DNA from fecal immunochemical test can replace stool for detection of colonic lesions using a microbiota-based model

Nielson T Baxter, Charles C Koumpouras, Mary A M Rogers, Mack T Ruffin 4th, Patrick D Schloss, Nielson T Baxter, Charles C Koumpouras, Mary A M Rogers, Mack T Ruffin 4th, Patrick D Schloss

Abstract

Background: There is a significant demand for colorectal cancer (CRC) screening methods that are noninvasive, inexpensive, and capable of accurately detecting early stage tumors. It has been shown that models based on the gut microbiota can complement the fecal occult blood test and fecal immunochemical test (FIT). However, a barrier to microbiota-based screening is the need to collect and store a patient's stool sample.

Results: Using stool samples collected from 404 patients, we tested whether the residual buffer containing resuspended feces in FIT cartridges could be used in place of intact stool samples. We found that the bacterial DNA isolated from FIT cartridges largely recapitulated the community structure and membership of patients' stool microbiota and that the abundance of bacteria associated with CRC were conserved. We also found that models for detecting CRC that were generated using bacterial abundances from FIT cartridges were equally predictive as models generated using bacterial abundances from stool.

Conclusions: These findings demonstrate the potential for using residual buffer from FIT cartridges in place of stool for microbiota-based screening for CRC. This may reduce the need to collect and process separate stool samples and may facilitate combining FIT and microbiota-based biomarkers into a single test. Additionally, FIT cartridges could constitute a novel data source for studying the role of the microbiome in cancer and other diseases.

Keywords: Colorectal cancer; Fecal immunochemical test; Gut microbiome; Microbiota; Random forest.

Figures

Fig. 1
Fig. 1
Bacterial community structure from FIT cartridge recapitulates stool. Density plots showing distribution of the number of shared OTUs (a) and community similarity (b) between groups of samples (*p < 0.001 two-sample Kolmogorov-Smirnov test)
Fig. 2
Fig. 2
Bacterial populations conserved between stool and FIT cartridge. a Scatter plot of the average relative abundance of each bacterial genus in stool and FIT cartridges colored by phylum. b Scatter plots of the relative abundances of the four species frequently associated with CRC. All correlations were greater than 0.35 (all p < 0.001)
Fig. 3
Fig. 3
Microbiota-based models from FIT cartridge DNA are as predictive as models from stool. a ROC curves for distinguishing healthy patients from those with cancer using microbiota-based random forest models using DNA from FIT cartridges or stool. b Probability of having cancer for each patient according to microbiota-based models from a. c ROC curves for distinguishing patients with adenomas or carcinomas from healthy patients using microbiota-based random forest models using DNA from FIT cartridges or stool. d Probability of having a lesion for each patient based on the models from c

