The effect of aquatic exercise program on low-back pain disability in obese women

Fariba Hossein Abadi, Mohansundar Sankaravel, Fairus Fariza Zainuddin, Gunathevan Elumalai, Azira Iqlima Razli, Fariba Hossein Abadi, Mohansundar Sankaravel, Fairus Fariza Zainuddin, Gunathevan Elumalai, Azira Iqlima Razli

Abstract

Low-back pain (LBP) is one of the most current causes to reduce work performance, limit daily activities and raising health cost, and it is in-creasing as obesity growing as a public health concern. While obese LBP people cannot avoid weight load on the spine in any exercise, they can easily carry out exercise in water. This study aimed to investigate the effect of aquatic exercise on LBP disability among obese women. In this study, a total of 39 women with body mass index (BMI)≥27 kg/m2 who suffering from nonspecific chronic LBP were purposively selected. They randomly assigned in two groups; aquatic and control. The aquatic group carried out aquatic exercise, twice per week, 60 min per session, for 12 weeks. LBP disability was measured using modified Oswestry questionnaire with ten sections; pain intensity, personal care, lifting, walking, sitting, standing, sleeping, social life, traveling, and employment. Results showed no significant difference in age, weight, BMI, waist to hip ratio, and percentage of body fat in both groups. An analyzing of multivariate analysis of covariance revealed that there was significant improvement on pain intensity, personal care, sitting, standing, sleeping, employment and total disability score in aquatic group, while there was no significant difference in lifting, walking, social life, and traveling abilities after 12 weeks between the groups. As a conclusion, this progressive aquatic exercise was a convenience and effective intervention program to reduce pain intensity, and improve personal care, sitting, standing, sleeping, and employment abilities in obese LBP women.

Keywords: Aquatic exercise; Disability; Low-back pain; Obese women.

Conflict of interest statement

CONFLICT OF INTEREST No potential conflict of interest relevant to this article was reported.

Copyright © 2019 Korean Society of Exercise Rehabilitation.

