Behçet's disease physiopathology: a contemporary review

Mohamad J Zeidan, David Saadoun, Marlene Garrido, David Klatzmann, Adrien Six, Patrice Cacoub, Mohamad J Zeidan, David Saadoun, Marlene Garrido, David Klatzmann, Adrien Six, Patrice Cacoub

Abstract

Behçet's disease, also known as the Silk Road Disease, is a rare systemic vasculitis disorder of unknown etiology. Recurrent attacks of acute inflammation characterize Behçet's disease. Frequent oral aphthous ulcers, genital ulcers, skin lesions and ocular lesions are the most common manifestations. Inflammation is typically self-limiting in time and relapsing episodes of clinical manifestations represent a hallmark of Behçet's disease. Other less frequent yet severe manifestations that have a major prognostic impact involve the eyes, the central nervous system, the main large vessels and the gastrointestinal tract. Behçet's disease has a heterogeneous onset and is associated with significant morbidity and premature mortality. This study presents a current immunological review of the disease and provides a synopsis of clinical aspects and treatment options.

Keywords: Autoimmunity; Behçet disease; Inflammation; Physiopathology.

Conflict of interest statement

Compliance with ethical standards Funding None. Conflict of interest All authors declare that they have no conflict of interest. Ethical approval This article does not contain any studies with human participants or animals performed by any of the authors.

Figures

Fig. 1
Fig. 1
Summary of pathogenesis of Behçet disease. It is presumed that environmental factors trigger CD4+ T cells activation in genetically susceptible individuals, leading to the secretion of cytokines that stimulate other inflammation-inducing immune cells resulting in an uncontrolled autoimmune cascade in vascular tissue. SNP single nucleotide polymorphism, IL interleukin, HLA human Leukocyte Antigen, HSP heat shock proteins, INFγ interferon gamma, TNF-α tumor necrosis factor alpha, CD mature Th cells expressing a surface protein identified by a number, NKT natural killer T cells, Th T helper cells, ϒσ T cells T lymphocytes

References

    1. Mendes D, Correia M, Barbedo M, Vaio T, Mota M, Gonçalves O, Valente J. Behçet’s disease—a contemporary review. J Autoimmun. 2009;32(3–4):178–188. doi: 10.1016/j.jaut.2009.02.011.
    1. Verity DH, Marr JE, Ohno S, Wallace GR, Stanford MR. Behçet’s disease, the silk road and HLA-B51: historical and geographical perspectives. Tissue Antigens. 1999;54(3):213–220. doi: 10.1034/j.1399-0039.1999.540301.x.
    1. Sfikakis PP, Markomichelakis N, Alpsoy E, Assaad-Khalil S, Bodaghi B, Gul A, et al. Anti-TNF therapy in the management of behçet’s disease-review and basis for recommendations. Rheumatology (Oxford) 2007;46(5):736–741. doi: 10.1093/rheumatology/kem034.
    1. Saadoun D, Wechsler B, Desseaux K, Le Thi Huong D, Amoura Z, Resche-Rigon M, Cacoub P. Mortality in Behçet’s disease. Arthritis Rheum. 2010;62(9):2806–2812. doi: 10.1002/art.27568.
    1. Sakane T, Takeno M, Suzuki N. Behçet’s disease. N Engl J Med. 1999;341(17):1284–1291. doi: 10.1056/NEJM199910213411707.
    1. Sfikakis PP. Behçet’s disease: a new target for anti-tumor necrosis factor treatment. Ann Rheum Dis. 2002;61(Suppl 2):51–53. doi: 10.1136/ard.61.suppl_2.ii51.
    1. Yazici H, Akokan G, Yalçin B, Müftüoğlu A. The high prevalence of HLA-B5 in Behçet’s disease. Clin Exp Immunol. 1977;30(2):259–261.
    1. Lawton G, Bhakta BB, Chamberlain MA, Tennant A. The Behçet’s disease activity index. Rheumatology (Oxford) 2004;43(1):73–78. doi: 10.1093/rheumatology/keg453.
