Associations of suboptimal growth with all-cause and cause-specific mortality in children under five years: a pooled analysis of ten prospective studies

Ibironke Olofin, Christine M McDonald, Majid Ezzati, Seth Flaxman, Robert E Black, Wafaie W Fawzi, Laura E Caulfield, Goodarz Danaei, Nutrition Impact Model Study (anthropometry cohort pooling), Linda Adair, Shams Arifeen, Nita Bhandari, Michel Garenne, Betty Kirkwood, Kåre Mølbak, Joanne Katz, Alfred Sommer, Keith P West Jr, Mary E Penny, Ibironke Olofin, Christine M McDonald, Majid Ezzati, Seth Flaxman, Robert E Black, Wafaie W Fawzi, Laura E Caulfield, Goodarz Danaei, Nutrition Impact Model Study (anthropometry cohort pooling), Linda Adair, Shams Arifeen, Nita Bhandari, Michel Garenne, Betty Kirkwood, Kåre Mølbak, Joanne Katz, Alfred Sommer, Keith P West Jr, Mary E Penny

Abstract

Background: Child undernutrition affects millions of children globally. We investigated associations between suboptimal growth and mortality by pooling large studies.

Methods: Pooled analysis involving children 1 week to 59 months old in 10 prospective studies in Africa, Asia and South America. Utilizing most recent measurements, we calculated weight-for-age, height/length-for-age and weight-for-height/length Z scores, applying 2006 WHO Standards and the 1977 NCHS/WHO Reference. We estimated all-cause and cause-specific mortality hazard ratios (HR) using proportional hazards models comparing children with mild (-2≤Z<-1), moderate (-3≤Z<-2), or severe (Z<-3) anthropometric deficits with the reference category (Z≥-1).

Results: 53 809 children were eligible for this re-analysis and contributed a total of 55 359 person-years, during which 1315 deaths were observed. All degrees of underweight, stunting and wasting were associated with significantly higher mortality. The strength of association increased monotonically as Z scores decreased. Pooled mortality HR was 1.52 (95% Confidence Interval 1.28, 1.81) for mild underweight; 2.63 (2.20, 3.14) for moderate underweight; and 9.40 (8.02, 11.03) for severe underweight. Wasting was a stronger determinant of mortality than stunting or underweight. Mortality HR for severe wasting was 11.63 (9.84, 13.76) compared with 5.48 (4.62, 6.50) for severe stunting. Using older NCHS standards resulted in larger HRs compared with WHO standards. In cause-specific analyses, all degrees of anthropometric deficits increased the hazards of dying from respiratory tract infections and diarrheal diseases. The study had insufficient power to precisely estimate effects of undernutrition on malaria mortality.

Conclusions: All degrees of anthropometric deficits are associated with increased risk of under-five mortality using the 2006 WHO Standards. Even mild deficits substantially increase mortality, especially from infectious diseases.

Conflict of interest statement

Competing Interests: The authors have declared that no competing interests exist.

Figures

Figure 1. Associations of anthropometric measures (in…
Figure 1. Associations of anthropometric measures (in increments of 0.5 Z scores) with all-cause mortality, WHO 2006 child growth standards.
(A) Weight-for-age; (B) Height/length-for-age; (C) Weight-for-Height/Length.

