25(OH)Vitamin D Deficiency and Calcifediol Treatment in Pediatrics

Luis Castano, Leire Madariaga, Gema Grau, Alejandro García-Castaño, Luis Castano, Leire Madariaga, Gema Grau, Alejandro García-Castaño

Abstract

Vitamin D is essential for the normal mineralization of bones during childhood. Although diet and adequate sun exposure should provide enough of this nutrient, there is a high prevalence of vitamin D deficiency rickets worldwide. Children with certain conditions that lead to decreased vitamin D production and/or absorption are at the greatest risk of nutritional rickets. In addition, several rare genetic alterations are also associated with severe forms of vitamin-D-resistant or -dependent rickets. Although vitamin D3 is the threshold nutrient for the vitamin D endocrine system (VDES), direct measurement of circulating vitamin D3 itself is not a good marker of the nutritional status of the system. Calcifediol (or 25(OH)D) serum levels are used to assess VDES status. While there is no clear consensus among the different scientific associations on calcifediol status, many clinical trials have demonstrated the benefit of ensuring normal 25(OH)D serum levels and calcium intake for the prevention or treatment of nutritional rickets in childhood. Therefore, during the first year of life, infants should receive vitamin D treatment with at least 400 IU/day. In addition, a diet should ensure a normal calcium intake. Healthy lifestyle habits to prevent vitamin D deficiency should be encouraged during childhood. In children who develop clinical signs of rickets, adequate treatment with vitamin D and calcium should be guaranteed. Children with additional risk factors for 25(OH)D deficiency and nutritional rickets should be assessed periodically and treated promptly to prevent further bone damage.

Keywords: calcifediol; genetic forms of rickets; nutritional rickets; vitamin D deficiency; vitamin D treatment.

Conflict of interest statement

The authors declare no conflict of interest.

Figures

Figure 1
Figure 1
Schematic representation of VDES metabolism and the main genes involved. The CYP2R1, CYP27B1, CYP24A1, and CYP3A4 genes encode the enzymes vitamin D 25-hydroxylase, 25-hydroxyvitamin D3-1-alpha-hydroxylase, vitamin D 24-hydroxylase and cytochrome P450 3A4, respectively. The VDR gene encodes the vitamin D receptor. The DHCR7 gene encodes delta-7-dehydrocholesterol reductase. The HNRNPC gene encodes Heterogeneous Nuclear Ribonucleoprotein C. VDDR1A, vitamin D-dependent rickets type 1A; VDDR1B, vitamin D hydroxylation-deficient rickets type 1B; VDDR2A, vitamin D-dependent rickets type 2A; VDDR2B, vitamin D-dependent rickets type 2B with normal vitamin D receptor; VDDR3, dominant vitamin D-dependent rickets type 3.
Figure 2
Figure 2
Diagnostic algorithm of the different forms of rickets.