    1. Savey L, Resche-Rigon M, Wechsler B, Comarmond C, Piette JC, Cacoub P, Saadoun D. Ethnicity and association with disease manifestations and mortality in Behçet’s disease. Orphanet J Rare Dis. 2014;27(9):42. doi: 10.1186/1750-1172-9-42.
    1. Gül A, Inanç M, Ocal L, Aral O, Koniçe M. Familial aggregation of Behçet’s disease in turkey. Ann Rheum Dis. 2000;59(8):622–625. doi: 10.1136/ard.59.8.622.
    1. Remmers EF, Cosan F, Kirino Y, Ombrello MJ, Abaci N, Satorius C, et al. Genome-wide association study identifies variants in the MHC class I, IL10, and IL23R-IL12RB2 regions associated with Behçet’s disease. Nat Genet. 2010;42(8):698–702. doi: 10.1038/ng.625.
    1. Saadoun D, Wechsler B, Terrada C, Hajage D, Le Thi Huong D, Resche-Rigon M, et al. Azathioprine in severe uveitis of Behçet’s disease. Arthritis Care Res (Hoboken). 2010;62(12):1733–1738. doi: 10.1002/acr.20308.
    1. Desbois AC, Wechsler B, Resche-Rigon M, Piette JC, Huong D Le T, Amoura Z, et al. Immunosuppressants reduce venous thrombosis relapse in Behçet’s disease. Arthritis Rheum. 2012;64(8):2753–2760. doi: 10.1002/art.34450.
    1. Kump LI, Moeller KL, Reed GF, Kurup SK, Nussenblatt RB, Levy-Clarke GA. Behçet’s disease: comparing 3 decades of treatment response at the national eye institute. Can J Ophthalmol. 2008;43(4):468–472. doi: 10.3129/i08-080.
    1. Alpsoy E, Zouboulis CC, Ehrlich GE. Mucocutaneous lesions of Behçet’s disease. Yonsei Med J. 2007;48(4):573–585. doi: 10.3349/ymj.2007.48.4.573.
    1. Alpsoy E, Donmez L, Bacanli A, Apaydin C, Butun B. Review of the chronology of clinical manifestations in 60 patients with Behçet’s disease. Dermatology. 2003;207(4):354–356. doi: 10.1159/000074113.
    1. Al-Araji A. Neuro-Behçet’s disease: epidemiology, clinical characteristics, and management. Lancet Neurol. 2009;8(2):192. doi: 10.1016/S1474-4422(09)70015-8.
    1. Arai Y, Kohno S, Takahashi Y, Miyajima Y, Tsutusi Y. Autopsy case of neuro-Behçet’s disease with multifocal neutrophilic perivascular inflammation. Neuropathology. 2006;26(6):579–585. doi: 10.1111/j.1440-1789.2006.00734.x.
    1. Hadfield MG, Aydin A, Lippman HR, Sanders KM. Neuro-Behçet’s disease. Clin Neuropathol. 1997;16(2):55–60.
    1. Noel N, Bernard R, Wechsler B, Resche-Rigon M, Depaz R, Le Thi Huong Boutin D, et al. Long-term outcome of neuro-Behçet’s disease. Arthritis Rheum. 2014;66(5):1306–1314. doi: 10.1002/art.38351.
    1. Kidd D. Neurological complications of Behçet’s syndrome. Curr Neurol Neurosc Rep. 2012;12(6):675–679. doi: 10.1007/s11910-012-0316-1.
    1. Siva A, Kantarci OH, Saip S, Altintas A, Hamuryudan V, Islak C, et al. Behçet’s disease: diagnostic and prognostic aspects of neurological involvement. J Neurol. 2001;248(2):95–103. doi: 10.1007/s004150170242.
    1. Kikuchi H, Aramaki K, Hirohata S. Effect of infliximab in progressive neuro-Behçet’s syndrome. J Neurol Sci. 2008;272(1):99–105. doi: 10.1016/j.jns.2008.05.002.