References

    1. Siegel R, DeSantis C, Jemal A. Colorectal cancer statistics, 2014. CA Cancer J Clin. 2014;64:104–117. doi: 10.3322/caac.21220.
    1. Centers for Disease Control and Prevention Vital signs: colorectal cancer screening test use—United States, 2012. MMWR Morb Mortal Wkly Rep. 2013;62:881.
    1. Hsia J, Kemper E, Kiefe C, Zapka J, Sofaer S, Pettinger M, Bowen D, Limacher M, Lillington L, Mason E, et al. The importance of health insurance as a determinant of cancer screening: evidence from the Women’s Health Initiative. Prev Med. 2000;31:261–270. doi: 10.1006/pmed.2000.0697.
    1. Jones RM, Devers KJ, Kuzel AJ, Woolf SH. Patient-reported barriers to colorectal cancer screening: a mixed-methods analysis. Am J Prev Med. 2010;38:508–516. doi: 10.1016/j.amepre.2010.01.021.
    1. Bibbins-Domingo K, Grossman DC, Curry SJ, Davidson KW, Epling JW, García FA, Gillman MW, Harper DM, Kemper AR, Krist AH, et al. Screening for colorectal cancer: US preventive services task force recommendation statement. JAMA. 2016;315:2564–2575. doi: 10.1001/jama.2016.5989.
    1. Hundt S, Haug U, Brenner H. Comparative evaluation of immunochemical fecal occult blood tests for colorectal adenoma detection. Ann Intern Med. 2009;150:162–169. doi: 10.7326/0003-4819-150-3-200902030-00005.
    1. Imperiale TF, Ransohoff DF, Itzkowitz SH, Levin TR, Lavin P, Lidgard GP, Ahlquist DA, Berger BM. Multitarget stool DNA testing for colorectal-cancer screening. N Engl J Med. 2014;370:1287–1297. doi: 10.1056/NEJMoa1311194.
    1. Zackular JP, Rogers MA, Ruffin MT, Schloss PD. The human gut microbiome as a screening tool for colorectal cancer. Cancer Prev Res. 2014;7:1112–1121. doi: 10.1158/1940-6207.CAPR-14-0129.
    1. Zeller G, Tap J, Voigt AY, Sunagawa S, Kultima JR, Costea PI, Amiot A, Böhm J, Brunetti F, Habermann N, et al. Potential of fecal microbiota for early-stage detection of colorectal cancer. Mol Syst Biol. 2014;10:766. doi: 10.15252/msb.20145645.
    1. Yu J, Feng Q, Wong SH, Zhang D, Liang Q yi, Qin Y, Tang L, Zhao H, Stenvang J, Li Y, et al. Metagenomic analysis of faecal microbiome as a tool towards targeted non-invasive biomarkers for colorectal cancer. Gut. 2015;0:1-9.
    1. Baxter NT, Ruffin MT, Rogers MA, Schloss PD. Microbiota-based model improves the sensitivity for detecting colonic lesions. Genome Medicine. 2016;8:1–10. doi: 10.1186/s13073-016-0290-3.
    1. Kozich JJ, Westcott SL, Baxter NT, Highlander SK, Schloss PD. Development of a dual-index sequencing strategy and curation pipeline for analyzing amplicon sequence data on the MiSeq Illumina sequencing platform. Appl Environ Microbiol. 2013;79:5112–5120. doi: 10.1128/AEM.01043-13.
    1. Schloss PD, Westcott SL, Ryabin T, Hall JR, Hartmann M, Hollister EB, Lesniewski RA, Oakley BB, Parks DH, Robinson CJ, et al. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl Environ Microbiol. 2009;75:7537–7541. doi: 10.1128/AEM.01541-09.
    1. Wang Q, Garrity GM, Tiedje JM, Cole JR. Naive bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol. 2007;73:5261–5267. doi: 10.1128/AEM.00062-07.
    1. Calle ML, Urrea V, Boulesteix A-L, Malats N. AUC-RF: a new strategy for genomic profiling with random forest. Hum Hered. 2011;72:121–132. doi: 10.1159/000330778.
    1. DeLong ER, DeLong DM, Clarke-Pearson DL. Comparing the areas under two or more correlated receiver operating characteristic curves: a nonparametric approach. Biometrics. 1988;44:837–845. doi: 10.2307/2531595.
    1. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J-C, Müller M. pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC bioinformatics. 2011;12:1. doi: 10.1186/1471-2105-12-77.
    1. Yue JC, Clayton MK. A similarity measure based on species proportions. Commun Stat Theory Methods. 2005;34:2123–2131. doi: 10.1080/STA-200066418.
    1. Warren RL, Freeman DJ, Pleasance S, Watson P, Moore RA, Cochrane K, Allen-Vercoe E, Holt RA. Co-occurrence of anaerobic bacteria in colorectal carcinomas. Microbiome. 2013;1:16. doi: 10.1186/2049-2618-1-16.
    1. Sinha R, Chen J, Amir A, Vogtmann E, Inman KS, Flores-Munguia R, Sampson JN, Knight R, Chia N, et al. Collecting fecal samples for microbiome analyses in epidemiology studies. Cancer Epidemiology Biomarkers & Prevention. 2015;25:407-416.
    1. Salter SJ, Cox MJ, Turek EM, Calus ST, Cookson WO, Moffatt MF, Turner P, Parkhill J, Loman NJ, Walker AW. Reagent and laboratory contamination can critically impact sequence-based microbiome analyses. BMC Biol. 2014;12:87. doi: 10.1186/s12915-014-0087-z.
    1. Walker AW, Martin JC, Scott P, Parkhill J, Flint HJ, Scott KP. 16S rRNA gene-based profiling of the human infant gut microbiota is strongly influenced by sample processing and pCR primer choice. Microbiome. 2015;3:1. doi: 10.1186/s40168-015-0087-4.

Source: PubMed

3
Sottoscrivi