rothman DL, Jue T, Stein P, DeFronzo RA, Shulman RG: Quantitation of muscle glycogen synthesis in normal subjects and subjects with non-insulin-dependent diabetes by 13C nuclear magnetic resonance spectroscopy. N Engl J Med 322: 223–228, 1990
    1. Patti ME, Butte AJ, Crunkhorn S, Cusi K, Berria R, Kashyap S, Miyazaki Y, Kohane I, Costello M, Saccone R, Landaker EJ, Goldfine AB, Mun E, DeFronzo R, Finlayson J, Kahn CR, Mandarino LJ: Coordinated reduction of genes of oxidative metabolism in humans with insulin resistance and diabetes: potential role of PGC1 and NRF1. Proc Natl Acad Sci U S A 100: 8466–8471, 2003
    1. Scheuermann-Freestone M, Madsen PL, Manners D, Blamire AM, Buckingham RE, Styles P, Radda GK, Neubauer S, Clarke K: Abnormal cardiac and skeletal muscle energy metabolism in patients with type 2 diabetes. Circulation 107: 3040–3046, 2003
    1. Befroy DE, Petersen KF, Dufour S, Mason GF, de Graaf RA, Rothman DL, Shulman GI: Impaired mitochondrial substrate oxidation in muscle of insulin-resistant offspring of type 2 diabetic patients. Diabetes 56: 1376–1381, 2007
    1. Festa A, Williams K, D'Agostino R Jr, Wagenknecht LE, Haffner SM: The natural course of β-cell function in nondiabetic and diabetic individuals: the Insulin Resistance Atherosclerosis Study. Diabetes 55: 1114–1120, 2006
    1. Xiang AH, Wang C, Peters RK, Trigo E, Kjos SL, Buchanan TA: Coordinate changes in plasma glucose and pancreatic β-cell function in Latino women at high risk for type 2 diabetes. Diabetes 55: 1074–1079, 2006
    1. Perry JR, Frayling TM: New gene variants alter type 2 diabetes risk predominantly through reduced beta-cell function. Curr Opin Clin Nutr Metab Care 11: 371–377, 2008
    1. Zeviani M, Di Donato S: Mitochondrial disorders. Brain 127: 2153–2172, 2004
    1. Ukropcova B, Sereda O, de Jonge L, Bogacka I, Nguyen T, Xie H, Bray GA, Smith SR: Family history of diabetes links impaired substrate switching and reduced mitochondrial content in skeletal muscle. Diabetes 56: 720–727, 2007
    1. Wiederkehr A, Wollheim CB: Minireview: implication of mitochondria in insulin secretion and action. Endocrinology 147: 2643–2649, 2006
    1. Hirai M, Suzuki S, Onoda M, Hinokio Y, Hirai A, Ohtomo M, Chiba M, Kasuga S, Hirai S, Satoh Y, Akai H, Miyabayashi S, Toyota T: Mitochondrial deoxyribonucleic acid 3256C-T mutation in a Japanese family with noninsulin-dependent diabetes mellitus. J Clin Endocrinol Metab 83: 992–994, 1998
    1. Tawata M, Hayashi JI, Isobe K, Ohkubo E, Ohtaka M, Chen J, Aida K, Onaya T: A new mitochondrial DNA mutation at 14577 T/C is probably a major pathogenic mutation for maternally inherited type 2 diabetes. Diabetes 49: 1269–1272, 2000
    1. Guillausseau PJ, Massin P, Dubois-LaForgue D, Timsit J, Virally M, Gin H, Bertin E, Blickle JF, Bouhanick B, Cahen J, Caillat-Zucman S, Charpentier G, Chedin P, Derrien C, Ducluzeau PH, Grimaldi A, Guerci B, Kaloustian E, Murat A, Olivier F, Paques M, Paquis-Flucklinger V, Porokhov B, Samuel-Lajeunesse J, Vialettes B: Maternally inherited diabetes and deafness: a multicenter study. Ann Intern Med 134: 721–728, 2001
    1. Chinnery PF, Elliott C, Green GR, Rees A, Coulthard A, Turnbull DM, Griffiths TD: The spectrum of hearing loss due to mitochondrial DNA defects. Brain 123: 82–92, 2000
    1. Velho G, Byrne MM, Clement K, Sturis J, Pueyo ME, Blanche H, Vionnet N, Fiet J, Passa P, Robert JJ, Polonsky KS, Froguel P: Clinical phenotypes, insulin secretion, and insulin sensitivity in kindreds with maternally inherited diabetes and deafness due to mitochondrial tRNALeu(UUR) gene mutation. Diabetes 45: 478–487, 1996