    1. Saadoun D, Wechsler B, Resche-Rigon M, Trad S, Le Thi Huong D, Sbai A, et al. Cerebral venous thrombosis in Behçet’s disease. Arthritis Rheum. 2009;61(4):518–526. doi: 10.1002/art.24393.
    1. Akman-Demir G. Clinical patterns of neurological involvement in Behçet’s disease: evaluation of 200 patients. Brain. 1999;122(11):2171–2182. doi: 10.1093/brain/122.11.2171.
    1. Kizilkilic O, Albayram S, Adaletli I, Ak H, Islak C, Kocer N. Endovascular treatment of Behçet’s disease-associated intracranial aneurysms: report of two cases and review of the literature. Neuroradiology. 2003;45(5):328–334. doi: 10.1007/s00234-003-0952-x.
    1. Öktem-Tanör Ö, Baykan-Kurt B, Gürvit IH, Akman-Demir G, Serdaroğlu P. Neuropsychological follow-up of 12 patients with neuro-Behçet’s disease. J Neurol. 1999;246(2):113–119. doi: 10.1007/s004150050317.
    1. Saadoun D, Asli B, Wechsler B, Houman H, Geri G, Desseaux K, et al. Long-term outcome of arterial lesions in Behçet’s disease: a series of 101 patients. Medicine (Baltimore) 2012;91(1):18–24. doi: 10.1097/MD.0b013e3182428126.
    1. Desbois A, Wechsler B, Cluzel P, Helft G, Boutin D, Piette JC, et al. Cardiovascular involvement in Behçet’s disease. Rev Med Int. 2014;35(2):103–111. doi: 10.1016/j.revmed.2013.12.002.
    1. Tursen U, Gurler A, Boyvat A. Evaluation of clinical findings according to sex in 2313 turkish patients with Behçet’s disease. Int J Dermatol. 2003;42(5):346–351. doi: 10.1046/j.1365-4362.2003.01741.x.
    1. Kural-Seyahi E, Fresko I, Seyahi N, Ozyazgan Y, Mat C, Hamuryudan V, et al. The long-term mortality and morbidity of Behçet syndrome: a 2-decade outcome survey of 387 patients followed at a dedicated center. Medicine. 2003;82(1):60–76. doi: 10.1097/00005792-200301000-00006.
    1. Desbois A, Rautou P, Biard L, Belmatoug N, Wechsler B, Resche-Rigon M, et al. Behçet’s disease in Budd-Chiari syndrome. Orphanet J Rare Dis. 2014;9(1):104. doi: 10.1186/s13023-014-0153-1.
    1. Hamuryudan V, Yurdakul S, Moral F, et al. Pulmonary arterial aneurysms in behçet’s syndrome: a report of 24 cases. Br J Rheumatol. 1994;33(1):48–51. doi: 10.1093/rheumatology/33.1.48.
    1. Geri G, Terrier B, Rosenzwajg M, Wechsler B, Touzot M, Seilhean D, et al. Critical role of IL-21 in modulating Th17 and regulatory T cells in Behçet’s disease. J Allergy Clin Immunol. 2011;128(3):655. doi: 10.1016/j.jaci.2011.05.029.
    1. Atzeni F, Sarzi-Puttini P, Doria A, Boiardi L, Pipitone N, Salvarani C. Behçet’s disease and cardiovascular involvement. Lupus. 2005;14(9):723–726. doi: 10.1191/0961203305lu2208oa.
    1. Ait Badi MA, Zyani M, Kaddouri S, Niamane R, Hda A, Algayres J. Les manifestations articulaires de la maladie de Behçet. À propos de 79 cas. Rev Med Int. 2008;29(4):277–282. doi: 10.1016/j.revmed.2007.09.031.
    1. Kaklamani VG, Vaiopoulos G, Kaklamanis PG. Behçet’s disease. Sem Arthritis Rheum. 1998;27(4):197–217. doi: 10.1016/S0049-0172(98)80001-2.