References

    1. Ariyoshi M, Sonoda K, Nagata K, Mashima T, Zenmyo M, Paku C, Takamiya Y, Yoshimatsu H, Hirai Y, Yasunaga H, Akashi H, Imayama H, Shimokobe T, Inoue A, Mutoh Y. Efficacy of aquatic exercises for patients with low-back pain. Kurume Med J. 1999;46:91–96.
    1. Ashraf A, Farahangiz S, Pakniat Jahromi B, Setayeshpour N, Naseri M. Correlation between degree of radiologic signs of osteoarthritis and functional status in patients with chronic mechanical low back pain. Malays J Med Sci. 2014;21:28–33.
    1. Baena-Beato PA, Arroyo-Morales M, Delgado-Fernández M, Gatto-Cardia MC, Artero EG. Effects of different frequencies (2–3 days/week) of aquatic therapy program in adults with chronic low back pain. A non-randomized comparison trial. Pain Med. 2013;14:145–158.
    1. Barker AL, Talevski J, Morello RT, Brand CA, Rahmann AE, Urquhart DM. Effectiveness of aquatic exercise for musculoskeletal conditions: a meta-analysis. Arch Phys Med Rehabil. 2014;95:1776–1786.
    1. Bender T, Karagülle Z, Bálint GP, Gutenbrunner C, Bálint PV, Sukenik S. Hydrotherapy, balneotherapy, and spa treatment in pain management. Rheumatol Int. 2005;25:220–224.
    1. Cuesta-Vargas AI, Adams N, Salazar JA, Belles A, Hazañas S, Arroyo-Morales M. Deep water running and general practice in primary care for non-specific low back pain versus general practice alone: randomized controlled trial. Clin Rheumatol. 2012;31:1073–1078.
    1. Delevatti R, Marson E, Fernando Kruel L. Effect of aquatic exercise training on lipids profile and glycaemia: a systematic review. Rev Andal Med Deport. 2015;8:163–170.
    1. Dundar U, Solak O, Yigit I, Evcik D, Kavuncu V. Clinical effectiveness of aquatic exercise to treat chronic low back pain: a randomized controlled trial. Spine (Phila Pa 1976) 2009;34:1436–1440.
    1. Fisken A, Keogh JW, Waters DL, Hing WA. Perceived benefits, motives, and barriers to aqua-based exercise among older adults with and without osteoarthritis. J Appl Gerontol. 2015;34:377–396.
    1. Freburger JK, Holmes GM, Agans RP, Jackman AM, Darter JD, Wallace AS, Castel LD, Kalsbeek WD, Carey TS. The rising prevalence of chronic low back pain. Arch Intern Med. 2009;169:251–258.
    1. Gordon R, Bloxham S. A systematic review of the effects of exercise and physical activity on non-specific chronic low back pain. Healthcare (Basel) 2016;4(2):E22.
    1. Hossein Abadi F, Choo LA, Sankaravel M, Mondam S. A comparative study of water and land based exercises training program on stability and range of motion. Int J Adv Res Technol. 2018;7:68–72.
    1. Hossein Abadi F, Elumalai G, Sankaraval M, Ramli FA. Effects of aqua-aerobic exercise on the cardiovascular fitness and weight loss among obese students. Int J Physiother. 2017;4:278–283.
    1. Hoy D, Brooks P, Blyth F, Buchbinder R. The epidemiology of low back pain. Best Pract Res Clin Rheumatol. 2010;24:769–781.
    1. Intveld E, Cooper S, Van Kessel G. The effect of aquatic physiotherapy on low back pain in pregnant women. Int J Aquatic Res Educ. 2010;4:5.
    1. Ionescu DD, Ionescu AM, Jaba E. The investments in education and quality of life. J Knowl Manag Econom Inf Technol. 2013;3:70.
    1. Irandoust K, Taheri M. The effects of aquatic exercise on body composition and nonspecific low back pain in elderly males. J Phys Ther Sci. 2015;27:433–435.
    1. Karagülle M, Karagülle MZ. Effectiveness of balneotherapy and spa therapy for the treatment of chronic low back pain: a review on latest evidence. Clin Rheumatol. 2015;34:207–214.
    1. Lahiri S, Gold J, Levenstein C. Estimation of net-costs for prevention of occupational low back pain: three case studies from the US. Am J Ind Med. 2005;48:530–541.
    1. Lonik EAT, Kamauzaman THT, Abdullah AA, Nor J, Ab Hamid SA. Prevalence of low-back pain among public ambulance workers in Kelantan, Malaysia. Malays J Public Health Med. 2017;17:126–135.
    1. Louw A, Puentedura EJ, Zimney K, Schmidt S. Know Pain, Know Gain? A perspective on pain neuroscience education in physical therapy. J Orthop Sports Phys Ther. 2016;46:131–134.
    1. Mannion AF, Junge A, Fairbank JC, Dvorak J, Grob D. Development of a German version of the Oswestry Disability Index. Part 1: cross-cultural adaptation, reliability, and validity. Eur Spine J. 2006;15:55–65.
    1. McKillop AB, Carroll LJ, Dick BD, Battié MC. Measuring participation in patients with chronic back pain-the 5-Item Pain Disability Index. Spine J. 2018;18:307–313.
    1. Olson DA, Kolber MJ, Patel C, Pabian P, Hanney WJ. Aquatic exercise for treatment of low-back pain: a systematic review of randomized controlled trials. Am J Lifestyle Med. 2013;7:154–160.
    1. Piotrowska-Calka E. Effects of A 24-week deep water aerobic training program on cardiovascular fitness. Biol Sport. 2010;27:95–98.
    1. Rewald S, Mesters I, Lenssen AF, Emans PJ, Wijnen W, de Bie RA. Effect of aqua-cycling on pain and physical functioning compared with usual care in patients with knee osteoarthritis: study protocol of a randomised controlled trial. BMC Musculoskelet Disord. 2016;17:88.
    1. Shariat A, Alizadeh R, Moradi V, Afsharnia E, Hakakzadeh A, Ansari NN, Ingle L, Shaw BS, Shaw I. The impact of modified exercise and relaxation therapy on chronic lower back pain in office workers: a randomized clinical trial. J Exerc Rehabil. 2019;15:703–708.
    1. Shiri R, Karppinen J, Leino-Arjas P, Solovieva S, Viikari-Juntura E. The association between obesity and low back pain: a meta-analysis. Am J Epidemiol. 2010;171:135–154.
    1. Waller B, Lambeck J, Daly D. Therapeutic aquatic exercise in the treatment of low back pain: a systematic review. Clin Rehabil. 2009;23:3–14.

Source: PubMed

3
Sottoscrivi