    1. Suzuki Y, Iizuka T, Kobayashi T, Nishikawa T, Atsumi Y, Kadowaki T, Oka Y, Kadowaki H, Taniyama M, Hosokawa K, Asahina T, Matsuoka K: Diabetes mellitus associated with the 3243 mitochondrial tRNA(Leu)(UUR) mutation: insulin secretion and sensitivity. Metabolism 46: 1019–1023, 1997
    1. Suzuki S, Hinokio Y, Hirai S, Onoda M, Matsumoto M, Ohtomo M, Kawasaki H, Satoh Y, Akai H, Abe K: Pancreatic beta-cell secretory defect associated with mitochondrial point mutation of the tRNA(LEU(UUR)) gene: a study in seven families with mitochondrial encephalomyopathy, lactic acidosis and stroke-like episodes (MELAS). Diabetologia 37: 818–825, 1994
    1. Salles JE, Kasamatsu TS, Dib SA, Moises RS: Beta-cell function in individuals carrying the mitochondrial tRNA leu (UUR) mutation. Pancreas 34: 133–137, 2007
    1. Holmes-Walker DJ, Ward GM, Boyages SC: Insulin secretion and insulin sensitivity are normal in non-diabetic subjects from maternal inheritance diabetes and deafness families. Diabet Med 18: 381–387, 2001
    1. Gebhart SS, Shoffner JM, Koontz D, Kaufman A, Wallace D: Insulin resistance associated with maternally inherited diabetes and deafness. Metabolism 45: 526–531, 1996
    1. Brändle M, Lehmann R, Maly FE, Schmid C, Spinas GA: Diminished insulin secretory response to glucose but normal insulin and glucagon secretory responses to arginine in a family with maternally inherited diabetes and deafness caused by mitochondrial tRNA(LEU(UUR)) gene mutation. Diabetes Care 24: 1253–1258, 2001
    1. Majamaa K, Moilanen JS, Uimonen S, Remes AM, Salmela PI, Kärppä M, Majamaa-Voltti KA, Rusanen H, Sorri M, Peuhkurinen KJ, Hassinen IE: Epidemiology of A3243G, the mutation for mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes: prevalence of the mutation in an adult population. Am J Hum Genet 63: 447–454, 1998
    1. Tehard B, Saris WH, Astrup A, Martinez JA, Taylor MA, Barbe P, Richterova B, Guy-Grand B, Sorensen TI, Oppert JM: Comparison of two physical activity questionnaires in obese subjects: the NUGENOB study. Med Sci Sports Exerc 37: 1535–1541, 2005
    1. Vancauter E, Mestrez F, Sturis J, Polonsky KS: Estimation of insulin-secretion rates from C-peptide levels: comparison of individual and standard kinetic parameters for C-peptide clearance. Diabetes 41: 368–377, 1992
    1. Mari A, Tura A, Gastaldelli A, Ferrannini E: Assessing insulin secretion by modeling in multiple-meal tests: role of potentiation. Diabetes 51: S221–S226, 2002
    1. Hällsten K, Virtanen KA, Lönnqvist F, Sipilä H, Oksanen A, Viljanen T, Rönnemaa T, Viikari J, Knuuti J, Nuutila P: Rosiglitazone but not metformin enhances insulin- and exercise-stimulated skeletal muscle glucose uptake in patients with newly diagnosed type 2 diabetes. Diabetes 51: 3479–3485, 2002
    1. Hamacher K, Coenen HH, Stocklin G: Efficient stereospecific synthesis of no-carrier-added 2-[18F]-fluoro-2-deoxy-D-glucose using aminopolyether supported nucleophilic substitution. J Nucl Med 27: 235–238, 1986
    1. DeFronzo RA, Tobin JD, Andres R: Glucose clamp technique: a method for quantifying insulin secretion and resistance. Am J Physiol 237: E214–E223, 1979
    1. Hällsten K, Yki-Järvinen H, Peltoniemi P, Oikonen V, Takala T, Kemppainen J, Laine H, Bergman J, Bolli GB, Knuuti J, Nuutila P: Insulin- and exercise-stimulated skeletal muscle blood flow and glucose uptake in obese men. Obes Res 11: 257–265, 2003