    1. Kastner DL. Intermittent and periodic arthritic syndromes. In: Koopman WJ (ed.) Arthritis and allied conditions: a textbook of rheumatology. Vol. 1. 13th ed. Baltimore: Williams and Wilkins; 1997:1279–1306
    1. Beales IL. Gastrointestinal involvement in Behçet’s syndrome. Am J Gastroenterol. 1998;93(12):2633. doi: 10.1111/j.1572-0241.1998.02633.x.
    1. Marshall SE. Behçet’s disease. Best Pract Res Clin Rheumatol. 2004;18(3):291–311. doi: 10.1016/j.berh.2004.02.008.
    1. Lee KS, Kim SJ, Lee BC, Yoon DS, Lee WJ, Chi HS. Surgical treatment of intestinal Behçet’s disease. Yonsei Med J. 1997;38(6):455–460. doi: 10.3349/ymj.1997.38.6.455.
    1. Jennette JC, Falk RJ, Bacon PA, Basu N, Cid MC, Ferrario F, et al. 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum. 2013;65:1–11. doi: 10.1002/art.37715.
    1. Link J, Söderström M, Olsson T, Höjeberg B, Ljungdahl A, Link H. Increased transforming growth factor-beta, interleukin-4, and interferon-gamma in multiple sclerosis. Ann Neurology. 1994;36(3):379–386. doi: 10.1002/ana.410360309.
    1. Cho SB, Cho S, Bang D. New insights in the clinical understanding of Behçet’s disease. Yonsei Med J. 2012;53(1):35–42. doi: 10.3349/ymj.2012.53.1.35.
    1. International study group for Behçet’s disease Criteria for diagnosis of Behçet’s disease. Lancet. 1990;335(8697):1078–1080.
    1. Türsen Ü. Activation markers in Behçet disease. Turkderm. 2009;43:74–86.
    1. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11:373–384. doi: 10.1038/ni.1863.
    1. de Menthon M, Lavalley MP, Maldini C, Guillevin L, Mahr A. HLA-B51/B5 and the risk of Behçet’s disease: a systematic review and meta-analysis of case-control genetic association studies. Arthritis Rheum. 2009;61(10):1287–1296. doi: 10.1002/art.24642.
    1. Ohno S, Ohguchi M, Hirose S, Matsuda H, Wakisaka A, Aizawa M. Close association of HLA-Bw51 with Behçet’s disease. Arch Ophthalmol. 1982;100(9):1455–1458. doi: 10.1001/archopht.1982.01030040433013.
    1. Shahneh FZ, Hamzavi F, Bayazi B, Bandehagh A, Baradaran B. New insights into HLA class I association to Behçet’s syndrome in Iranian Azari patients. Auto Immun Highlights. 2013;4(3):101–102. doi: 10.1007/s13317-013-0047-6.
    1. Gül A. Genetics of Behçetʼs disease: lessons learned from genomewide association studies. Curr Opin Rheumatol. 2014;26:56–63. doi: 10.1097/BOR.0000000000000003.
    1. Takeuchi M, Kastner DL, Remmers EF. The immunogenetics of Behçet’s disease: a comprehensive review. J Autoimmun. 2015;64:137–148. doi: 10.1016/j.jaut.2015.08.013.
    1. Ombrello MJ, Kirino Y, de Paul Bakker IW, Gül A, Kastner DL, Remmers EF. Behçet disease-associated MHC class I residues implicate antigen binding and regulation of cell-mediated cytotoxicity. Proc Natl Acad Sci USA. 2014;111:8867–8872. doi: 10.1073/pnas.1406575111.
    1. Kobayashi M, Ito M, Nakagawa A, Matsushita M, Nishikimi N, Sakurai T, Nimura Y. Neutrophil and endothelial cell activation in the vasa vasorum in vasculo-Behçet disease. Histopathology. 2000;36(4):362–371. doi: 10.1046/j.1365-2559.2000.00859.x.