References

    1. Yamshchikov A.V., Desai N.S., Blumberg H.M., Ziegler T.R., Tangpricha V. Vitamin D for treatment and prevention of infectious diseases: A systematic review of randomized controlled trials. Endocr. Pract. 2009;15:438–449. doi: 10.4158/EP09101.ORR.
    1. Cantorna M.T., Snyder L., Lin Y.D., Yang L. Vitamin D and 1,25(OH)2D regulation of T cells. Nutrients. 2015;7:3011–3021. doi: 10.3390/nu7043011.
    1. Lifschitz C. Vitamin D. Ann. Nutr. Metab. 2020;76((Suppl. S2)):1–4. doi: 10.1159/000508423.
    1. Elder C.J., Bishop N.J. Rickets. Lancet. 2014;383:1665–1676. doi: 10.1016/S0140-6736(13)61650-5.
    1. Taylor S.N. Vitamin D in Toddlers, Preschool Children, and Adolescents. Ann. Nutr. Metab. 2020;76((Suppl. S2)):30–40. doi: 10.1159/000505635.
    1. Hilger J., Friedel A., Herr R., Rausch T. A systematic review of vitamin D status in populations worldwide. Br. J. Nutr. 2014;111:23–45. doi: 10.1017/S0007114513001840.
    1. Amrein K., Scherkl M., Hoffmann M., Neuwersch-Sommeregger S., Köstenberger M., Tmava Berisha A., Malle O. Vitamin D deficiency 2.0: An update on the current status worldwide. Eur. J. Clin. Nutr. 2020;74:1498–1513. doi: 10.1038/s41430-020-0558-y.
    1. Michaëlsson K., Baron J.A., Snellman G., Gedeborg R. Plasma vitamin D and mortality in older men: A community-based prospective cohort study. Am. J. Clin. Nutr. 2010;92:841–848. doi: 10.3945/ajcn.2010.29749.
    1. Stolzenberg-Solomon R.Z., Jacobs E.J., Arslan A.A., Qi D. Circulating 25-hydroxyvitamin D and risk of pancreatic cancer: Cohort Consortium Vitamin D Pooling Project of Rarer Cancers. Am. J. Epidemiol. 2010;172:81–93. doi: 10.1093/aje/kwq120.
    1. Bouillon R., Manousaki D., Rosen C., Trajanoska K., Rivadeneira F., Richards J.B. The health effects of vitamin D supplementation: Evidence from human studies. Nat. Rev. Endocrinol. 2022;18:96–110. doi: 10.1038/s41574-021-00593-z.
    1. Fronczek M., Strzelczyk J.K., Biernacki K., Salatino S., Osadnik T., Ostrowska Z. New Variants of the Cytochrome P450 2R1 (CYP2R1) Gene in Individuals with Severe Vitamin D-Activating Enzyme 25(OH)D Deficiency. Biomolecules. 2021;11:1867. doi: 10.3390/biom11121867.
    1. Thacher T.D., Fischer P.R., Singh R.J., Roizen J., Levine M.A. CYP2R1 Mutations Impair Generation of 25-hydroxyvitamin D and Cause an Atypical Form of Vitamin D Deficiency. J. Clin. Endocrinol. Metab. 2015;100:E1005–E1013. doi: 10.1210/jc.2015-1746.
    1. Signorello L.B., Shi J., Cai Q., Zheng W., Williams S.M., Long J., Cohen S.S. Common variation in vitamin D pathway genes predicts circulating 25-hydroxyvitamin D Levels among African Americans. PLoS ONE. 2011;6:e28623. doi: 10.1371/journal.pone.0028623.
    1. Chen H., Hewison M., Hu B., Adams J.S. Heterogeneous nuclear ribonucleoprotein (hnRNP) binding to hormone response elements: A cause of vitamin D resistance. Proc. Natl. Acad. Sci. USA. 2003;100:6109–6114. doi: 10.1073/pnas.1031395100.
    1. Roizen J.D., Li D., O’Lear L., Javaid M.K., Shaw N.J., Ebeling P.R., Nguyen H.H. CYP3A4 mutation causes Vitamin D-dependent rickets type 3. J. Clin. Investig. 2018;128:1913–1918. doi: 10.1172/JCI98680.
    1. Kurylowicz A., Ramos-Lopez E., Bednarczuk T., Badenhoop K. Vitamin D-binding protein (DBP) gene polymorphism is associated with Graves’ disease and the vitamin D status in a Polish population study. Exp. Clin. Endocrinol. Diabetes. 2006;114:329–335. doi: 10.1055/s-2006-924256.