References

    1. Black RE, Allen LH, Bhutta ZA, Caulfield LE, de Onis M, et al. (2008) Maternal and child undernutrition: global and regional exposures and health consequences. Lancet 371(9608): 243–60.
    1. Scrimshaw NS, SanGiovanni JP (1997) Synergism of nutrition, infection, and immunity: an overview. Am J Clin Nutr 66(2): 464S–77S.
    1. UNICEF (1990) Strategy for improved nutrition of children and women in developing countries. New York: UNICEF.
    1. Stevens GA, Finucane MM, Paciorek CJ, Flaxman SR, White RA, et al. (2012) Trends in mild, moderate, and severe stunting and underweight, and progress towards MDG 1 in 141 developing countries: a systematic analysis of population representative data. Lancet 380(9844): 824–34.
    1. Alam N, Wojtyniak B, Rahaman MM (1989) Anthropometric indicators and risk of death. Am J Clin Nutr 49(5): 884–8.
    1. Chen LC, Chowdhury A, Huffman SL (1980) Anthropometric assessment of energy-protein malnutrition and subsequent risk of mortality among preschool aged children. Am J Clin Nutr 33(8): 1836–45.
    1. El Samani EF, Willett WC, Ware JH (1988) Association of malnutrition and diarrhea in children aged under five years. A prospective follow-up study in a rural Sudanese community. Am J Epidemiol 128(1): 93–105.
    1. Kossmann J, Nestel P, Herrera MG, El Amin A, Fawzi WW (2000) Undernutrition in relation to childhood infections: a prospective study in the Sudan. Eur J Clin Nutr 54(6): 463–72.
    1. Lindtjorn B, Alemu T, Bjorvatn B (1993) Nutritional status and risk of infection among Ethiopian children. J Trop Pediatr 39(2): 76–82.
    1. Sepulveda J, Willett W, Munoz A (1988) Malnutrition and diarrhea. A longitudinal study among urban Mexican children. Am J Epidemiol 127(2): 365–76.
    1. Smith TA, Lehmann D, Coakley C, Spooner V, Alpers MP (1991) Relationships between growth and acute lower-respiratory infections in children aged less than 5 y in a highland population of Papua New Guinea. Am J Clin Nutr 53(4): 963–70.
    1. Tupasi TE, de Leon LE, Lupisan S, Torres CU, Leonor ZA, et al. (1990) Patterns of acute respiratory tract infection in children: a longitudinal study in a depressed community in Metro Manila. Rev Infect Dis 12 Suppl 8S940–9.
    1. Tupasi TE, Velmonte MA, Sanvictores ME, Abraham L, De Leon LE, et al. (1988) Determinants of morbidity and mortality due to acute respiratory infections: implications for intervention. J Infect Dis 157(4): 615–23.
    1. Garenne M, Maire B, Fontaine O, Briend A (2006) Distributions of mortality risk attributable to low nutritional status in Niakhar, Senegal. J Nutr 136(11): 2893–900.
    1. Pelletier DL, Frongillo EA Jr, Schroeder DG, Habicht JP (1994) A methodology for estimating the contribution of malnutrition to child mortality in developing countries. J Nutr 124(10 Suppl): 2106S–22S.
    1. Fishman SM, Caulfield LE, De Onis M, et al... (2004) Childhood and maternal underweight. In: Ezzati M, Lopez AD, Rodgers A, Murray CJ, editors. Comparative Quantification of Health Risks: Global and Regional Burden of Disease Attributable to Selected Major Risk Factors. Geneva: World Health Organization. 39–161.
    1. Hamill PV, Drizd TA, Johnson CL, Reed RB, Roche AF (1977) NCHS growth curves for children birth-18 years.United States. Vital Health Stat. 11(165): i-iv,1–74.
    1. WHO Multicentre Growth Reference Study Group (2006) WHO Child Growth Standards: Length/height-for-age, weight-for-age, weight-for-length, weight-for-height and body mass index-for-age: Methods and development. Geneva: World Health Organization (312 pages).
    1. United Nations. Every Woman Every Child. Available: http: //. Accessed 2012 Aug 29.