    1. Lehner T. The role of heat shock protein, microbial and autoimmune agents in the aetiology of Behçet’s disease. Int Rev Immunol. 1997;14(1):21–32. doi: 10.3109/08830189709116842.
    1. Consolandi C, Turroni S, Emmi G, Severgnini M, Fiori J, Peano C, et al. Behçet’s syndrome patients exhibit specific microbiome signature. Autoimmun Rev. 2015;14(4):269–276. doi: 10.1016/j.autrev.2014.11.009.
    1. Hirohata S, Oka H, Mizushima Y. Streptococcal-related antigens stimulate production of IL6 and interferon-γ by T cells from patients with Behçet’s disease. Cell Immunol. 1992;140(2):410–419. doi: 10.1016/0008-8749(92)90207-6.
    1. The Matzinger P, Model Danger. A Renewed Sense of Self. Science. 2002;296:301–305.
    1. Medzhitov R, Janeway CA. Decoding the patterns of self and non self by the innate immune system. Science. 2002;296:298–300. doi: 10.1126/science.1068883.
    1. Direskeneli H. Autoimmunity vs autoinflammation in Behcet’s disease: do we oversimplify a complex disorder? Rheumatology (Oxford) 2006;45:1461–1465. doi: 10.1093/rheumatology/kel329.
    1. Cohen P. The TLR and IL-1 signalling network at a glance. J Cell Sci. 2014;127:2383–2390. doi: 10.1242/jcs.149831.
    1. Hirohata S. Histopathology of central nervous system lesions in Behçet’s disease. J Neurol Sci. 2008;267(1):41–47. doi: 10.1016/j.jns.2007.09.041.
    1. Kidd G, Kivisäkk P, Ransohoff RM. Three or more routes for leukocyte migration into the central nervous system. Nat Rev Immunol. 2003;3(7):569–581. doi: 10.1038/nri1130.
    1. Ozaki K, Spolski R, Ettinger R, Kim HP, Wang G, Qi CF, et al. Regulation of B cell differentiation and plasma cell generation by IL-21, a novel inducer of blimp-1 and bcl-6. J Immunol. 2004;173(9):5361. doi: 10.4049/jimmunol.173.9.5361.
    1. Tzartos JS, Friese MA, Craner MJ, Palace J, Newcombe J, Esiri MM, Fugger L. Interleukin-17 production in central nervous system-infiltrating T cells and glial cells is associated with active disease in multiple sclerosis. Am J Pathol. 2008;172(1):146–155. doi: 10.2353/ajpath.2008.070690.
    1. Anderson MS, Bluestone JA. The NOD mouse: a model of immune dysregulation. Annu Rev Immunol. 2005;23(1):447–485. doi: 10.1146/annurev.immunol.23.021704.115643.
    1. Bucher C, Koch L, Vogtenhuber C, Goren E, Munger M, Panoskaltsis-Mortari A, et al. IL-21 blockade reduces graft-versus-host-disease mortality by supporting inducible T regulatory cell generation. Blood. 2009;114(26):5375–5384. doi: 10.1182/blood-2009-05-221135.
    1. O’Garra A, Rouleau M, Antonenko S, Rouleau M, Antonenko S, de Vries JE, Roncarolo MG. A CD4+ T-cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature. 1997;389(6652):737–742. doi: 10.1038/39614.
    1. Laurence A, Tato CM, Davidson TS, Kanno Y, Chen Z, Yao Z, Blank RB, et al. Interleukin-2 signaling via STAT5 constrains T helper 17 cell generation. Immunity. 2007;26(3):371–381. doi: 10.1016/j.immuni.2007.02.009.
    1. Weaver CT, Hatton RD, Mangan PR, Harrington LE. IL-17 family cytokines and the expanding diversity of effector T cell lineages. Annu Rev Immunol. 2007;25(1):821–852. doi: 10.1146/annurev.immunol.25.022106.141557.
    1. Yang XO, Panopoulos AD, Nurieva R, Chang SH, Wang D, Watowich SS, Dong C. STAT3 regulates cytokine-mediated generation of inflammatory helper T cells. J Biol Chem. 2007;282(13):9358–9363. doi: 10.1074/jbc.C600321200.