    1. Peltoniemi P, Lönnroth P, Laine H, Oikonen V, Tolvanen T, Grönroos T, Strindberg L, Knuuti J, Nuutila P: Lumped constant for [(18)F]fluorodeoxyglucose in skeletal muscles of obese and nonobese humans. Am J Physiol Endocrinol Metab 279: E1122–E1130, 2000
    1. Sutinen J, Yki-Järvinen H: Increased resting energy expenditure, fat oxidation, and food intake in patients with highly active antiretroviral therapy-associated lipodystrophy. Am J Physiol Endocrinol Metab 292: E687–E692, 2007
    1. Hochberg Y, Benjamini Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 57: 289–300, 1995
    1. Kärppä M, Herva R, Moslemi AR, Oldfors A, Kakko S, Majamaa K: Spectrum of myopathic findings in 50 patients with the 3243A>G mutation in mitochondrial DNA. Brain 128: 1861–1869, 2005
    1. Koga Y, Akita Y, Junko N, Yatsuga S, Povalko N, Fukiyama R, Ishii M, Matsuishi T: Endothelial dysfunction in MELAS improved by l-arginine supplementation. Neurology 66: 1766–1769, 2006
    1. Maassen JA, Janssen GM, 'T Hart LM: Molecular mechanisms of mitochondrial diabetes (MIDD). Ann Med 37: 213–221, 2005
    1. Jeppesen TD, Schwartz M, Olsen DB, Vissing J: Oxidative capacity correlates with muscle mutation load in mitochondrial myopathy. Ann Neurol 54: 86–92, 2003
    1. Kelley DE, He J, Menshikova EV, Ritov VB: Dysfunction of mitochondria in human skeletal muscle in type 2 diabetes. Diabetes 51: 2944–2950, 2002
    1. Vydt TC, de Coo RF, Soliman OI, Ten Cate FJ, van Geuns RJ, Vletter WB, Schoonderwoerd K, van den Bosch BJ, Smeets HJ, Geleijnse ML: Cardiac involvement in adults with m.3243A>G MELAS gene mutation. Am J Cardiol 99: 264–269, 2007
    1. Heilbronn LK, Gan SK, Turner N, Campbell LV, Chisholm DJ: Markers of mitochondrial biogenesis and metabolism are lower in overweight and obese insulin-resistant subjects. J Clin Endocrinol Metab 92: 1467–1473, 2007
    1. Ishikawa K, Takenaga K, Akimoto M, Koshikawa N, Yamaguchi A, Imanishi H, Nakada K, Honma Y, Hayashi J: ROS-generating mitochondrial DNA mutations can regulate tumor cell metastasis. Science 320: 661–664, 2008
    1. Hitomi H, Fukui T, Moriwaki K, Matsubara K, Sun GP, Rahman M, Nishiyama A, Kiyomoto H, Kimura S, Ohmori K, Abe Y, Kohno M: Synergistic effect of mechanical stretch and angiotensin II on superoxide production via NADPH oxidase in vascular smooth muscle cells. J Hypertens 24: 1089–1095, 2006
    1. Martin D, Bellanne-Chantelot C, Deschamps I, Froguel P, Robert JJ, Velho G: Long-term follow-up of oral glucose tolerance test-derived glucose tolerance and insulin secretion and insulin sensitivity indexes in subjects with glucokinase mutations (MODY2). Diabetes Care 31: 1321–1323, 2008
    1. Maassen JA, Romijn JA, Heine RJ: Fatty acid-induced mitochondrial uncoupling in adipocytes as a key protective factor against insulin resistance and beta cell dysfunction: a new concept in the pathogenesis of obesity-associated type 2 diabetes mellitus. Diabetologia 50: 2036–2041, 2007
    1. Otabe S, Yasuda K, Mori Y, Shimokawa K, Kadowaki H, Jimi A, Nonaka K, Akanuma Y, Yazaki Y, Kadowaki T: Molecular and histological evaluation of pancreata from patients with a mitochondrial gene mutation associated with impaired insulin secretion. Biochem Biophys Res Commun 259: 149–156, 1999
    1. Maechler P, Carobbio S, Rubi B: In beta-cells, mitochondria integrate and generate metabolic signals controlling insulin secretion. Int J Biochem Cell Biol 38: 696–709, 2006

Source: PubMed

3
Sottoscrivi