    1. Prabhu A.V., Luu W., Li D., Sharpe L.J., Brown A.J. DHCR7: A vital enzyme switch between cholesterol and vitamin D production. Prog. Lipid. Res. 2016;64:138–151. doi: 10.1016/j.plipres.2016.09.003.
    1. Jolliffe D.A., Walton R.T., Griffiths C.J., Martineau A.R. Single nucleotide polymorphisms in the vitamin D pathway associating with circulating concentrations of vitamin D metabolites and non-skeletal health outcomes: Review of genetic association studies. J. Steroid. Biochem. Mol. Biol. 2016;164:18–29. doi: 10.1016/j.jsbmb.2015.12.007.
    1. Bahrami A., Sadeghnia H.R., Tabatabaeizadeh S.A., Bahrami-Taghanaki H., Behboodi N., Esmaeili H., Avan A. Genetic and epigenetic factors influencing vitamin D status. J. Cell Physiol. 2018;233:4033–4043. doi: 10.1002/jcp.26216.
    1. Jiang X., O’Reilly P.F., Aschard H., Hsu Y.H., Richards J.B., Dupuis J., Ingelsson E. Genome-wide association study in 79,366 European-ancestry individuals informs the genetic architecture of 25-hydroxyvitamin D levels. Nat. Commun. 2018;9:260. doi: 10.1038/s41467-017-02662-2.
    1. Munns C.F., Shaw N., Kiely M., Specker B.L., Thacher T.D., Ozono K., Michigami T. Global consensus recommendations on prevention and management of nutritional rickets. Horm. Res. Paediatr. 2016;85:83–106. doi: 10.1159/000443136.
    1. Public Health England National Diet and Nutrition Survey Results from Years 1, 2, 3 and 4 (combined) of the Rolling Programme. About Public Health Engl. 2012;4:1–158.
    1. Blarduni Cardón E., Cardón B.E., Ugarte A.H., Etxebarria U.I., González C.L., Goivide G. La dieta como factor de riesgo de hipovitaminosis D en la población pediátrica española. Rev. Osteoporos. Metab. Miner. 2021;4:122–129.
    1. Gordon C.M., Feldman H.A., Williams A.L., Kleinman P.K., Perez-Rossello J., Cox J.E. Prevalence of vitamin D deficiency among healthy infants and toddlers. Arch. Pediatr. Adolesc. Med. 2008;162:505–512. doi: 10.1001/archpedi.162.6.505.
    1. Saintonge S., Bang H., Gerber L.M. Implications of a new definition of vitamin D deficiency in a multiracial us adolescent population: The National Health and Nutrition Examination Survey III. Pediatrics. 2009;123:797–803. doi: 10.1542/peds.2008-1195.
    1. Mansbach J.M., Ginde A.A., Camargo C.A. Serum 25-Hydroxyvitamin D Levels Among US Children Aged 1 to 11 Years: Do Children Need More Vitamin D? Pediatrics. 2009;124:1404. doi: 10.1542/peds.2008-2041.
    1. Frost P. Vitamin D deficiency among northern Native Peoples: A real or apparent problem? Int. J. Circumpolar Health. 2012;71:18001. doi: 10.3402/IJCH.v71i0.18001.
    1. Misra M. Vitamin D insufficiency and deficiency in children and adolescents—UpToDate. [(accessed on 2 April 2021)];Uptodate. 2019 :1–26. Available online:
    1. Hollis B.W. Circulating 25-hydroxyvitamin D levels indicative of vitamin D sufficiency: Implications for establishing a new effective dietary intake recommendation for vitamin D. J. Nutr. 2005;135:317–322. doi: 10.1093/jn/135.2.317.
    1. Blarduni E., Arrospide A., Galar M., Castaño L., Mar J. Factors associated with the prevalence of hypovitaminosis D in pregnant women and their newborns. An. Pediatría. 2019;91:96–104. doi: 10.1016/j.anpedi.2018.11.012.