    1. Lee JW, Wang P, Kattah MG, Youssef S, Steinman L, DeFea K, Straus DS. Differential regulation of chemokines by IL-17 in colonic epithelial cells. J Immunol. 2008;181(9):6536. doi: 10.4049/jimmunol.181.9.6536.
    1. Eastaff-Leung N, Mabarrack N, Barbour A, Cummins A, Barry S. Foxp3+ regulatory T cells, Th17 effector cells, and cytokine environment in inflammatory bowel disease. J Clin Immunol. 2010; 2009;30(1):80–9
    1. de Pineton Chambrun M, Wechsler B, Geri G, Cacoub P, Saadoun D. New insights into the pathogenesis of Behçet’s disease. Autoimmun Rev. 2012;11(10):687–698. doi: 10.1016/j.autrev.2011.11.026.
    1. Deng J, Younge BR, Olshen RA, Goronzy JJ, Weyand CM. Th17 and Th1 T-cell responses in giant cell arteritis. Circulation. 2010;121(7):906–915. doi: 10.1161/CIRCULATIONAHA.109.872903.
    1. Sakane T. New perspective on Behçet’s disease. Int Rev Immunol. 1997;14(1):89–96. doi: 10.3109/08830189709116847.
    1. Kebir H, Kreymborg K, Ifergan I, Dodelet-Devillers A, Cayrol R, Bernard M, et al. Human Th17 lymphocytes promote blood-brain barrier disruption and central nervous system inflammation. Nat Med. 2007;13(10):1173–1175. doi: 10.1038/nm1651.
    1. Saadoun D, Rosenzwajg M, Joly F, Six A, Carrat F, Thibault V, et al. Regulatory T-cell responses to low-dose interleukin-2 in HCV-induced vasculitis. N Engl J Med. 2011;365:2067–2077. doi: 10.1056/NEJMoa1105143.
    1. Nurieva R, Yang XO, Martinez G, Zhang Y, Panopoulos AD, Ma L, Schluns K, et al. Essential autocrine regulation by IL-21 in the generation of inflammatory T cells. Nature. 2007;448(7152):480–483. doi: 10.1038/nature05969.
    1. Vollmer TL, Liu R, Price M, Rhodes S, La Cava A, Shi F. Differential effects of IL-21 during initiation and progression of autoimmunity against neuroantigen. J Immunol. 2005;174(5):2696–2701. doi: 10.4049/jimmunol.174.5.2696.
    1. Brustle A, Heink S, Huber M, Rosenplänter C, Stadelmann C, Yu P, et al. The development of inflammatory Th-17 cells requires interferon-regulatory factor 4. Nat Immunol. 2007;8(9):958–966. doi: 10.1038/ni1500.
    1. Miyara M, Yoshioka Y, Kitoh A, Shima T, Wing K, Niwa A, et al. Functional delineation and differentiation dynamics of human CD4+ T cells expressing the FoxP3 transcription factor. Immunity. 2009;30(6):899–911. doi: 10.1016/j.immuni.2009.03.019.
    1. Bottinelli D, Uccelli A, Engelhardt B, Benvenuto F, Bottinelli D, Lira S, et al. C-C chemokine receptor 6-regulated entry of T H-17 cells into the CNS through the choroid plexus is required for the initiation of EAE. Nat Immunol. 2009;10(5):514–523. doi: 10.1038/ni.1716.
    1. Engelhardt B, Wolburg-Buchholz K, Wolburg H. Involvement of the choroid plexus in central nervous system inflammation. Micros Res Tech. 2001;52(1):112–129. doi: 10.1002/1097-0029(20010101)52:1<112::AID-JEMT13>;2-5.
    1. Chen Q, Yang W, Gupta S, Biswas P, Smith P, Bhagat G, Pernis AB. IRF-4-binding protein inhibits interleukin-17 and interleukin-21 production by controlling the activity of IRF-4 transcription factor. Immunity. 2008;29(6):899–911. doi: 10.1016/j.immuni.2008.10.011.