    1. United Nations Secretary-General Ban Ki-moon. Global Strategy for Women's and Children's Health. Available: http: //. Accessed 2012 Aug 29.
    1. UNICEF. Committing to child survival: A promise renewed. Available: http: //. Accessed 2012 Aug 29.
    1. United Nations Standing Committee on Nutrition. Scaling Up Nutrition (SUN). Available: http: //. Accessed 2012 Aug 29.
    1. WHO/CHD Immunisation-Linked Vitamin A Supplementation Study Group (1998) Randomised trial to assess benefits and safety of vitamin A supplementation linked to immunisation in early infancy. WHO/CHD Immunisation-Linked Vitamin A Supplementation Study Group. Lancet 352(9136): 1257–63.
    1. Adair L, Popkin BM, VanDerslice J, Akin J, Guilkey D, et al. (1993) Growth dynamics during the first two years of life: a prospective study in the Philippines. Eur J Clin Nutr 47(1): 42–51.
    1. Arifeen S, Black RE, Antelman G, Baqui A, Caulfield L, et al. (2001) Exclusive breastfeeding reduces acute respiratory infection and diarrhea deaths among infants in Dhaka slums. Pediatrics 108(4): E67.
    1. Fawzi WW, Herrera MG, Spiegelman DL, el Amin A, Nestel P, et al. (1997) A prospective study of malnutrition in relation to child mortality in the Sudan. Am J Clin Nutr 65(4): 1062–9.
    1. Garenne M, Maire B, Fontaine O, Dieng K, Briend A (2000) Risques de décès associés à différents états nutritionnels chez l'enfant d'âge préscolaire. Etudes du CEPED n° 17, 192 pages.
    1. Katz J, West KP Jr, Tarwotjo I, Sommer A (1989) The importance of age in evaluating anthropometric indices for predicting mortality. Am J Epidemiol 130(6): 1219–26.
    1. Mølbak K, Aaby P, Ingholt L, Hojlyng N, Gottschau A, et al. (1992) Persistent and acute diarrhoea as the leading causes of child mortality in urban Guinea Bissau. Trans R Soc Trop Med Hyg 86(2): 216–20.
    1. West KP Jr, Pokhrel RP, Katz J, LeClerq SC, Khatry SK, et al. (1991) Efficacy of vitamin A in reducing preschool child mortality in Nepal. Lancet 338(8759): 67–71.
    1. Andersen PK, Gill RD (1982) Cox's regression model for counting processes: a large sample study. Ann Stat 10(4): 1100–20.
    1. Cox D (1972) Regression models and life-tables. Journal of the Royal Statistical Society Series B. 34(2): 187–220.
    1. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7(3): 177–88.
    1. Renaudin P (1997) Evaluation of the nutritional status of children less than 5 years of age in Moundou, Chad: correlations with morbidity and hospital mortality. Med Trop (Mars). 57(1): 49–54.
    1. Randriamiharisoa FA, Razanamparany NJ, Ramialimanana V, Razanamparany MS (1993) Epidemiological data on children hospitalized with malaria from 1983 to 1992. Arch Inst Pasteur Madagascar. 60(1–2): 38–42.
    1. Olumese PE, Sodeinde O, Ademowo OG, Walker O (1997) Protein energy malnutrition and cerebral malaria in Nigerian children. J Trop Pediatr 43(4): 217–9.
    1. Man WD, Weber M, Palmer A, Schneider G, Wadda R, et al. (1998) Nutritional status of children admitted to hospital with different diseases and its relationship to outcome in The Gambia, West Africa. Trop Med Int Health 3(8): 678–86.
    1. Faye O, Correa J, Camara B, Dieng T, Dieng Y, et al. (1998) Malaria lethality in Dakar pediatric environment: study of risk factors. Med Trop (Mars) 58(4): 361–4.
    1. Wenlock RW (1979) The epidemiology of tropical parasitic diseases in rural Zambia and the consequences for public health. J Trop Med Hyg 82(5): 90–8.
    1. Burgess HJ, Burgess AP, Driessen F (1975) The nutritional status of children ages 0–5 years in Nkhotakota, Malawi. Trop Geogr Med 27(4): 375–82.
    1. Williams TN, Maitland K, Phelps L, Bennett S, Peto TE, et al. (1997) Plasmodium vivax: a cause of malnutrition in young children. QJM 90(12): 751–7.