    1. Mohamed H.J.J., Rowan A., Fong B., Loy S.L. Maternal serum and breast milk vitamin D levels: Findings from the Universiti Sains Malaysia Pregnancy Cohort Study. PLoS ONE. 2014;9:e100705. doi: 10.1371/journal.pone.0100705.
    1. Mulligan M.L., Felton S.K., Riek A.E., Bernal-Mizrachi C. Implications of vitamin D deficiency in pregnancy and lactation. Am. J. Obstet Gynecol. 2010;202:429. doi: 10.1016/j.ajog.2009.09.002.
    1. Abrams S.A. Vitamin D in Preterm and Full-Term Infants. Ann. Nutr. Metab. 2020;76((Suppl. S2)):6–14. doi: 10.1159/000508421.
    1. Wagner C.L., Hollis B.W. Early-Life Effects of Vitamin D: A Focus on Pregnancy and Lactation. Ann. Nutr. Metab. 2020;76((Suppl. S2)):16–28. doi: 10.1159/000508422.
    1. Greer F.R. Fat-soluble vitamin supplements for enterally fed preterm infants. Neonatal Netw. 2001;20:7–11. doi: 10.1891/0730-0832.20.5.7.
    1. Targher G., Bertolini L., Scala L., Cigolini M., Zenari L., Falezza G., Arcaro G. Associations between serum 25-hydroxyvitamin D3 concentrations and liver histology in patients with non-alcoholic fatty liver disease. Nutr. Metab. Cardiovasc. Dis. 2007;17:517–524. doi: 10.1016/j.numecd.2006.04.002.
    1. LaClair R.E., Hellman R.N., Karp S.L., Kraus K.M. Prevalence of calcidiol deficiency in CKD: A cross-sectional study across latitudes in the United States. Am. J. Kidney Dis. 2005;45:1026–1033. doi: 10.1053/j.ajkd.2005.02.029.
    1. Rigterink T., Appleton L., Day A.S. Vitamin D therapy in children with inflammatory bowel disease: A systematic review. World J. Clin. Pediatr. 2019;8:1–14. doi: 10.5409/wjcp.v8.i1.1.
    1. Lehmann B., Genehr T., Knuschke P., Pietzsch J., Meurer M. UVB-induced conversion of 7-dehydrocholesterol to 1α,25- dihydroxyvitamin D3 in an in vitro human skin equivalent model. J. Investig. Dermatol. 2001;117:1179–1185. doi: 10.1046/j.0022-202x.2001.01538.x.
    1. Yang S.P., Ong L., Loh T.P., Chua H.R., Tham C., Meng K.C., Pin L. Calcium, Vitamin D, and Bone Derangement in Nephrotic Syndrome. J. ASEAN Fed. Endocr. Soc. 2021;36:50–55. doi: 10.15605/jafes.036.01.12.
    1. Ward L.M., Gaboury I., Ladhani M., Zlotkin S. Vitamin D-deficiency rickets among children in Canada. CMAJ. 2007;177:161–166. doi: 10.1503/cmaj.061377.
    1. Gallo S., Comeau K., Vanstone C., Agellon S., Sharma A., Jones G., Weiler H. Effect of different dosages of oral vitamin D supplementation on vitamin D status in healthy, breastfed infants: A randomized trial. JAMA. 2013;309:1785–1792. doi: 10.1001/jama.2013.3404.
    1. Best C.M., Xu J., Patchen B.K., Cassano P.A. Vitamin D supplementation in pregnant or breastfeeding women or young children for preventing asthma. Cochrane Database Syst. Rev. 2019;8:CD013396. doi: 10.1002/14651858.CD013396.
    1. Yakoob M.Y., Salam R.A., Khan F.R., Bhutta Z.A. Vitamin D supplementation for preventing infections in children under five years of age. Cochrane Database Syst. Rev. 2016;11:CD008824. doi: 10.1002/14651858.CD008824.pub2.
    1. Huey S.L., Acharya N., Silver A., Sheni R., Yu E.A., Peña-Rosas J.P., Mehta S. Effects of oral vitamin D supplementation on linear growth and other health outcomes among children under five years of age. Cochrane Database Syst. Rev. 2020;12:CD012875.
    1. Specker B.L., Ho M.L., Oestreich A., Yin A., Shui Q.M., Chen X.C., Tsang R.T. Prospective study of vitamin D supplementation and rickets in China. J. Pediatr. 1992;120:733–739. doi: 10.1016/S0022-3476(05)80236-7.