    1. Fantini MC, Rizzo A, Fina D, Caruso R, Becker C, Neurath MF, et al. IL-21 regulates experimental colitis by modulating the balance between Treg and Th17 cells. Eur J Immunol. 2007;37(11):3155–3163. doi: 10.1002/eji.200737766.
    1. Matusevicius D, Kivisäkk P, He B, Kostulas N, Ozenci V, Fredrikson S, Link H. Interleukin-17 mRNA expression in blood and CSF mononuclear cells is augmented in multiple sclerosis. Mult Scler. 1999;5(2):101–104. doi: 10.1191/135245899678847275.
    1. Dagur PK, Biancotto A, Stansky E, Sen HN, Nussenblatt RB, McCoy JP. Secretion of interleukin-17 by CD8+ T cells expressing CD146 (MCAM) Clin Immunol. 2014;152:36–47. doi: 10.1016/j.clim.2014.01.009.
    1. Ivanov II, McKenzie BS, Zhou L, Tadokoro CE, Lepelley A, Lafaille JJ, et al. The orphan nuclear receptor RORgammat directs the differentiation program of pro-inflammatory IL-17+ T helper cells. Cell. 2006;126(6):1121. doi: 10.1016/j.cell.2006.07.035.
    1. Seder RA, Paul WE, Davis MM, de Fazekas St Groth B. The presence of interleukin 4 during in vitro priming determines the lymphokine-producing potential of CD4+ T cells from T cell receptor transgenic mice. J Exp Med. 1992;176(4):1091–1098. doi: 10.1084/jem.176.4.1091.
    1. Wu X, Tan Y, Xing Q, Wang S. IL-21 accelerates xenogeneic graft-versus-host disease correlated with increased B-cell proliferation. Protein Cell. 2013;4(11):863–871. doi: 10.1007/s13238-013-3088-8.
    1. Habib T, Senadheera S, Weinberg K, Kaushansky K. The common gamma chain (gamma c) is a required signaling component of the IL-21 receptor and supports IL-21-induced cell proliferation via JAK3. Biochemistry. 2002;41(27):8725. doi: 10.1021/bi0202023.
    1. Touzot M, Cacoub P, Bodaghi B, Soumelis V, Saadoun D. IFN-α induces IL-10 production and tilt the balance between Th1 and Th17 in Behçet disease. Autoimmun Rev. 2015;14(5):370–375. doi: 10.1016/j.autrev.2014.12.009.
    1. Comarmond C, Wechsler B, Bodaghi B, Cacoub P, Saadoun D. Biotherapies in Behçet’s disease. Autoimmun Rev. 2014;13(7):762–769. doi: 10.1016/j.autrev.2014.01.056.
    1. Takamoto M, Kaburaki T, Numaga J, Fujino Y, Kawashima H. Long-term infliximab treatment for behçet’s disease. Jpn J Ophthalmol. 2007;51(3):239–240. doi: 10.1007/s10384-006-0424-z.
    1. Sbaï A, Wechsler B, Duhaut P, Du-Boutin LT, Amoura Z, Cacoub P, et al. Neuro-Behçet’s disease (isolated cerebral thrombophlebitis excluded). Clinical pattern, prognostic factors, treatment and long term follow-up. Adv Exp Med Biol. 2003;528:371–376. doi: 10.1007/0-306-48382-3_75.
    1. Wechsler B, Lê Thi Huong DB, Saadoun D. EULAR recommendations for the management of Behçet’s disease: evidence-based or experience-based medicine. Rev Med Interne. 2009;30(11):939–941. doi: 10.1016/j.revmed.2009.09.002.
    1. Hatemi G, Melikoglu M, Tunc R, et al. Apremilast for Behçet’s syndrome–a phase 2, placebo-controlled study. N Engl J Med. 2015;372:1510. doi: 10.1056/NEJMoa1408684.

Source: PubMed

3
Sottoscrivi