    1. Goyal SC (1991) Protein energy malnutrition and cerebral malaria. J Trop Pediatr 37(3): 143–4.
    1. Edington GM (1954) Cerebral malaria in the Gold Coast African: four autopsy reports. Ann Trop Med Parasitol 48(3): 300–6.
    1. Murray MJ, Murray NJ, Murray AB, Murray MB (1975) Refeeding-malaria and hyperferraemia. Lancet 305(7908): 653–4.
    1. Murray MJ, Murray AB, Murray NJ, Murray MB (1978) Diet and cerebral malaria: the effect of famine and refeeding. Am J Clin Nutr 31(1): 57–61.
    1. Murray MJ, Murray AB, Murray MB, Murray CJ (1976) Somali food shelters in the Ogaden famine and their impact on health. Lancet 307(7972): 1283–5.
    1. Doolan DL, Dobano C, Baird JK (2009) Acquired immunity to malaria. Clin Microbiol Rev 22(1): 13–36.
    1. Tonglet R, Mahangaiko Lembo E, Zihindula PM, Wodon A, Dramaix M, et al. (1999) How useful are anthropometric, clinical and dietary measurements of nutritional status as predictors of morbidity of young children in central Africa? Trop Med Int Health 4(2): 120–30.
    1. Snow RW, Byass P, Shenton FC, Greenwood BM (1991) The relationship between anthropometric measurements and measurements of iron status and susceptibility to malaria in Gambian children. Trans R Soc Trop Med Hyg 85(5): 584–9.
    1. Genton B, Al-Yaman F, Ginny M, Taraika J, Alpers MP (1998) Relation of anthropometry to malaria morbidity and immunity in Papua New Guinean children. Am J Clin Nutr 68(3): 734–41.
    1. Cunningham-Rundles S, McNeeley DF, Moon A (2005) Mechanisms of nutrient modulation of the immune response. J Allergy Clin Immunol 115(6): 1119–28.
    1. Rodriguez L, Cervantes E, Ortiz R (2011) Malnutrition and gastrointestinal and respiratory infections in children: a public health problem. Int J Environ Res Public Health 8(4): 1174–205.
    1. Keusch GT (2003) The history of nutrition: malnutrition, infection and immunity. J Nutr 133(1): 336S–40S.
    1. Reddy V, Raghuramulu N, Bhaskaram C (1976) Secretory IgA in protein-calorie malnutrition. Arch Dis Child 51(11): 871–4.
    1. Ha CL, Woodward B (1997) Reduction in the quantity of the polymeric immunoglobulin receptor is sufficient to account for the low concentration of intestinal secretory immunoglobulin A in a weanling mouse model of wasting protein-energy malnutrition. J Nutr 127(3): 427–35.
    1. Neyestani TR, Woodward B (2005) Blood concentrations of Th2-type immunoglobulins are selectively increased in weanling mice subjected to acute malnutrition. Exp Biol Med 230(2): 128–34.
    1. Lord GM, Matarese G, Howard JK, Baker RJ, Bloom SR, et al. (1998) Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature 394(6696): 897–901.
    1. Rodriguez L, Gonzalez C, Flores L, Jimenez-Zamudio L, Graniel J, et al. (2005) Assessment by flow cytometry of cytokine production in malnourished children. Clin Diagn Lab Immunol 12(4): 502–7.
    1. Grover Z, Ee LC (2009) Protein energy malnutrition. Pediatr Clin North Am 56(5): 1055–68.
    1. Brown KH, Nyirandutiye DH, Jungjohann S (2009) Management of children with acute malnutrition in resource-poor settings. Nat Rev Endocrinol 5(11): 597–603.
    1. Rajaratnam JK, Marcus JR, Flaxman AD, Wang H, Levin-Rector A, et al. (2010) Neonatal, postneonatal, childhood, and under-5 mortality for 187 countries, 1970–2010: a systematic analysis of progress towards Millennium Development Goal 4. Lancet 375(9730): 1988–2008.
    1. The Millennium Development Goals Report 2012. New York: United Nations. Available: http: //. Accessed 2012 Aug 28.
    1. Bhutta ZA, Ahmed T, Black RE, Cousens S, Dewey K, et al. (2008) What works? Interventions for maternal and child undernutrition and survival. Lancet 371(9610): 417–40.

Source: PubMed

3
Sottoscrivi