    1. Tripkovic L., Lambert H., Hart K., Smith C.P., Bucca G., Penson S., Chope G. Comparison of vitamin D2 and vitamin D3 supplementation in raising serum 25-hydroxyvitamin D status: A systematic review and meta-analysis. Am. J. Clin. Nutr. 2012;95:1357–1364. doi: 10.3945/ajcn.111.031070.
    1. Saggese G., Vierucci F., Prodam F., Cardinale F., Cetin I., Chiappini E., Corsello G. Vitamin D in pediatric age: Consensus of the Italian Pediatric Society and the Italian Society of Preventive and Social Pediatrics, jointly with the Italian Federation of Pediatricians. Ital. J. Pediatr. 2018;44:51. doi: 10.1186/s13052-018-0488-7.
    1. Ross A.C., Manson J.A.E., Abrams S.A., Aloia J.F., Brannon P.M., Clinton S.K., Durazo-Arvizu R.A. The 2011 report on dietary reference intakes for calcium and vitamin D from the Institute of Medicine: What clinicians need to know. J. Clin. Endocrinol. Metab. 2011;96:53–58. doi: 10.1210/jc.2010-2704.
    1. Thacher T., Glew R.H., Isichei C., Lawson J.O., Scariano J.K., Hollis B.W., VanderJagt D.J. Rickets in Nigerian children: Response to calcium supplementation. J. Trop. Pediatr. 1999;45:202–207. doi: 10.1093/tropej/45.4.202.
    1. Aggarwal V., Seth A., Aneja S., Sharma B., Sonkar P., Singh S., Marwaha R.K. Role of calcium deficiency in development of nutritional rickets in Indian children: A case control study. J. Clin. Endocrinol. Metab. 2012;97:3461–3466. doi: 10.1210/jc.2011-3120.
    1. Dwyer J.T., Dietz W.H., Hass G., Suskind R. Risk of Nutritional Rickets Among Vegetarian Children. Am. J. Dis. Child. 1979;133:134–140. doi: 10.1001/archpedi.1979.02130020024004.
    1. Miyako K., Kinjo S., Kohno H. Vitamin D deficiency rickets caused by improper lifestyle in Japanese children. Pediatr. Int. 2005;47:142–146. doi: 10.1111/j.1442-200x.2005.02041.x.
    1. Arabi A., El Rassi R., El-Hajj Fuleihan G. Hypovitaminosis D in developing countries-prevalence, risk factors and outcomes. Nat. Rev. Endocrinol. 2010;6:550–561. doi: 10.1038/nrendo.2010.146.
    1. Chapman T., Sugar N., Done S., Marasigan J., Wambold N., Feldman K. Fractures in infants and toddlers with rickets. Pediatr. Radiol. 2010;40:1184–1189. doi: 10.1007/s00247-009-1470-8.
    1. Cesur Y., Çaksen H., Gündem A., Kirimi E., Odabaş D. Comparison of low and high dose of vitamin D treatment in nutritional vitamin D deficiency rickets. J. Pediatr. Endocrinol. Metab. 2003;16:1105–1109. doi: 10.1515/JPEM.2003.16.8.1105.
    1. Markestad T., Halvorsen S., Halvorsen K.S., Aksnes L., Aarskog D. Plasma concentrations of vitamin D metabolites before and during treatment of vitamin D deficiency rickets in children. Acta. Paediatr. Scand. 1984;73:225–231. doi: 10.1111/j.1651-2227.1984.tb09933.x.
    1. Quesada-Gomez J.M., Bouillon R. Is calcifediol better than cholecalciferol for vitamin D supplementation? Osteoporos. Int. 2018;29:1697–1711.
    1. Kruse K. Pathophysiology of calcium metabolism in children with vitamin D-deficiency rickets. J. Pediatr. 1995;126:736–741. doi: 10.1016/S0022-3476(95)70401-9.
    1. Takeda E., Yamamoto H., Taketani Y., Miyamoto K.I. Vitamin D-dependent rickets type I and type II. Acta. Paediatr. Jpn. 1997;39:508–513.
    1. Levine M.A. Diagnosis and Management of Vitamin D Dependent Rickets. Front. Pediatr. 2020;8:315. doi: 10.3389/fped.2020.00315.

Source: PubMed

3
Sottoscrivi